MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

Aeroacoustic Simulation of 30P30N High-Lift Configuration using Lattice Boltzmann Method

Shinsuke Nishimura

Research & Innovation Center, Fluid Dynamics Research Department, Aerodynamics Laboratory

MITSUBISHI HEAVY INDUSTRIES, LTD.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Outline

- Background/Objective
- MHI-LBM solver
 - Overview
 - Cumulant collision model
 - Equilibrium wall model
- Computational condition/mesh
- Results
- Summary

Background/Objective

Challenge of Industrial CFD

- Unsteady phenomena(e.g. CAA)
- Complex geometry
- Low computational cost

(Wall clock time to solution : Less than a week with O(100) cores)

Lattice Boltzmann Method

- Lower dissipation error than DRP scheme with 6th order RK^{*} (but higher dispersion error)
- 10 50 times speed up can be achieved with LBM

Objective: Development of practical LBM solver for industrial use

*Marié, Simon, Denis Ricot, and Pierre Sagaut. "Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics." Journal of Computational Physics 228.4 (2009): 1056-1070. Denis Ricot, "Application of Lattice Boltzmann Method in automotive industry with focus on aeroacoustic simulations", Inst. H. Poincaré, 19 January 2010

MHI-LBM solver [Overview]

Developed from scratch and now ...

- D3Q27 model
- Building Cube Method
- Cumulant collision model
- Interpolated Bounced Back
- Implicit LES
- Equilibrium wall model(Conventional stress model)

Building Cube Method

D3Q27

•Cumulant collision model The biggest issue of LBM was numerical instability at High Re. $f_i(t+\Delta t, \mathbf{x}+\mathbf{e}_i\Delta t) = f_i(t, \mathbf{x})+\Omega_i, \quad i = 0, \dots, b-1$ Collision Operator • LBGK model(i.e. Single relaxation model) • Multiple relaxation model • Raw moments • Central moments $raw moments = \sum \frac{f_i}{\rho} e_{ix}^m$ The Galilean invariance and the numerical stability is greatly improved!

Not good choice

X_R

Equilibrium wall model

Similar to implementation presented in Ref[1] or Ref[2]

- 1. Choose reference point X_R (length = 1.75 Δx)
- 2. Interpolation rho and V at X_R
- 3. Calculation U_r by Spalding law with newton iteration
- 4. Calculation tangential velocity at boundary node
- (1st order approximation)
- 5. Interpolated bounced back for moving boundary

Computational details

- Total # of cells : 150 million
- Minimum grid space : 1.0 × 10⁻³C
 =>Insufficient mesh resolution to resolve trailing edge noise of slat
- Span length : 0.25C
- y⁺ : ≈ 200(at 5.5 deg)
- Upper limit of resolved frequency : about 6KHz
 - [PPW ≈ 10 and Rossiter mode is assumed]

Computational details

Data sampling

• # of iteration for unsteady data sampling : 98304

(Total # of iteration including transient simulation : 320000)

- Δt: 7.48 × 10⁻⁷sec
- Total sampling time: 0.074 sec
- # of averages for spectrum : 11

Wall clock time to solution : 3.5 days with 640 cores

> Cp distributions agree with Exp.

Results [PSD at AoA=5.5deg]

- > Spectrums reasonably agree with experimental results.
- Simulation tends to be overestimated at every sampling points especially in high frequency.

Results [PSD at AoA=9.5deg]

- > Spectrums are reasonably agreement with Exp.
- The effects of AoA(Tonal frequency shift and reduction of PSD) are well captured.

Results [Cf distributions]

> Cf distributions unphysically oscillated.

Results [Cf distributions]

- Oscillation occurs at steps
- > Stair geometric representation may cause Cf oscillation.

Summary

•Efficient and practical MHI-LBM code has been developed

- MHI-LBM code can stably compute for 30P30N even if high Re number flow. Cumulant collision model and equilibrium wall model worked well.
- ≻Cp distributions agree with Exp.
- >PSD shows reasonable agreement with Exp.
- >Cf is oscillated due to stair geometry representation.

MOVE THE WORLD FORW>RD

MITSUBISHI HEAVY INDUSTRIES GROUP