The 50th Fluid Dynamics Conference/ The 36th Aerospace Numerical Simulation Symposium 4 July 2018, Miyazaki Citizen's Plaza, Miyazaki, Japan

Test cases of Fourth Aerodynamics Prediction Challenge (APC-IV)

Takashi Ishida (JAXA) APC committee

Test case of APC-IV

Aerodynamics/Aeroacoustics prediction of 30P30N

Case 1: Prediction of aerodynamics

Case 2: Prediction of flow separation at flap

Case 3: Prediction of aeroacoustics (near/far field)

 Geometry 30P30N (modified_slat_configF) 30P35N (modified_slat_configF)

• Flow condition (same with BANC workshop *1) M = 0.17, Re = 1.71 x 10⁶, Tinf=295.56K α = 5.5deg, 9.5deg

 $\begin{tabular}{ll} \& 1 & URL \ http://aeroacoustics2016.com/banc-iv-workshop/\\ \end{tabular}$

Case1: Prediction of aerodynamics

Aims

- Compare Cp/CL obtained by 2D steady or 2.5D steady/unsteady flow simulation with experimental data[1]
- Check the dependency of flow solver, grid, and turbulence model

Recommendation

 use periodic boundary condition to spanwise direction in case of 2.5D simulation[2]

[1] Murayama, M., Nakakita, K., Yamamoto, k., Ura, H., Ito, Y., and Choudhari, M.M., "Experimental Study on Slat Noise from 30P30N Three-Element High-Lift Airfoil at JAXA Hard-Wall Lowspeed Wind Tunnel", AIAA 2014-2080

[2] Sakai, R., Ishida, T., Murayama, M., Ito, Y., and Yamamoto, K., "Effect of Subgrid Length Scale in DDES on Aeroacoustic Simulation around Three-Element Airfoil," AIAA 2018-0756, 2018.

3

Case1-1: 2D steady flow simulation

Geometry 30P30N_modified_slat_configF

• Grid^{**1} provided (required:L2, optional:L1,L3~L5) or custom

• Condition M = 0.17, $Re = 1.71 \times 10^6$

AoA[degree] 0/4/5.5/8/9.5/12/14/16/20/22/24/26

(red: required, black: optional)

Turbulence model free

• List of data *2 ①Aerodynamic coefficients $(C_D, C_L, C_m), C_p, C_f$

②Contours of \tilde{v}/v ③Spatial streamlines ④Velocity profiles

X1 The size of custom grid should be equivalent to provided grids.

 $2\sim4$ are required for AoA=5.5 and 9.5.

Submit aerodynamic coefficients for each component.

Case1-2: 2.5D steady flow simulation

Geometry 30P30N modified slat configF

• Grid^{*1} provided (required: L2, optional: L1,L3~L5) or custom

• Condition M = 0.17, Re = 1.71 x 10^6

AoA[degree] 0/4/5.5/8/9.5/12/14/16/20/22/24/26

(red:required, black:optional)

• Turbulence model free

②Surface contours of C_p , C_f ③Surface streamlines ④Contours of $\tilde{\nu}/\nu$ ⑤Spatial streamlines ⑥Velocity profiles

※1 The size of custom grid should be equivalent to provided grids.

 $2\sim6$ are required for AoA=5.5 and 9.5.

Submit aerodynamic coefficients for each component.

5

Case1-3: 2.5D unsteady flow simulation

Geometry 30P30N_modified_slat_configF

• Grid^{**1} provided (required: L2, optional: L1,L3~L5) or custom

• Condition M = 0.17, Re = 1.71 x 10^6

AoA[degree] 5.5/9.5Turbulence model free

• List of data *2 ①Aerodynamic coefficients(C_D, C_L, C_m), C_p, C_f

②Surface contours of C_p , C_f ③Surface streamlines ④Contours of $\tilde{\nu}/\nu$ ⑤Spatial streamlines ⑥Velocity profiles

X1 The size of custom grid should be equivalent to provided grids.

Submit aerodynamic coefficients for each component.

Submit time-averaged data.

Cp and Cf are desirable to take both time and spanwise average.

Case2: Prediction of flow separation at flap

Aim

- Predict flow separation at flap to change flap deflection angle
- Compare the result of 2D steady or 2.5D steady/unsteady flow simulation [1]

[1]Terracol, M., and Manoha, M., "Wall-resolved Large Eddy Simulation of a highlift airfoil: detailed flow analysis and noise generation study", AIAA 2014-3050

7

Case2-1: 2D steady flow simulation

Geometry 30P35N_modified_slat_configF

• Grid^{**1} provided (required: L2, optional: L1,L3~L5) or custom

• Condition M = 0.17, $Re = 1.71 \times 10^6$

AoA[degree] 5.5Turbulence model Free

List of data *2 ①Aerodynamic coefficients $(C_D, C_L, C_m), C_p, C_f$

②Contours of \tilde{v}/v ③Spatial streamlines ④Velocity profiles

Submit aerodynamic coefficients for each component.

Case2-2: 2.5D steady flow simulation

Geometry 30P35N modified slat configF

• Grid^{*1} provided (required: L2, optional: L1,L3~L5) or custom

• Condition M = 0.17, $Re = 1.71 \times 10^6$

AoA[degree] 5.5Turbulence model free

• List of data *2 ①Aerodynamic coefficients(C_D, C_L, C_m), C_p, C_f

②Surface contours of C_p,C_f
③Surface streamlines
④Contours of $\tilde{\nu}/\nu$ ⑤Spatial streamlines
⑥Velocity profiles

X1 The size of custom grid should be equivalent to provided grids.

imes 2 Submit aerodynamic coefficients for each component.

Cp and Cf are desirable to take spanwise average.

9

Case2-3: 2.5D unsteady flow simulation

Geometry 30P35N_modified_slat_configF

• Grid^{*1} provided (required: L2, optional: L1,L3~L5) or custom

• Condition M = 0.17, Re = 1.71 x 10^6

AoA[degree] 5.5Turbulence model free

List of data *2 ①Aerodynamic coefficients $(C_D, C_L, C_m), C_p, C_f$

②Surface contours of C_p , C_f ③Surface streamlines ④Contours of $\tilde{\nu}/\nu$ ⑤Spatial streamlines ⑥Velocity profiles

★1 The size of custom grid should be equivalent to provided grids.

Submit aerodynamic coefficients for each component.

Submit time-averaged data.

Cp and Cf are desirable to take both time and spanwise average.

Case3: Prediction of aeroacoustics

Aims

- Compare the wall pressure variation at slat/main by 2.5D unsteady flow simulation with experiment[1,2]
- Compare the far field acoustics by FW-H with experiment[3]
- Check the effect of AoA for the Narrow Band Peaks (NBPs) and the peak from slat trailing edge

Recommendation

- use periodic boundary condition to spanwise direction [4]

[1] Murayama, M., Nakakita, K., Yamamoto, k., Ura, H., Ito, Y., and Choudhari, M.M., "Experimental Study on Slat Noise from 30P30N Three-Element High-Lift Airfoil at JAXA Hard-Wall Lowspeed Wind Tunnel", AIAA 2014-2080

[2] Terracol, M., Manoha, E., Murayama, M., and Yamamoto, K., "Aeroacoustic Calculations of the 30P30N High-lift Airfoil using Hybrid RANS/LES methods: Modeling and Grid Resolution Effects", AIAA 2015-3132

[3] Choudhari, M.M., and Lockard, D.P., "Assessment of Slat Noise Predictions for 30P30N High-Lift Configuration from BANC-III Workshop", AIAA 2015-2844

[4] Sakai, R., Ishida, T., Murayama, M., Ito, Y., and Yamamoto, K., "Effect of Subgrid Length Scale in DDES on Aeroacoustic Simulation around Three-Element Airfoil," AIAA 2018-0756, 2018.

11

Case 3-1: Near field acoustics

Geometry 30P30N_modified_slat_configF

• Grid^{*1} provided (required:L2, optional:L3) or custom

• Condition M = 0.17, $Re = 1.71 \times 10^6$

AoA[degree]
 5.5/9.5/14(red: required, black: optional)

Turbulence model Free

List of data^{**2} ①PSD of wall pressure@S10, S11, S12, S13, M7, F1, P1, P7

②Contours of spanwise vorticity
③Contours of time-averaged 2D TKE

4 Contours of Cp_{rms}

X1 The size of custom grid should be equivalent to provided grids.

%2 Submit PSD data obtained at the center cross section in the spanwise

direction.

Case3-2: Far field acoustics

Geometry 30P30N_modified_slat_configF

• Grid^{*1} provided (required:L2, optional:L3) or custom

• Condition M = 0.17, $Re = 1.71 \times 10^6$

• AoA[degree] 5.5/9.5/14(red: required, black: optional)

• Turbulence model Free

List of data
 PSD@135deg,249deg, 270deg, 291deg at 10c position

X1 The size of custom grid should be equivalent to provided L2 grid.

13

Guideline for unsteady flow simulation

Parameters

• Dt CFL=O(1) at slat cove region

Transient computation monitor the history of aerodynamic coefficients

and judge after initial unphysical pulse pass

through flap

Sampling time more than 80ms (~10c/Uinf)

PSD processing

Data overlapping 50%
 Window function Hanning
 Averaging data more than 10

APC Website

- Geometry (formats: .igs, .stp, .crv)
 - 30P30N and 30P35N are available
- Grid (structured type, formats: .p3d, .fsgrid, .cgns)
 - 30P30N and 30P35N are available
- Please see the APC website for more information
 - https://cfdws.chofu.jaxa.jp/apc/

15