50th Fluid Dynamics Conference / 36th Aerospace Numerical Simulation Symposium

FaSTARによる 30P30Nの定常・非定常解析

Steady and Unsteady Computation of 30P30N by FaSTAR Code

Takahiro Yamamoto, Kenji Hayashi (Ryoyu Systems Co., Ltd.)

Takashi Ishida, Ryotaro Sakai Atsushi Hashimoto, Takashi Aoyama (JAXA)

Case 1,2 Computational Method

ARC

1

• Flow solver: FaSTAR

- Grid: Provided
 - 2D(L1~L5), 2.5D(L2)
 - 30P30N, 30P35N
- Turbulence model: SA-noft2-R
 - Steady: RANS
 - Unsteady: DDES
- Discretization: Cell-Center
- Inviscid flux: SLAU
- Reconstruction: U-MUSCL(χ =0.5)
- Gradient: GLSQ
- Slope limiter: Not use
- Time integration: LU-SGS
 - Steady: Local time stepping or Global time stepping
 - Unsteady: Dual time stepping
- Boundary Conditions:
 - Spanwise end surfaces: Periodic

- Cp of 30P35N is slightly smaller than 30P30N at Slat and Main-wing.
- This trend is similar for each grids(L1~L5).

- Difference(L2): CD about 170 cnt, CL about 6%
- 30P35N's results vary widely in each grids due to large separation at Flap.

4

• The difference of CD is almost due to Slat's pressure drag.

95

Case 3 Computational Method

- Flow solver: FaSTAR
 - Grid: Provided 2.5D 30P30N L2
 - Angle of Attack: 5.5deg
 - Turbulence model: SA-noft2-R DDES
 - Discretization: Cell-Center
 - Inviscid flux: SLAU
 - Reconstruction: U-MUSCL(χ =0.5)
 - Gradient: GLSQ
 - Slope limiter: Not use
 - Time integration: LU-SGS(Dual time stepping)
 - Inner iteration number: 5, 20, 40, 80
 - Boundary Conditions:
 - Spanwise end surfaces: Periodic

• CD, CL are converged by increasing inner iteration number.

 Almost same. But, Inner iteration number 5 is slightly smaller than any others.

10

- These anomalous fluctuations are caused by low grid resolution? No limiter influence?
- At wake, there is a difference.

Surface Pressure Spectra @S10(α=5.5) @S11(α=5.5) @S12(α=5.5) Inner iteratio 120 140 140 number 5 Inner iteration 120 120 100 number 80 100 100 PSD[dB/Hz] PSD[dB/Hz] PSD[dB/Hz] 80 60 60 🖻 S12 40 40 S10 S11 20 20 20 0 0 100 1000 10000 100 1000 100000 1000 10000 100000 frequency[Hz] frequency[Hz] frequency[Hz] @M7(α=5.5) @F1(α=5.5) 120 100 100 80 80 60 40 PSD[dB/Hz] 40 20 M7 F1 0 1000 10 frequency[Hz] 1000 10000 frequency[Hz] 100 100 100000

- There is little difference at NBPs and slight difference at high frequency region by inner iteration number.
- Narrow Band Peaks are similar to the EXP.

12

- There is little difference at NBPs and slight difference at high frequency region by inner iteration number.
- Narrow Band Peaks are similar to the EXP.

13

Summary

- 30P30N vs 30P35N
 - Cp of 30P35N is slightly smaller than 30P30N at Slat and Main-wing.
 - 30P35N's results vary widely in each grids due to large separation at Flap.
 - The difference of CD is almost due to Slat's pressure drag.
 - 30P35N's separation location at flap move forward and DDES result is almost same as RANS.
- Comparison inner iteration number
 - The residuals gradually decrease.
 - CD, CL are converged by inner iteration number 20.
 - Average of Cp is almost same.
 - RMS of Cp, there is a difference at wake.
 - Surface Pressure Spectra and Acoustic Spectra, There is little difference at NBPs and slight difference at high frequency region.
 - Narrow Band Peaks are similar to the EXP.
- Future works
 - Improve the grid resolution.
 - Survey influence of limiter.