紫外線による高分子材料の劣化予測技術に関する研究

○行松 和輝,森一之(宇宙航空研究開発機構)

山根 祥吾, 大石 晃広, 中村 清香, 陳亮, 萩原 英昭, 水門 潤治, 佐藤 浩昭(産業技術総合研究所)

Prediction of polymeric materials degradation by irradiation of ultraviolet

Kazuki YUKUMATSU, Kazuyuki MORI (JAXA) Shogo YAMANE, Akihiro OISHI, Sayaka NAKAMURA Liang CHEN, Hideaki HAGIHARA, Junji MIZUKADO, Hiroaki SATO (AIST)

Key Words: Ultraviolet (UV), PEN, Oxygen, ESR

1. はじめに

宇宙機の最表層を構成する高分子材料は、宇宙放 射線や原子状酸素(Atomic oxygen: AO)、紫外線 (Ultraviolet: UV)などの影響を受け、その特性が変化 することが知られている.多くの高分子材料はUVが 照射されることで黄変し、太陽光吸収率(a_s)が増加 する.太陽光吸収率とは、入射する太陽光エネルギー に対して材料が吸収するエネルギーの割合のことで ある.太陽光吸収率は宇宙機の熱設計において重要 なパラメータであり、宇宙機のミッション期間中お よび、ミッション期間終了時(End of life: EOL)の変 化を見積もることは必要不可欠である.しかし、EOL 予測のために地上で再現試験をするのは、照射時間 やコストの面から難しい場合が多い.

地上における高分子材料の耐候性研究において, 劣化機構の解明が進められ,熱劣化や光劣化,放射線 劣化などそれぞれにおいてその劣化メカニズムが提 唱されている¹⁾. 例えばポリエチレンテレフタレート

(Polyethyleneterephthalate: PET)の光劣化は表1の ように主に3つの反応機構があると報告されている²⁾. 地上において主な反応機構はラジカルによる自動酸 化劣化であり、この反応には酸素が存在することが 必要である.

ここで宇宙と地上での紫外線環境の違いについて 表2にまとめた.一つは紫外線の波長である.300 nm 未満の波長は大気により吸収されるため,地上に届 く紫外線は300 nm以上の波長となる.その一方,宇 宙環境では,その吸収がないため300 nm以下の波長 も存在する.短波長の紫外線は,その光のエネルギー が大きいため,高分子鎖の切断に影響を与える.2つ 目は大気の影響である.静止軌道などの宇宙環境で は大気はほぼ存在しないため,ラジカルによる自動 酸化劣化が起きないと考えられる.3つ目は水である. 地上環境では水の影響があり,加水分解が劣化機構 の一つであるが,宇宙環境では存在しないため,加水 分解は発生しないと考えられる.このように地上と は異なり,宇宙環境では自動酸化劣化や加水分解が 起きないと考えられるため,劣化要因が単純である と予想される.

そこで本研究では、宇宙環境を模擬した紫外線照 射による高分子材料の劣化メカニズムの解明を通し て、劣化解析手法の確立を目指す.劣化メカニズムの 解明を行うことで、宇宙環境の特徴である 300 nm 未 満の短波長の影響を調査することができる.また宇 宙機の設計の際に行う EOL 予測を、それよりも少な い照射量からの見積もりが可能になると考えられる.

本発表では、地上での劣化メカニズムの解明が進 んでいる試料を用いて、宇宙環境を模擬した紫外線 照射を行い、劣化解析手法の検討を行った結果を示 す.特に地上と宇宙環境で大きく異なる酸素依存性 による劣化生成物の検討結果の一部を報告する.

表1光劣化の主な反応2)

	反応	分析方法例
高分子主鎖切断	Norrish II 型	FTIR 測定
ラジカルによる 自動酸化劣化	自動酸化	ESR, 質量測定
ラジカルによる 架橋	高分子鎖の 架橋	質量測定

表 2	地	上と	宇宙環境の	〕違い
-----	---	----	-------	-----

	地上環境	宇宙環境
紫外線波長	$300~\sim~400~\text{nm}$	$200~\sim~400~nm$
大気	N2:約80%	ほぼ存在しない
	O ₂ :約20%	
水	湿潤	ほぼ存在しない

2. 試験方法

2.1. 照射試料

本試験で対象とした試料を表 3 に示す. 照射試料 はポリエチレンナフタレート (Polyethylene naphthalate: PEN) とした. PEN は, これまでの研究 で紫外線照射により黄変しやすいことが分かってお り, 初期の劣化生成物の構造解析に適していると考 えたためである.

表 3 照射試料

材料	構造式	厚さ	用途
PEN	+ () () () () () () () () () (50 µm	比較用高 分子フィ ルム

2.2. 試験条件の検討

試験条件の検討として, UV 照射後のラジカル消失 時間の検討を行った.これまで実施した UV 照射実 験では,真空雰囲気で UV 照射を行った後に各種分 析を行うために,大気開放を行う.大気圧戻し後に, 大気中に長時間放置すると,太陽光吸収率が変化す ることが知られ³,その時間依存性は検討されてきた.

しかし,真空雰囲気での UV 照射で生じた残存ラ ジカルが大気圧戻しの際に導入された酸素と反応し, 新たな劣化構造物を生成する可能性がある.そこで ESR 分析を実施した.

本試験では ESR に付随するキセノンランプ (波長: 250-380 nm)を用いて PEN に UV 照射を行い,真空 雰囲気を保持し, ラジカル強度の変化を測定した.

2.3. 酸素依存性による生成物の検討

2.3.1. 紫外線照射と熱光学特性の分析

表4に紫外線照射条件を示す.紫外線照射における黄変は,温度依存性があることが知られており⁴,照射強度が異なる場合でも試料温度を一定とすることで,黄変度合いに差がないことが分かっている⁵.本試験では照射量を50 ESD もしくは 100 ESD とし,酸素分圧は,大気の成分比から算出して真空雰囲気では2.1×10⁴ Pa 以下,大気雰囲気では2.1×10⁴ Pa 程度である.

照射後に,熱光学特性として,太陽光吸収率(as) と垂直赤外放射率(EN)をそれぞれ表5に示す装置 を用いて測定した.

表 4	紫外線照射条件
-----	---------

項目	内容	
光源	キセノンショートアークランプ	
照射波長域	250 – 500 nm	
照射強度	5 UV-sun or 10 UV-sun	
照射量	50 ESD or 100 ESD	
照射中雰囲気	真空雰囲気	大気雰囲気
	10 ⁻³ Pa 以下	(実験室の空
		気を導入)
試料温度	30±10 ℃	

表 5 熱光学特性の測定装置

	太陽光吸収率	垂直赤外放射率
型番	U-4100	TESA2000
測定波長	250-2000 nm	3-35 µm
標準試料	Spectralon	不必要
太陽光スペク	ASTME-4906)	-
トル		

2.3.2. ケミカルルミネッセンス測定

2.3.1 項で UV 照射を行った PEN 試料に対して, ケ ミカルルミネッセンス測定を行った. 化学反応に伴 う微弱な発光を捉えることが可能なケミカルルミネ ッセンス法は高分子の酸化劣化反応を検出する方法 として用いられている⁷.

今回,真空雰囲気と大気雰囲気にて 50 ESD 照射した試料と,UV 未照射の試料を用いた.今回の測定条件は測定開始温度を 50℃とし、1 分当たり 50℃の昇温速度で 250℃まで昇温した.また測定時は窒素雰囲気とした.それぞれ輝度測定(型式:CLA-FS4)とスペクトル測定(型式:CLA-ISI(SP3))を行った.

3. 試験結果と考察

3.1. 試験条件の検討結果

図1にUV照射後のラジカル強度の変化の結果を 示す.赤線で記載した部分(49.3 hours)までUV照 射を行い,その後真空雰囲気を保持し,ラジカル強度 を測定した.図1より,UV照射とともにラジカル量 は増加し,照射を終了すると,ラジカルが消費される ことが分かる.また真空中で1日程度放置すること で,ラジカル強度がほぼ0となることが分かった. これより今後のUV照射試験では,真空中でのUV照 射後は最低1日以上,真空雰囲気を保持する必要が あることが分かった.

3.2. 酸素依存性による生成物の検討

3.2.1. 紫外線照射と熱光学特性の分析結果

真空雰囲気と大気雰囲気における太陽光吸収率の 変化を図2に示す.大気雰囲気照射時に太陽光吸収 率の変化が大きいことが分かる.これより酸素の存 在の有無で,異なる劣化構造物が生成された可能性 が示唆された.

図 2 紫外線照射による太陽光吸収率の変化

3.2.2. ケミカルルミネッセンス測定

図3に輝度測定の結果を示す.この測定より,3つ のピークが確認された.温度の低いピークから考察 する.TIME = 150にみられたピークは UV 照射に関 係なく発光がみられた.これより材料固有の発光で あると考えられ,このときの温度が PEN のガラス転 移温度(155℃)付近であることから相転移が関係し ていると考えられる.

さらに大気雰囲気照射と真空雰囲気照射でそれぞ れ別のピークが確認された.これより照射雰囲気に より,生成された過酸化物が異なることが考えられ る.また発光スペクトル分析を実施した.照射の有無 に関わらず確認されたスペクトルがあった一方,照 射条件(酸素依存性)の違いにより,異なるスペクト ルも検出された.これは輝度測定の結果と一致して おり,現在これらのスペクトル分析を行っている.

また発光強度(輝度測定及びスペクトル測定)は, 真空雰囲気照射のほうが大気雰囲気照射よりも大き かった.これはこれまで評価してきた太陽光吸収率 や反射率,透過率の傾向とは異なるため,過酸化物の 量と太陽光吸収率の変化量は1対1対応ではないこ とが分かった.これにより,酸素の有無により劣化機 構が異なることが示唆されたと考えている.

図 3 CL 輝度測定結果

4. まとめ

紫外線による高分子材料の劣化予測技術に関する 研究として,酸素依存性における劣化生成物の構造 解析を進めている.まず真空雰囲気で照射を行った ときのラジカル残存時間を測定したところ,照射後1 日程度でラジカルは消失することが分かった.また 大気雰囲気と真空雰囲気で紫外線照射をした PENの 熱光学特性と,ケミカルルミネッセンス測定を行っ た.その結果,大気雰囲気照射と真空雰囲気照射で異 なる構造物が生成されたと考えられる.現在,UV照 射後の ESR 分析・質量分析を進めており,生成物の 違いについて検討を行っている.また酸素依存性の 他に,添加剤の有無による劣化生成物の構造解析を 行う予定である.

参考文献

- 1) 大澤善次郎,高分子劣化・長寿命化ハンドブック, 丸善出版株式会社,2011
- Jean-Luc Gardette, et.al, Impact of photooxidative degradation on the oxygen permeability of poly (ethyleneterephthalate), Polymer Degradation and Stability 103 (2014)
- 3) Kazuyuki MORI, Yugo KIMOTO, Recovery of solar

absorptance change by the ultraviolet rays in the atmosphere storage Proc. 31st International Symposium on Space Technology and Science, 2017,

- Kazuyuki Mori, junichiro Ishizawa: Temperature Effects of Ultraviolet Irradiation on Material Degradation, Astrophys Space Sci Proc. 32, P399-408, 2013.
- 5) 森一之,石澤淳一郎,真空中紫外線照射試験にお ける照射強度による劣化挙動の比較,マテリアル ライフ学会第24回研究発表会予稿集,20,2013
- ASTM E490-00a, Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, American Society for Testing and Materials, 2006
- 大石不二夫、ケミカルルミネッセンスの高分子劣 化研究への応用、マテリアルライフ(Materials Life), 10[1], 3~15 (1998)
- 8) 森一之,行松和輝,真空雰囲気/大気雰囲気における紫外線劣化のケミカルルミネッセンス分析-ポリエチレンナフタレート-,マテリアルライフ 学会第29回研究発表会予稿集,17,pp65-68,2018