テスト粒子シミュレーションによる

月面磁気異常上空でのプラズマ速度分布関数解析

神戸大学大学院 システム情報学研究科 伊藤 圭佑, 臼井 英之, 三宅 洋平

1. 研究背景と目的

本研究で着目する月面磁気異常上空では、磁場 と太陽風プラズマの相互作用により、小スケール の磁気圏が形成される[1]。この小スケール磁気圏 の代表長はイオンジャイロ半径より小さく、イオ ンは容易に磁気圏の内部に侵入する。このことは 過去のシミュレーション研究でも確認されてい る[1]。また荷電分離によって生じた電界により、 プラズマ速度分布が変形し、局所磁場付近でのプ ラズマ波動励起も予想されている[1]。 これは波動 と粒子の相互作用によるため、詳細を知るにはプ ラズマ粒子の集団としてのダイナミクスを解析 する必要がある。この目的のため、新たにプラズ マ粒子の速度分布関数という側面から解析を行 う。しかし、宇宙環境解析を行ってきた従来のプ ラズマ粒子シミュレーションでは、1 格子当たり の粒子数が少なく、求めたい局所的な点で精密な 速度分布を得るのが困難であった。

これらのことから、本研究では、プラズマ粒子 速度分布関数をより高精度に取得する数値手法 の開発を行い、また実際の月面磁気異常に適用す ることで、当該手法の妥当性と有効性の評価を実 施する。

2. プラズマ粒子速度分布関数ソルバーの 開発

2.1. 計算の原理·手法

プラズマ中の粒子速度分布関数は一般的には さまざまな形態をとるが、乱れの無い熱平衡状態 では Maxwell 分布となることが知られている。 よって、シミュレーション空間での測定したい場 が乱れている場合、その地点にある粒子を、プラ ズマが平衡状態にある、すなわち速度分布が Maxwell分布に従う領域まで、時間的に逆戻しす ることを考える。その実現のために、テスト粒子 解析手法[2]を用いる。

テスト粒子解析は、ある与えられた電磁界環境 の中で、プラズマ粒子がどのようにふるまうかを 計算するものであって、プラズマ粒子の運動によ って発生する電流は、電磁界環境にはフィードバ ックされない。粒子速度と位置の逆更新を微小時 間ステップ *Δt* 毎に行うことにより、粒子の軌跡 や加速減速を見る。

時間逆更新により粒子が導体等に衝突し、消 失するか、もしくは乱れのない場まで戻ってく るまでトレースを実行する。このとき Liouville の定理 [3] により、無衝突条件下では粒子軌跡上 で粒子の存在確率密度は不変であることを用い る。この性質から、乱れのない場で既知である Maxwell 速度分布関数の確率密度の値と、測定 点の速度分布関数の確率密度の値との対応づけ を行うことができる。これにより未知の速度分 布関数を求める。

2.2. ソルバーの検証

速度分布関数計算をテストするシミュレーション空間は簡単のため、3 次元空間に互いに直交する一様電場と磁場を持つ $E \times B$ 空間とした。太陽風速度を+X 方向に、背景磁場を+Z 方向にとると、 $E = -v \times B$ より、背景に+Y 方向の一様電場が存在することになる。 $E \times B$ 中では場の乱れがなく、かつドリフト速度が一定であることから、太

陽風速度分だけシフトした Maxwell 分布になる はずである。今回はこの事実を検証の材料として 利用する。

速度分布の計算結果を以下の Fig.1 に示す。

Fig.1 を見ると、概形は太陽風速度(赤線)をピーク値とした Maxwell 分布を描いているように 見えるが、分布関数全体にわたって細かいノイズ が重畳したような結果となった。

ここで場に注目してみると、シミュレーション から得られた電場データは、空間のグリッド上に 離散的に定義されていることが分かった。粒子が グリッド上に存在しない場合、そこでの電場は、 近傍のグリッド上にある電場データを用いて重 み付け計算により得られる。このことから、粒子 位置に本来まさしくあるはずの電場と、離散的な データを用いて計算された実際使用する電場と のずれが発生する。加えて、分布の取得位置を一 点に定めていることから、粒子が位置更新の際そ の影響を多大に受け、本来想定される粒子運動の 軌跡との差ができ、数値ノイズが多くなったと考 えた。

2.3 データ収集法の改善

取り込んだ格子点上に離散的に定義された電 場データの乱れを受け入れるために、各粒子の速 度分布の収集法改善を考える。 節 2.2 に述べたように、電場の乱れを強く受け る原因は取得位置の局所性にあると考えられる ので、空間的に平均を取ることを考えた。具体的 な手順を Fig.2 とともに以下に示す。

まず、分布取得位置を中心として、周りに格子 点のある立方体($3 \times 3 \times 3 = 27$ 点、 $5 \times 5 \times 5 = 125$ 点など)を想定する。立方体内すべての格子点か ら初期設定速度 v_{start} を持つ粒子を出発させ、境界 面での速度 v_{end} を求める(例えば $5 \times 5 \times 5$ の立方 体を想定すると、1 種類の v_{start} に対し、異なる v_{end} が125個得られる)。得られた v_{end} を Maxwell の速度分布式にそれぞれ代入して、得られた確率 密度の値を粒子数で割り平均を取る。計算式に直 すと以下のようになる。

 $F = \{f_{end}(v_{end}(1)) + f_{end}(v_{end}(2)) + \cdots$

 $+ f_{end}(v_{end}(125)) \} / 125$

これにより空間的な平均化を図り、電場の乱れに よって起こる、粒子運動の軌跡のずれを解消した。 以上の方法でデータを取った結果を、以下の

Fig.1 と比べ、太陽風速度をピークにとる Maxwell 分布を低ノイズで取得することに成功 した。つまり期待通り、測定点を立方体と見立て て幅を広く取ることにより、位置の平均化が行わ れ、電場の乱れと、それによる粒子運動軌跡の極 端なずれが解消されたと考えられる。

ただし幅を広く取りすぎると、測定位置(立方 体)内に乱れのある場とない場とが混ざり、結果 がぼやけることも予想できる。したがって、プロ グラム上では格子点の個数や取得領域の範囲を、 興味のある現象の空間スケールに応じて変えら れるようにした。基本的には今回のように幅を、 プラズマ中で電気的中性が保証されるデバイ長 の数倍程度のサイズに取るのが標準的な設定で ある。

月面磁気異常上空での速度分布関数解 析

3.1 シミュレーション環境

開発した速度分布計算手法の妥当性と有効性 の評価のため、Fig.4 に示す月面磁気異常近傍環 境に当該数値ツールを適用する。

Fig. 4 月面磁気異常近傍環境のシミュレーション空間設定

太陽風は+X 方向へ吹きつけ、背景磁場は+Z 方 向へ向いている。これより電場が+Y 方向にでき、 定常では E×B の状況になっている。さらにシミ ュレーションの端に月面を取り入れ、月面内部の YZ 平面の中心に+Z 方向のダイポールモーメント を設定する。また、イオンのジャイロ半径は磁気 圏代表長の4倍とする。イオンと電子の熱速度 V_{thi} 、 V_{the} は、プラズマフロー速度 V_{flow} に対して、以下 の式を満たすように設定する。

 $r_i/L = 4$, $V_{thi} < V_{flow} < V_{the}$

この環境下で磁気異常付近の速度分布を解析していく。

なお電場と磁場の環境は、当研究室で頻 繁に利用されるプラズマ粒子シミュレータ EMSES(Electro-Magnetic Environment Simulator)[4]を用いて取得し、この電磁場デー タを基に、速度分布関数を取得するためのテス ト粒子計算を行った。

3.2 結果解析

EMSES による月面磁気異常近傍のシミュレー ション空間を、赤道面と子午面でスライスした面 の電子密度を、以下の Fig.5 に示す。

今回考察する月面磁気異常はこのようになる。 -x/L=1の付近に見られる電子密度の変化から、電 子を磁化しジャイロ運動させる磁気圏の存在が確 認でき、その形は子午面が z/L=0 を軸に対称なの に対し、赤道面は y/L=0 を軸に非対称となってい る。

EMSES シミュレーションの電子の流れとの比較のため、赤道面朝側の電子の速度分布を、数字(①~③)を割り振った位置で比較した。その結果をFig.6に示す。

Fig. 6 月面磁気異常近傍の 赤道面朝側での速度分布関数

赤線は速度0を、白線はx方向に移流する太陽 風の速度を示している。Fig.6の左上のグラフは、 磁気圏から十分離れて場の乱れがほとんどない E ×B中の速度分布であり、分布のピークが白線と 赤線の交点にあることから、太陽風速度分だけシ フトした Maxwell 分布 (定常状態) の形を取って いることが確認できる。①~③の結果から、速度 分布の中心は定常状態と比べ、+X 方向かつ-Y 方 向にある。つまりこのことから、電子は全体とし て+X 方向に加速されながら、-Y 方向にも移流し 始めることが分かる。また-Y 方向にのみ着目する と、定常状態に近い③の位置から、①に向かうに つれマイナスの速度が強まっている。加えて①~ ③にかけて、·X方向に向かう粒子の数が少しだけ 増加し、その後減少している様子が見られる。こ のことから、①~③付近では磁気圏の形に沿うよ うに電子が-Y 方向に移動していると予想できる。

取得した速度分布から推定される電子の移流 を、EMSES シミュレーションから得た電子の流 れと比較した図を、以下の Fig.7 に示す。

EMSES による電子の流れ(右)

結果を見ると、磁気圏に沿って-Y方向に流れて いく電子の動きが一致していることが分かる。

以上のことから、速度分布からの電子の動き予 想が、既知の研究結果[5]や EMSES シミュレーシ ョンの結果と一致したことが確認できた。

4. まとめと今後の目標

今回同様にプラズマ粒子シミュレーションを 用いた先行研究でも、速度分布を取得したグラフ があったので、Fig.8 にて比較した。

Fig. 8 先行研究(下)と今回のソルバー(上) との速度分布比較

先行研究の速度分布(下側)は分布をドットで

示した離散的な分布となっているが、これでは分 布の変化や、粒子の密度(ピーク等)が正確に分 からない。一方、本研究で開発した数値ツールを 活用することにより、高分解能での粒子速度分布 関数(上側)を連続関数として取得することに成 功した。これより Fig. 7(右)に示されるような グリッドベースのベクトル図で粒子の動きを見 るに留まらず、より局所的な位置での、粒子の詳 細な動き予想が実現した。さらには粒子速度分布 関数という数値化されたデータを利用し、プラズ マ粒子の集団のダイナミクスに着目した新たな 視点での解析が可能となった。以上のことが本研 究の一番の成果と言える。

今後の目標としては、取得の効率化を目指した ソルバーの高速化、速度分布への着目が必要な電 磁波発生の解析があげられる。

参考文献

[1]臼井英之,松原琢磨,三宅洋平,西野真木,"月面磁気異常上 空での太陽風プラズマ応答に関するプラズマ粒子シミュレーシ ョン,"(2016)

https://www.cps-jp.org/~mosir/pub/2016/2016-07-19/01_Usui/pub-web/01_usui.pdf [2]臼井英之, 杉山徹, 大村善治, 藤本正樹, 松本紘, "粒子シミ ュレーション法 概説," pp. 7-8 (2002)

http://center.stelab.nagoya-u.ac.jp/summer-

school/pdf/text6.pdf

[3]広江克彦, "リウビユの定理," (2008)

http://eman-physics.net/statistic/liouville.html

[4]Y. Miyake and H. Usui, "New electromagnetic particle

simulation code for the analysis of spacecraft-plasma

interactions," Physics of Plasmas, Vol. 16, No. 6, 062904 (2009)

[5] Hideyuki Usui, Yohei Miyake, Masaki N. Nishino, Takuma Matsubara, and Joseph Wang "Electron dynamics in the minimagnetosphere above a lunar magnetic anomaly," Journal of Geophysical Research, (2017)