P01

ライトカーブインバージョン技術実証衛星 Q-Li

Q-Li the 3U Cubesat for Light Curve Inversion

松下悠里, 荒川稜平, 吉村康広, 花田俊也(九州大学)
Yuri MATSUSHITA, Ryohei ARAKAWA, Yasuhiro YOSHIMURA
and Toshiya HANADA (Kyushu Univ.)

九州大学では、天体の明るさを時間の関数として表した光度曲線(ライトカーブ)から天体の動きや変化のありさま(動態)を逆推定する技術である、ライトカーブインバージョンの確立を目指している。この技術を実証するために、九州大学では「ライトカーブインバージョン技術実証衛星 O-Li」を開発している。

本衛星は主ミッションとして、実際の動態とライトカーブインバージョンで逆推定された動態とを比較・検証する. その際, 軌道上で自身の動態を計測し、地上へ送信するとともに、地上からの測光観測のターゲットとなる. 測光観測においてライトカーブを得やすくするため、太陽光をより多く反射するための膜面を展開する. また、サブミッションとして膜面に微小デブリセンサを配置し、軌道上の微小デブリの観測を行う. 本ワークショップでは、本衛星のシステム全体に加え、特に、膜面展開機構およびライトカーブインバージョンについて詳しく述べる.

Kyushu University aims to establish a state estimation technique, called light curve inversion, which extracts dynamic states such as attitude motion and configuration from light curves. Light curves are brightness of space objects as a function of time and are obtained by ground-based observations. In order to demonstrate this technique, "Q-Li" the 3U Cubesat for Light Curve Inversion is being developed in Kyushu University.

The primary mission of Q-Li is the on-orbit verification of the light curve inversion by comparing actual state and estimated one by light curve measurements. To this end, Q-Li deploys a membrane to reflect sunlight so that one can be observed from the ground. Q-Li measures her own attitude angles and angular rates in orbit and transmits them to the ground. As the secondary mission, Q-Li detects tiny debris collisions with the membrane by sensors located on its surface. In this workshop, not only the whole systems of Q-Li but also the deployment mechanism of the membrane and light curve inversion technique are presented.

2018 The 8th Space Debris Workshop

ライトカーブインバージョン技術実証衛星 Q-Li Q-Li the 3U Cubesat for Light Curve Inversion

OYuri Matsushita, Ryohei Arakawa, Yasuhiro Yoshimura, Toshiya Hanada (Kyushu University)

Background of Q-Li

ADR (Active Debris Removal)

- Reasonable way to remove massive debris
- A debris removal satellite approaches and puts device on a target
- Attitude motion and shape of a target are required in advance

ADR

Light Curve

- Brightness of space objects as a function of time
- Obtained by ground-based observations
- Includes information about attitude motion and shape

Light Curve Inversion

A state estimation technique to extract dynamic states from light curves

Light Curve Inversion

Q-Li the 3U Cubesat for Light Curve Inversion

About Q-Li

Orbit

Altitude

Mission Duration **Development Duration**

Budget Including Launch

Attitude Determination Accuracy **Expected Magnitude**

Missions of Q-Li

Sun-synchronous Orbit (SSO)

600 km

≦ 1 year ≦ 2 years

20,000,000 JPY

 \leq 1 deg , \leq 0.2 deg/s

 $8 \sim 16$

The Primary Mission

Bus

Measure attitude angles and angular rates in orbit

Transmit attitude data

Membrane

- Reflect sunlight
- Detect sub-millimeter-size debris
- High area mass ratio

The Secondary Mission

Attitude Determination and Control

Orbit determination using optical observation and Doppler shift Gyro, magnetic sensor and sun sensor on board Only one axis controlled with magnetic torquer

The Primary Mission

The on-orbit verification of the light curve inversion by comparing actual state and estimated one by light curve measurements

The Primary Mission of Q-Li

Required Function

- 1. Q-Li deploys a membrane to reflect sunlight so that one can be observed from the ground
- 2. Q-Li measures its own attitude angles and angular rates in orbit and transmits them to the ground

The Secondary Mission

- 1. Detection of sub-millimeter-size debris impacts with the membrane by sensors and measurement of the time
- 2. Investigation of the relationship between attitude of a high area mass ratio object and aerodynamic torque

The Deployment Mechanism of the Membrane

Pantograph Mechanism

- High expansion rate
- Expanded in orbit

Membrane

- 1650 mm in length, 289 mm in width, 70 micro meter in thickness
- Gold deposited on polyimide film
- High specular reflectance
- Very low reaction rate to atomic oxygen

The deployment Mechanism of the Membrane

Pantograph Mechanism

Sub-millimeter-size Debris Sensor

Piezo-electronic Device

A sensor to detect stress wave in a material generated when sub-millimeter-size debris impact with the membrane

Impact of sub-millimeter-size debris

- The number of debris expected to impact on the membrane surface a year is 56.0
- The probability that debris larger than 1 mm impact on the arm of the deployment mechanism a year is 9.55×10^{-5}
- The probability that the arm is destroyed by the impact of sub-millimetersize debris is small enough