50th Fluid Dynamics Conference/36th Aerospace Numerical Simulation Symposium

Numerical Prediction of Aerodynamic Characteristics of Multi-Element High-Lift Airfoil 30P30N by **scFLOW**

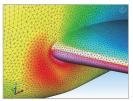
Fourth Aerodynamics Prediction Challenge(APC-IV)

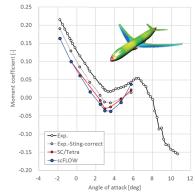
Yoshitaka NAKASHIMA, Tomohiro IRIE

Development Dept.

Software Cradle Co., Ltd.

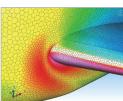
July 4, 2018


Background



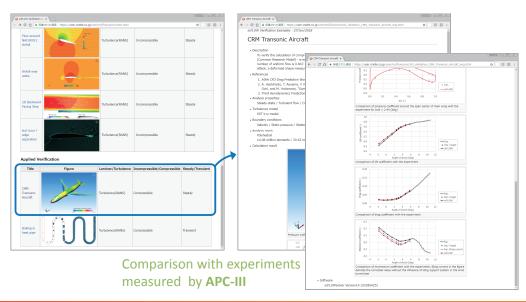
Our participation in APC

APC-I(2015), SC/Tetra-V12



APC-III(2017), scFLOW-V14RC1

Software	СРИ	Calc. time [h]
SC/Tetra	72	7.0
scFLOW	144	1.2


Software Cradle 2

Background

Practical use of calculation data

Validation site for scFLOW

© Software Cradle

| 3

Objectives

Objectives of this work

- Use two types of numerical meshes
 - Structured mesh provided by APC-IV
 - Validate the solver in scFLOW
 - Polyhedral mesh generated with scFLOW
 - Validate polyhedral mesh generation for wing geometry

Our work

- Steady-state analysis by 2D mesh
 - Case 1-1: 30P30N
 - Alpha variation by using two types of meshes
 - Grid convergence for structured mesh
 - Case 2-1: 30P35N
 - Comparison with 30P30N by using two types of meshes

O Software Cradle 4

Calculation Methods

Calculation methods of scFLOW

- Solver
 - Density-based solver
- Discretization method
 - Cell centered finite volume method
- Inviscid flux
 - Roe solver (Roe 1981)
- Viscous flux
 - Alpha damping scheme (Nishikawa 2010,2011)
 - Evaluate the gradient at a CV-face by using high-frequency damping term with the parameter Alpha in addition to the arithmetic mean of elemental gradients
 - Stable and accurate even for skewed mesh (Jalali et al. 2014)

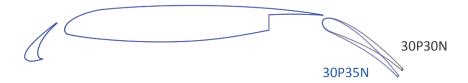
© Software Cradle 5

Calculation Methods

Calculation methods of scFLOW

- Accuracy of inviscid terms and limier function
 - 2nd order, van Leer-type Hishida limiter (2010)
- Calculation method of gradients
 - Weighted least-squares method
- Non-linear solver in a steady-state analysis
 - Implicit defect correction method
 - Jacobian is constructed exactly based on a compact first-order inviscid scheme and a compact viscous scheme (Nakashima et al. 2014, Nishikawa et al. 2017)
 - Expect a fast convergence for non-linear solver
- Turbulence model
 - Spalart-Allmaras One-Equation Model (SA)

O Software Cradle 6


Problem Setup

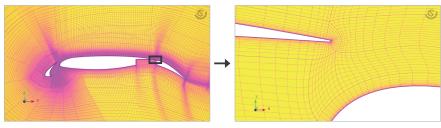
Analysis conditions

Geometry

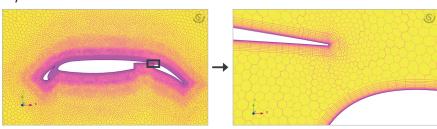
Case 1-1: 30P30NCase 2-1: 30P35N

Flow condition

• Mach number : 0.17• Reynolds number : 1.71×10^6 • Angle of attack (AoA) : $0-26[\deg]$


O Software Cradle

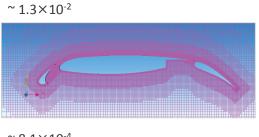
Numerical Mesh

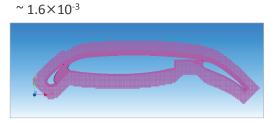


Comparison of L2(medium) meshes for 30P30N

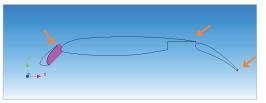
Structured mesh

- Polyhedral mesh


© Software Cradle


Numerical Mesh

Polyhedral mesh generation by scFLOW


- Definition of spatial element size by octants
 - Octant size: 2.54×10⁻⁵(T.E. of wings)-0.83(far-field)[m]

~ 8.1×10⁻⁴

~ 4.1×10⁻⁴

© Software Cradle

Lo

Numerical Mesh

• Prism layer insertion in polyhedral mesh generation

- Thickness of 1^{st} layer : 5.08×10^{-6} [m]

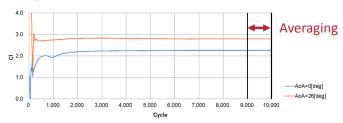
Variation of thickness: 1.2Number of layers: 20

• L2(medium) mesh used in this calculation

The number of elements

Geometry	Туре	Elements	Nodes	Faces	
30P30N	Structured	112,474	226,496	450,672	
	Polyhedral	107,261	361,772	502,671	
30P35N	Structured	112,474	226,496	450,672	
	Polyhedral	106,754	359,698	500,113	

© Software Cradle


Numerical Conditions and Calculation Time

Numerical conditions

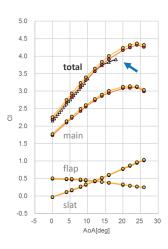
- Initial conditions; Uniform flow
- Calculates 10,000 cycles
 - Evaluate the **averaged** variables over the last 1,000 cycles

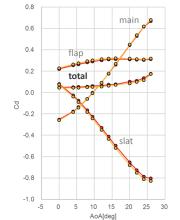
Ex. Polyhedral mesh

Calculation time for L2(medium) mesh with 36cpu

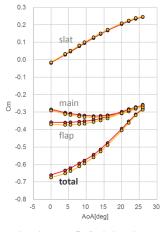
Geometry	Туре	Calc. time[min]
30P30N	Structured	7.0
	Polyhedral	7.2

© Software Cradle


Case 1-1: Alpha Variation for 30P30N


Comparison of aerodynamic coefficients

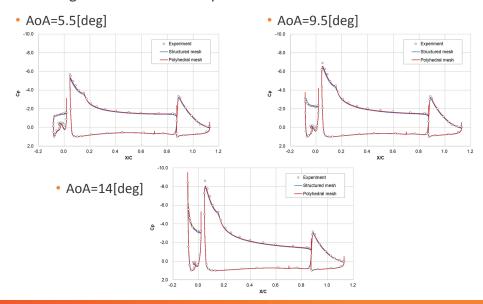
CI has a reasonable agreement with the reference [AIAA 2014-2080]


Lift coefficient

Drag coefficient

Moment coefficient

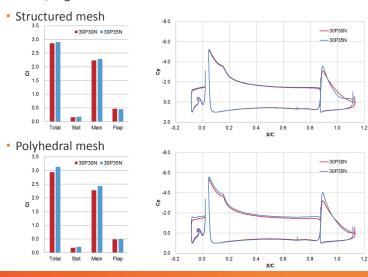
Experiment ——Structured mesh ——Porihedral mesh


O Software Cradle | 12

Case 1-1: Alpha Variation for 30P30N

• Comparison of Cp distribution on the wing surface

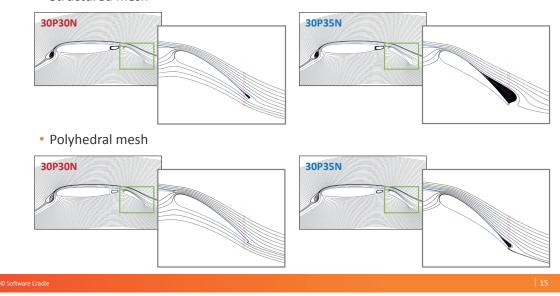
Good agreement with the experiments


O Software Cradle

Case 2-1: Effect of Flap Angle

Comparison of lift and pressure coefficients

- Left: Lift, Right: Pressure coefficient


This document is provided by JAXA.

Case 2-1: Effect of Flap Angle

Comparison of streamlines

- Separation behavior on the flap wing is different between mesh types
- Structured mesh

Conclusions

Conclusions of this work

- Case 1-1: The pressure distribution on the wing surface is reasonable agreement with experiments, not only for the structured mesh provided by APC-IV, but also for the polyhedral mesh generated with scFLOW
- Case 2-1: Separation behavior on the flap wing is different between mesh types

Our future work

- Acoustic analogy of FW-H method will be released in the next version of scFI OW
 - We will try the prediction of acoustic pressure for Case 3
- Using acoustic analysis software Actran with scFLOW

) Software Cradle | 16

Supplement

- Co-simulation using Adams and scFLOW
 - A coupled analysis with multi-body dynamics analysis software Adams

Displacement and Euler angles

Flap movement

© Software Cradle

Thank you for your attention

© Software Cradle