APC4@36th ANSS

Unsteady Flow Simulation around 30P30N by Cascaded LBM

Outline

Numerical Method

Lattice Boltzmann Method

- Cascaded LBM
- Boundary condition
 - Wall boundary
 - Outer boundary
- Building-Cube Method

Numerical Results

■ Problem category 1-1 (2D)

- Problem category 1-3 (3D)
- Problem category 3-1 (3D)

Conclusions

Takashi ISHIDA

Background

CFD use :

- understanding the flow physics
- engineering design (especially in steady state)

Problems in current CFD

- Cost for unsteady flow simulation
 - High resolution/High order schemes
 - Restriction for Δt
 - Inner iteration of implicit time integration
 - Handling of massive output data
- Model dependency
 - DES, DDES, IDDES, Zonal DES, …
 - RANS/LES switching parameter

Aeroacoustics simulation by UPACS LES (~1month computation with PC cluster)

- It is difficult to directly apply unsteady flow simulation for engineering design.
- Lattice Boltzmann Method has capability to overcome current CFD problem (?)

Takashi ISHIDA

3

Algorithms of LBM

Governing equation: Boltzmann transport equation

$$\frac{\partial f_i}{\partial t} + \mathbf{e}_i \cdot \nabla f_i = \mathbf{\Omega}_i \qquad (i = 1, \cdots, b)$$

- *f* :probability distribution function
- e :discrete set of velocities
- **Ω** :collision operator

Discretization on lattice: $f_i(\mathbf{r} + \mathbf{e}_i dt, t + dt) = f_i(\mathbf{r}, t) + dt \times \mathbf{\Omega}_i(f_1, \dots, f_b)$ $(i = 1, \dots, b)$

Ludwig Eduard Boltzmann (1844–1906)

Lattice model used in this research: D2Q9, D3Q27

Algorithms of LBM

Cascaded LBM is used for collision operator.

- Satisfy Galilean invariance and has better accuracy/stability
- Compute central moment defined by moving coordinate:

$$\widetilde{\mathbf{M}}_{p,q,r} = \sum_{i} (e_{ix} - u_x)^p \cdot \left(e_{iy} - u_y\right)^q \cdot (e_{iz} - u_z)^r \cdot$$

27 Central moments used in this research:

- \mathbf{I} $\tau = 1$ is used for the above moments to enhance stability.
- Our approach is Implicit LES.

Martin Geier, et. al., "Cascaded digital lattice Boltzmann automata for high Reynolds number flow"

G. Eitel-Amor et.al. "A lattice-Boltzmann method with hierarchically refined meshes"

Damping function is used for the outer boundary condition.

$$f^{outer} = f - \alpha * (f - f_{eq}^{target})$$
$$\alpha = 0.5 \times \left(\frac{d-r}{R-r}\right)^2$$

where r/R are inner/outer radius of damping region, d is distance from inner radius r

J∦XA

Takashi ISHIDA

7

Building-Cube Method BCM is a block-structured Cartesian grid approach proposed by prof. Nakahashi. Computational domain is divided into "Cubes". Each cube has a uniform-spacing Cartesian grid, "Cells". Cartesian grid & \rightarrow Simplification of grid generation staircase representation & flow solver algorithm **V**Equal spaced Cartesian grid →Higher-order spatial accuracy in each cube All cubes include same \rightarrow Easy handling of parallelization number of Cartesian grid Change cube size locally \rightarrow Easy adaptation of grids to local flow features J∦XA Takashi ISHIDA 8

Domain Partition

BCM framework use both OpenMP/MPI parallelization.

Z-ordering is used for MPI parallelization.

Takashi ISHIDA

9

Grid information

Details		
dimension	2D	3D
Re	1.71×10^{6}	
M_{∞}	0.17	
α	5.5	
Domain	$32L_{\infty} \times 32L_{\infty}$	$16L_{\infty} \times 16L_{\infty} \times 0.125L_{\infty}$
Cube	6535	77326
Cell	32 ²	4 ³ , 8 ³ , 16 ³ , 32 ³
Total cells	6.7 <i>M</i>	4.9 <i>M</i> , 40 <i>M</i> , 317<i>M</i> , 2.5 <i>B</i>
Δx_{min}	$1.22 \times 10^{-4} L_{\infty}$	$2.44 \times 10^{-4} L_{\infty}$

Periodic boundary condition is applied in spanwise direction.

2D results

dp field@AoA=5.5

- Flow separation is different at slat-cove compared to NS(RANS) results.
 ⇒due to 2D computation with ILES.
- LBM overestimated Cp compared to NS(RANS) results.

Takashi ISHIDA

11

3D results

PSD data position

JXA

Takashi ISHIDA

PSD comparison B2:FaSTAR(L3) C1:FaSTAR(L2) D1:Present @S10(α=5.5) @S11(α=5.5) 120 140 100 120 80 100 60 PSD[dB/Hz] PSD[dB/Hz] 80 40 20 0 -B2(L3) -B2(L3) -C1(L2) -C1(L2) 60 -D1(L2) -D1(L2) 40 —Exp -Exp -20 20 -40 -60 0 0 10000 frequency[Hz] 0 10000 frequency[Hz] 100 1000 100000 100 1000 100000 @S12(α=5.5) @S13(α=5.5) 140 120 100 120 80 100 PSD[dB/Hz] PSD[dB/Hz] 60 -B2(L3) 40 -B2(L3) -C1(L2) -C1(L2) -D1(L2) 20 -D1(L2) 40 -Exp 0 20 -20 0 -40 100 1000 10000 100000 , 100 1000 10000 100000 frequency[Hz] frequency[Hz] J∦XA Takashi ISHIDA 14

Time-averaged Cp

- LBM overestimated Cp at slat and flap ⇒ due to the outer domain size?
- BL thickness at slat-TE may be changed slightly compared other CFD results due to the flow acceleration at flap suction.

Takashi ISHIDA

91

Takashi ISHIDA

17

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row><table-row><text>

Thank you for your kind attention.

JAXA

Fakashi ISHIDA