C09

#### デブリ除去衛星への搭載を目指したホールスラスタの開発 Development of 200 W class Hal thruster for ADR main propulsion

#### 山本直嗣, 長野公勇(九州大学), 森下貴都(東京大学), 月崎竜童, 窪田健一, 杵淵紀世志(JAXA) Naoji Yamamoto, Masatoshi Chono (Kyushu University), Takato Morishita (Univ. Tokyo), Ryudo Tsukizaki, Kenichi Kubota and Kiyoshi Kinefuchi (JAXA)

デブリ除去衛星のメイン推進として、小型ホールスラスタシステムの開発を行っている。システム全体の小型化のために、ボルテラエンジンを採用すると共に、長寿命化のために、マグネチックシールディングに似た磁場形状を採用している。中和器としては、従来型のホローカソードの他に、マイクロ波放電型中和器での作動も成功した。推進性能としては、消費電力150Wにおいて、推力7mN、推進効率16%と改善の余地があり、アノードの形状などの最適化を行っている。

We have been developing 200 W class Hall thruster system for a main propulsion system of active debris remover. We use a Volterra engine for reduction of power consumption. A microwave discharge electron emitter is used as a neutralizer. the thrust is 7 mN at input power of 150 W was obtained with thrust efficiency of 16%.



Naoji Yamamoto, Masatoshi Chono, Taichi Morita, Takato Morishita, Ryudo Tsukizaki, Kenichi Kubota, Kiyoshi Kinefuchi

#### Space Debris WS 2018



| Debris altitude                                                                    | $.800 \text{ km} \rightarrow 40$ | )0km                              |
|------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|
| status                                                                             | $\Delta V m/s$                   |                                   |
| approach                                                                           | 165                              |                                   |
| De-orbit                                                                           | 217                              |                                   |
| De-orbit(non-contact)*                                                             | 458                              |                                   |
|                                                                                    | * mon                            | mentum transfer efficiency of 0.9 |
| ADR Debris                                                                         | Xenon m                          | ass Xenon mass*                   |
| 200 kg 1,500 kg                                                                    | g 40 kg /12                      | 0L 81 kg                          |
| $P:250 \text{ W}, I_{sp}:1,000 \text{ sec}, F: 13 \text{ mN}$<br><b>8500 hours</b> |                                  |                                   |
| Space Debris WS 2018                                                               |                                  |                                   |





## What is a life-limiter for Hall thrusters?



## Lifetime of Hall thrusters

### **Before Operation**



### **After Operation**



Space Debris WS 2018

# lifetime





### No difference was observed before and after

Space Debris WS 2018

8



## Subsystem

• 300 W class Power Processing Unit

### 600 cc 500 g, 93%

Space transportation symposium 2019

Mass flow control system
Shape memory alloy valve , less than 0.3 W

Space Debris WS 2018

10

# Acknowledgement

The results were obtained at the Space Plasma Laboratory of ISAS, JAXA.

This work is supported by the advanced machining technology group of Japan Aerospace Exploration Agency.

In addition, this work was supported by the JAXA-Kyushu University Collaborate work, "Electric propulsion development for ADR", and JSPS KAKENHI Grants Numbers JP16H04595 and JP16K14506, JP18H03815.