Fourth Aerodynamics Prediction Challenge (APC-IV) 4 July 2018

Investigation of Effect of Subgrid Length Scale in DDES through Unsteady Flow Simulation of 30P30N Airfoil (30P30N非定常解析を通した DDESサブグリッド長さスケールの影響調査)

Ryotaro Sakai, **Takashi Ishida**, **Mitsuhiro Murayama**, **Yasushi Ito and Kazuomi Yamamoto** *Japan Aerospace Exploration Agency*

Computations in APC-IV

Computational grid

- Provided by JAXA: /apc/grids/3element_highlift_airfoil/30P30N_modified_slat_configF/fastar/3D_L3_fine_r1.fsgrid
- **73.6M** cells (**0.27M** cells in 2D x **270** cells in spanwise)
- Spanwise length: 2 inch
- Wall-normal cell spacing on the surface $\Delta y^+ \sim 0.54$
- Nearly isotropic cells in the slat cove region

2

	Computational	cases
--	---------------	-------

enlarged view of grid at slat cove region

		DI	DES by FaSTA L3 (fine)	R	
Airfoil/Re/Ma	AoA	Δ_{max}	Δ_{vol}	Δ_{SLA}	
30P30N	5.5	1	1	1	課題1-3 課題3-1, 3-2
Re=1.7e6 Ma=0.17	9.5	11	-	-	課題1-3 課題3-1, 3-2
	14		-	-	課題3-1, 3-2

present topic: comparison of <u>subgrid length scales</u> in the context of DDES

Investigation of Effect of Subgrid Length Scale in DDES

Background

Length scale definition in DDES

- $L_{DDES} = L_{RANS} f_d \max(0, L_{RANS} L_{LES})$
 - $L_{LES} = \Psi C_{DES} \Delta$ subgrid length scale

 - $\Delta = \max(\Delta x, \Delta y, \Delta z) \text{ [Spalart, 1997]}$
- Aeroacoustic simulation around a slat using DDES by UPACS [Murayama, 2015]
 - w/ original definition of Δ (= max($\Delta x, \Delta y, \Delta z$))
 - Shear layer development was delayed
 - Narrow band peaks were overestimated

New definitions of A have been proposed

- Δ_{ω} for Axial jet [Chauvet, 2007]
- Δ_{SLA} for free shear layer [Shur, 2015]
- Few applications to a high-lift airfoil
- Few systematic comparisons among them

[Murayama, 2015]

4

Investigation of Effect of Subgrid Length Scale in DDES

Objective

To evaluate the effect of subgrid length scale in DDES for aerodynamic and aeroacoustic analysis of 30P30N airfoil

mainly on slat

Definitions of subgrid length scale in DDES

- Length scale definition in DDES
 - $L_{DDES} = L_{RANS} - f_d \max(0, L_{RANS} - L_{LES})$

$$L_{RANS} = d_w$$

- $L_{LES} = \Psi C_{DES} \triangle$ subgrid length scale
- f_d : DDES shielding function
- d_w : wall distance
- Ψ : correction parameter for low Reynolds number term [Shur, 2003] C_{DES}: constant value

1. Definition in original DES [Spalart, 1997]

 $\Delta = \Delta_{max} = \max(\Delta x, \Delta y, \Delta z)$ Δx , Δy , Δz : cell spacing in each coordinate direction

2. Subgrid scale typically used in LES [Deardroff, 1970]

$$\Delta = \Delta_{vol} = (\Delta x \Delta y \Delta z)^{1/3}$$

3. Vorticity-dependent maximum cell length [Shur, 2015]

 $\Delta = \Delta_{SLA} = \tilde{\Delta}_{\omega} F_{KH}^{lim}$ $\tilde{\Delta}_{\omega} = \frac{1}{\sqrt{3}} \max_{n,m=1,8} |(l_n - l_m)|$ $F_{KH}^{lim} = \begin{cases} 1 & if f_d < (1 - \varepsilon) \\ F_{KH} & if f_d \ge (1 - \varepsilon) \end{cases}$ $I_n = n_\omega \times r_n$ $n_\omega = (n_x, n_y, n_z) : \text{ unit vector <u>aligned with the vorticity vector</u>} r_n : \text{ position vector } (n \text{ is corresponding to cell vertices})$ $0.1 < F_{KH} < 1.0$ $F_{KH} < 1.0 \text{ facilitates K-H instability by making Δ small}$ $\varepsilon = 0.01$

 F_{KH}^{lim} is modified F_{KH} for DDES [Shur, 2015] to prevent activation of F_{KH} inside attached boundary layer

Visualization of subgrid length scales: slat

Investigation of Effect of Subgrid Length Scale in DDES

5

6

Investigation of Effect of Subgrid Length Scale in DDES

Numerical method

(0	
6	n	
2	-	

Near-field flow analysis: FaSTAR (Unstructured CFD code)

Governing equation	3D compressible Navier-Stokes equations	
Method	Cell-centered finite volume method	
Turbulence model	SA-noft2-R DDES	
Discretization of inviscid term	SLAU (<u>S</u> imple <u>L</u> ow-dissipation <u>AU</u> SM) ^[1]	
Reconstruction method	2 nd order Unstructured MUSCL	
Limiter	Limiter Hishida limiter ^[2]	
Gradient calculation	GLSQ (Green-Gauss/Weighted-Least-Square hybrid) [3]	
Time integration	LU-SGS with dual-time stepping method	
#inner iterations	5 (fixed)	

Far-field sound pressure evaluation: UPACS-Acoustics

Governing equation	Ffowcs Williams-Hawkings equation
FW-H surface	Solid wall surface of the airfoil [4]

[1] Shima et al., AIAA Journal 49 (8) pp. 1693-1709, 2011.

[2] Hishida et al., JAXA-SP-10-012. (in Japanese)

[3] Shima et al., AIAA Journal 51 (11) pp. 2740-2747, 2013.

[4] Terracol et al., AIAA Paper 2015-3132, 2015.

Investigation of Effect of Subgrid Length Scale in DDES

2D TKE distributions

2D TKE profiles

- Δ_{vol} and Δ_{SLA} show similar trend to UPACS
 Δ_{SLA} shows steep decrease at L7
- Adverse trend to UPACS at Δ_{max}

Investigation of Effect of Subgrid Length Scale in DDES

11

12

Investigation of Effect of Subgrid Length Scale in DDES

Summary

16

- Comparsion of subgrid length scales at DDES for 30P30N airfoil
 Δ_{max}/Δ_{vol}/Δ_{SLA}
- Small effect on time-averaged Cp
- Δ_{vol} and Δ_{SLA} facilitates mixing of shear layer from the slat cusp, compared with Δ_{max}
 - rapid mixing in Q-criterion isosurface at the slat cusp
 - trend of decreasing peak magnitudes in 2DTKE profile
 - reduced peak values in NPBs in surface/farfield pressure spectra
- Observations for Δ_{SLA}
 - steep decrease in 2DTKE
 - submerged NBPs in surface/farfield pressure spectra
 - expected activation of F_{KH} at the slat cusp; unexpected activation on the flap
- Future work
 - ^D to investigate effect of subgrid length scale on the main element and the flap