

Aerodynamic prediction of 30P30N airfoil using 2D BCM (BCMを用いた30P30Nの2次元空力予測)

OTakaya Kojima, Takashi Misaka, Aiko Yakeno, Shigeru Obayashi (Institute of Fluid Science , Tohoku University)

Yusuke Shikada, Tsubasa Iwafune, Daisuke Sasaki (Kanazawa Institute of technology)

Case

Aerodynamic prediction of 30P30N airfoil
1-1 2D steady analysis

- 2. Flap separation prediction of 30P35N airfoil
- 2-1 2D steady analysis
- 3. Noise prediction of 30P30N airfoil (near and far field)

35

Flow solver

- BCM (Building Cube Method)
 - Cartesian mesh based solver

Cube	
	Cell

BCM mesh around NACA0012 airfoil

• Merits

- Easy parallel computation
- Easy grid generation for complex shapes
- Higher order spatial accuracy
- Demerits
 - Shape reproducibility
 - Difficulty in resolving the boundary layer

2018/07/04

Computational method

	BCM-NS		
Governing Eq.	Compressible NS Eq.		
Discretization	Cell-centered finite volume		
Inviscid Flux	SLAU 3rd-order MUSCL		
Viscous Flux	2nd-order central difference		
Time integration	LU-SGS		
Turbulence model	SA-noft2-R		

Wall boundary treatment

 Immersed boundary method (Ghost cell approach) Density & pressure → Zeroth-order interpolation Velocity → Linear interpolation

Grid				KIT 金沢工業大学
	Coarse	Medium	Fine (L1)	Extra Fine (L2)
Minimum grid size	9.54e-5	4.77e-5	2.38e-5	1.19e-5
Total cube number	8,259	15,645	15,645	15,645
Total cell number in Cube	16*16	16*16	32*32	64*64
Total cell number	2,114,304	4,005,120	16,020,480	64,081,920
5.5 deg	0	0	0	0
9.5 deg	-	-	0	0
14.0 deg	-	-	0	-
20.0 deg	-	-	0	-
24.0 deg	-	-	0	-
2018/07/04				5

Cube allocation

2018/07/04

We analyzed 30P30N airfoil by BCM

 \cdot The Fine(L1) grid and Extra Fine(L2) grid analysis result shows the same tendency as the experiment at the low angle of attack.

 \cdot These fine grids simulations could not predict precisely at the high angle of attack. (Separation occurs in the simulations)

 \rightarrow Revise Cube allocation and Analysis conditions.

• The aerodynamic coefficient is estimated to be large.

 \cdot The trend of the pressure coefficient distribution differs at the trailing edge of the flap in experiment and simualtion.

→ Due to two dimensional analysis?

14