The 50th Fluid Dynamics Conference/ The 36th Aerospace Numerical Simulation Symposium 4 July 2018, Miyazaki Citizen's Plaza, Miyazaki, Japan

Takashi Ishida (JAXA) APC committee

Contents

- Participants
- Test case 1
- Test case 2
- Test case 3
- Summary

ARC

Statistics of submitted data

- Organizations and number of submitted data(total 26 data)
 - National research institutes : JAXA(4)
 - Universities: TAT(1), Tohoku Univ./KIT(1), Tohoku Univ.(1), Univ. of Tokyo(1)
 - Aerospace industries: KHI(4), MHI(1)
 - Vendors: Ryoyu systems(9), Siemens(2), Cradle(2)
- Grids
 - JAXA:17
 - Customs:10
- Codes
 - Structured solver(8), Unstructured solver(13)
 - Cartesian(LBM(2), BCM(1), UTCart(2))
- Turbulence models
 - Steady: SA(16)
 - Unsteady: DDES(SA)(16), IDDES(SA)(1), IDDES(SST)(1), ILES(2)

Participants of case 1-1

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A1					SA-noft2	3rd SLAU
A2					SA-noft2(strain rate)	3rd SLAU
A4	田中 健太郎	菱友システムズ	UPACS (structured solver)	JAXA	SA-noft2	5th SLAU
A5			(,		SA-noft2-R	5th SLAU
A6					SA-noft2(strain rate)	5th SLAU
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R	
D1	石田 崇	JAXA	BCMLBM2D/3D	Custom (直交格子)		
E1	安田 英将	кні	Cflow (unstructured solver)	AXA	SA-noft2	
H1		Sigmons DI M	Simcenter STAR-	JAXA	SA	
H2	Peter Burns	Software	CCM+ (unstructured solver)	Custom (polyhedral)	SA	
11				JAXA	SA	
12	中島 吉隆	9島吉隆 クレイドル	scFLOW (unstructured solver)	Custom (polyhedral)	SA	
K1	佐々木 大輔	金沢工業大学	BCM	Custom (直交格子)	SA-noft2-R	
M1	周 健文	東京大学	UTCart	Custom (直交格子)	SA-noft2 + Wall function	

Participants of case 1-2

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A4					SA-noft2	5th SLAU
A5					SA-noft2-R	5th SLAU
A6	田中 健太郎	菱友システムズ	UPACS	SA-noft2 (strain rate)	SA-noft2 (strain rate)	5th SLAU
A7		200	(structured solver)		SA-noft2 (strain rate)	5th SLAU wiggle-sensor
A8					SA-noft2 (strain rate)	5th SLAU wiggle-sensor- skewsym
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R	
E1		安田 英将 КНІ	Cflow (unstructured solver)	JAXA	SA-noft2	
E2	安田 英将			Custom(直交八分木+ 物体適合層状格子)	SA-noft2	
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA	

Participants of case 1-3

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A2					SA-noft2 DDES (strain rate)	3rd SLAU
A3					SA-noft2 DDES (strain rate)	5th Roe
A4					SA-noft2 DDES	5th SLAU
A5	田中 健大郎	萎友システムズ	UPACS	ΙΑΧΑ	SA-noft2-R DDES	5th SLAU
A6		(structured solver)		SA-noft2 DDES (strain rate)	5th SLAU	
A7					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor
A8					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor- skewsym
B1				JAXA	SA-noft2-R DDES	dmax
B2	坂井 玲太郎	JAXA	FaSTAR (unstructured solver)		SA-noft2-R DDES	dSLA
B3			(,, ,, , , , , , , , , , , , , ,		SA-noft2-R DDES	dvol
C1	山本 貴弘 菱友システムズ FaSTAR (unstructured solver)	JAXA	SA-noft2-R DDES			
D1	石田 崇	JAXA	BCMLBM2D/3D	Custom (直交格子)	ILES	

Participants of case 1-3

ID	Name	Organization	Code	Grid	Turbulence Model	Note
E1			Cflow	JAXA	SA-noft2 DDES	
E2	安田 英将	КНІ	(unstructured solver)	Custom(直交八分木+ 物体適合層状格子)	SA-noft2 DDES	
G1	西村 信祐	МНІ	MHI-LBM	Custom (直交格子)	ILES	
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA IDDES	
J1	小島 良実	東京農工大学	FaSTAR (unstructured solver)	JAXA	SST-2003sust IDDES	

ARC

Participants of case 2-1

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A1	田中 健太郎	菱友システムズ	UPACS (structured solver)	JAXA	SA-noft2	3rd SLAU
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R	
E1	安田 英将	кні	Cflow (unstructured solver)	JAXA	SA-noft2	
H1		Ciamana DI M	Simcenter STAR-	JAXA	SA	
H2	Peter Burns	Software	CCM+ (unstructured solver)	Custom (polyhedral)	SA	
11				JAXA	SA	
12	中島 吉隆 クレイト	クレイドル	(unstructured solver)	Custom (polyhedral)	SA	
K1	佐々木 大輔	金沢工業大学	BCM	Custom (直交格子)	SA-noft2-R	

Participants of case 2-2

ID	Name	Organization	Code	Grid	Turbulence Model	Note
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R	
E1		KHI Cfl (ui	Cflow (unstructured solver)	JAXA	SA-noft2	
E2	安田 英将 K			Custom(直交八分木+ 物体適合層状格子)	SA-noft2	
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA	

AR

Participants of case 2-3

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A3	ᄪᅀᄻᆂᄳ	茶ナシュニノブ	UPACS		SA-noft2 DDES (strain rate)	5th Roe
A6	田中 1姓入即	多数システムズ (structured solver)	(structured solver)	JAAA	SA-noft2 DDES (strain rate)	5th SLAU
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R DDES	
E1			C (1,,	JAXA	SA-noft2 DDES	
E2	安田 英将	КНІ	KHI (unstructured solver)	Custom(直交八分木+ 物体適合層状格子)	SA-noft2 DDES	
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA IDDES	

Participants of case 3-1

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A2					SA-noft2 DDES (strain rate)	3rd SLAU
A3					SA-noft2 DDES (strain rate)	t2 DDES rate) 5th Roe
A6	田中 健太郎 菱友シスラ	菱友システムズ	UPACS (structured solver)	AXA	SA-noft2 DDES (strain rate)	5th SLAU
A7					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor
A8					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor- skewsym
B1					SA-noft2-R DDES	dmax
B2	坂井 玲太郎	JAXA	FaSTAR (unstructured solver)	JAXA	SA-noft2-R DDES	dSLA
В3			(,		SA-noft2-R DDES	dvol
C1	山本 貴弘	菱友システムズ	FaSTAR (unstructured solver)	JAXA	SA-noft2-R DDES	
D1	石田 崇	JAXA	BCMLBM2D/3D	Custom (直交格子)	ILES	

ARC

Participants of case 3-1

ID	Name	Organization	Code	Grid	Turbulence Model	Note
F1			Cflow	JAXA	SA-noft2 DDES	
F2	上野 陽亮	КНІ	(unstructured solver)	Custom(直交八分木+ 物体適合層状格子)	SA-noft2 DDES	
G1	西村 信祐	МНІ	MHI-LBM	Custom (直交格子)		
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA IDDES	
J1	小島 良実	東京農工大学	FaSTAR (unstructured solver)	JAXA	SST-2003sust IDDES	
L1	玉置 義治	東北大学	UTCart	Custom (直交格子)	SA-DDES-p	

ID	Name	Organization	Code	Grid	Turbulence Model	Note
A2					SA-noft2 DDES (strain rate)	3rd SLAU
A3		また郎 菱友システムズ			SA-noft2 DDES (strain rate)	5th Roe
A6	田中 健太郎		UPACS (structured solver)	JAXA	SA-noft2 DDES (strain rate)	5th SLAU
A7					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor
A8					SA-noft2 DDES (strain rate)	5th SLAU wiggle-sensor- skewsym
B1				JAXA	SA-noft2-R DDES	dmax
B2	坂井 玲太郎	JAXA	FaSTAR (unstructured solver)		SA-noft2-R DDES	dSLA
B3					SA-noft2-R DDES	dvol
F1			Class	JAXA	SA-noft2 DDES	
F2	上野 陽亮	上野 陽亮 KHI CTIOW (unstructured s		Custom(直交八分木+ 物体適合層状格子)	SA-noft2 DDES	
H1	Peter Burns	Siemens PLM Software	Simcenter STAR- CCM+ (unstructured solver)	Custom (trimmed)	SA IDDES	

Case 1: Prediction of aerodynamics

- Case1-1:2D steady flow simulation
 - Geom.: 30P30N (modified_slat_configF)
 - Grid:provided(required:L2, optional:L1,L3~L5) or custom
 - Cond.: M = 0.17, Re = 1.71 x 10⁶
 - AoA:0/4/5.5/8/9.5/12/14/16/20/22/24/26 [deg]
 - List of data:

(red:required, black:optional)

- Aerodynamic coefficients (C_D,C_L,C_m),C_p,C_f
- Contours of $\tilde{\nu}/\nu$
- Spatial streamlines
- Velocity profiles

 $Legend ({\tt paticipant ID / grid type [J:provided by JAXA, C:custom] - grid resolution [L1^L5] })$

EXP				- - -A4/J-L2	-∎- A4/J-L3	
- - A6/J-L3						
E1/J-L2		- H1/J-L2	H2/C-L1			
- -I1/J-L3	- -I1/J-L4	- -I1/J-L5				

The variation was larger than past APC series even though SA turbulence model was mainly used. 15

CL - CD

The variation was larger than past APC series even though SA turbulence model was mainly used.

ARC

α –sweep of APC-II

CL - CD

Although pressure force was dominant, friction force had some variation due to grid type. 20

There was large influence on grid type.

There was large influence on grid type.

Case 1-1: $\tilde{\nu}/\nu$

Case 1: Prediction of aerodynamics

- Case1-2:2.5D steady flow simulation
 - Geom.: 30P30N (modified_slat_configF)
 - Grid:provided(required:L2, optional:L1,L3~L5)or custom
 - Cond.: M = 0.17, Re = 1.71 x 10⁶
 - AoA:0/4/5.5/8/9.5/12/14/16/20/22/24/26 [deg]
 - List of data :

(red:required, black:optional)

- Aerodynamic coefficients(C_D,C_L,C_m),C_p,C_f
- Surface contours of C_p,C_f
- Surface streamline
- Contours of $\tilde{\nu}/\nu$
- Spatial streamlines
- Velocity profiles

Case 1-2: Aerodynamic coefficients

Comparison with 2D simulation

There was little difference between 2D and 2.5D simulations.

37

The fluctuation of Cf distribution along the spanwise direction disappeared by use of periodic boundary condition. 38

The fluctuation of streamlines along the spanwise direction disappeared by use of periodic boundary condition. 39

Case 1: Prediction of aerodynamics

- Case1-3: 2.5D unsteady flow simulation

- Geom.: 30P30N (modified_slat_configF)
- Grid:provided(required:L2, optional:L1,L3~L5)or custom
- Cond.: M = 0.17, Re = 1.71 x 10⁶
- AoA: 5.5/9.5 [deg]
- List of data(time averaged):
 - Aerodynamic coefficients(C_D,C_L,C_m),C_p,C_f
 - Surface contours of C_p, C_f
 - Surface streamline
 - Contours of
 - Spatial streamline
 - Velocity profiles

Legend(paticipal	nt ID / grid type [J:pro	ovided
by JAXA, C:custom] -	grid resolution [L1~L	5])
EXP	- - A2/J-L2	
- A2/J-L3		
- A3/J-L3	-∎- A4/J-L3	
- A5/J-L3	A6/J-L2	
- A6/J-L3	A7/J-L2	
- A7/J-L3	- - -A8/J-L2	
- B1/J-L3	- ■ -B2/J-L3	
- B 3/J-L3	- E -C1/J-L2	
- D1/C-L2	E1/J-L1	
- E 1/J-L2	- E 1/J-L3	
- E 2/C-L2	- E 2/C-L3	
G1/C-L2	- E -H1/C-L2	

Unsteady results underestimated Cp profile compared to steady solutions.

Steady simulations showed good agreement with experiment at upper surface. Unsteady simulations underestimated Cp at upper surface but show better agreement with experiment at lower surface. LBM overestimated Cp.

```
43
```


NS results underestimated the suction peak. Some steady flow simulation results captured the suction peak by use of custom grid. LBM results showed better agreement with experiment.

Steady flow simulation by NS showed good agreement with experiment, but unsteady flow simulation by NS underestimated Cp. LBM results overestimated Cp at upper surface, but the suction peak was better than NS.

Same trend with AoA=5.5degree was observed.

The variation was large and LBM overestimated Cf.

Velocity profiles differed between steady and unsteady flow simulations, and also between NS and LBM. 50

Velocity profiles differed between steady and unsteady flow simulations, and also between NS and LBM. 51

Case 1-3: Streamlines on flap(L1)

AoA=5.5deg, provided grid, comparison of L1

The position of flow separation moved forward by increasing grid resolution.

The position of flow separation moved forward by increasing grid resolution.

53

The position of flow separation moved forward by increasing grid resolution.

AoA=5.5deg, provided grid, comparison of L1

Turbulent viscosity decreased in L3 grid.

Turbulent viscosity decreased in L3 grid.

Case 1 Summary

- Case 1-1:2D RANS
 - The variation in results was significant compared with past APC series.
 - There was large influence on type of grid (Cartesian or Unstructured) and flow solver(NS or LBM).
 - Good agreement with experiment was obtained.
 - Cp (especially around the suction peak) was underestimated by the provided grid.
 - The variation was large at high-AoA results with the existence of large separation at slat.
 - Turbulent viscosity was suppressed by rotation correction for SA.
- Case 1-2:2.5D RANS
 - Spanwise distribution was disappeared by use of periodic boundary condition.
 - The position of flow separation at flap was almost same in each group due to the use of same turbulence model.
- Case 1-3: 2.5D unsteady flow simulation
 - Time-averaged Cp by unsteady flow simulation was relatively smaller than RANS.
 - Slat Cp computed by unsteady flow simulation showed good agreement with experiment.
 - Cp by NS < Cp by LBM
 - Velocity profiles showed different trend between NS and LBM.
 - The position of flow separation at flap moved forward by increasing grid resolution.
 - L3 grid produced smaller turbulent viscosity than L2 grid.

E1(L2) E1(L3) I1(L2)

ID

=5.5)

0.4

0.3

0.2

0.

-0.2

-0.3

ۍ

Flap

Mair Slat

0.07

0.065

0.06

30P30N

C_D of Total

30P30N

A1(L2) A1(L3) C1(L2) C1(L3) C1(L4) C1(L5)

C_D of each parts

CD(a_c=5.5)

A1(L2) A1(L3) C1(L2) C1(L3) C1(L4) C1(L5) E1(L2) E1(L3) I1(L2) I2(L2) K1(L1)

A1(L2) A1(L3) C1(L1) C1(L2) C1(L3) C1(L4) C1(L5) E1(L2) E1(L3) 11(L2) 12(L2) K1(L1)

c=5.5)

0.075

0.07

0.065

0.06

0.055 9 0.05 0.045

0.04

0.035

0.03

0.4

0.3 0.2

0.1

c

-0.1 -0.2

-0 3

ۍ

30P35N

C_D of each parts

CD of 30P35N increased compared to result of 30P30N. The variation increased due to flow separation at flap.

A1(L2) A1(L3) C1(L1) C1(L2) C1(L3) C1(L4) C1(L5) E1(L2) E1(L3) I1(L2) I2(L2) K1(L1)

CD(a_c=5.5)

60

Flap

Mair

Slat

Case 2: Prediction of flow separation at flap

Case2-1:2D steady flow simulation

- Geom.: 30P35N (modified slat configF)
- Grid: provided (required: L2, optional: L1, L3~L5) or custom
- Cond.: M = 0.17, Re = 1.71 x 10⁶
- AoA: 5.5 [deg]
- List of data:
 - Aerodynamic coefficients(C_D,C_L,C_m),C_p,C_f
 - Contours of $\tilde{\nu} / \nu$
 - Spatial streamlines
 - Velocity profiles

I2(L2) K1(L1)

-

The variation of 30P35N was larger than 30P30N.

The variation of 30P35N was larger than 30P30N.

The variation of 30P35N was larger than 30P30N.

The variation of Cf was large between the type of solver.

The variation of Cf was large between the type of solver.

67

The variation of Cf was large between the type of solver.

The Cf variation of 30P35N was larger than that of 30P30N.

The Cf variation of 30P35N was larger than that of 30P30N.

Case 2-1: Contours of $\tilde{\nu} / \nu$ (30P35N)

Case 2-1: Contours of $\tilde{\nu} / \nu$ (30P30N)

Case 2-1: Contours of $\tilde{\nu} / \nu$ (30P35N)

AoA=5.5deg, Comparison with 30P30N

AR

AoA=5.5deg, Comparison with 30P30N

Case 2-1: Spatial streamlines (30P35N)

Case 2-1: Spatial streamlines (30P30N)

Case 2-1: Spatial streamlines (30P35N)

AR

Case 2: Prediction of flow separation at flap

- Case2-2: 2.5D steady flow simulation
 - Geom.: 30P35N (modified_slat_configF)
 - Grid:provided(required:L2, optional:L1,L3~L5) or custom
 - Cond.: M = 0.17, Re = 1.71 x 10⁶
 - AoA:5.5 [deg]
 - List of data :
 - Aerodynamic coefficients(C_D,C_L,C_m),C_p,C_f
 - Surface contours of C_p,C_f
 - Surface streamlines
 - Contours of $\tilde{\nu}$ / ν
 - Spatial streamlines
 - Velocity profiles

Case 2: Prediction of flow separation at flap

- Case2-3: 2.5D unsteady flow simulation

- Geom.: 30P35N (modified_slat_configF)
- Grid: provided (required: L2, optional: L1, L3~L5) or custom
- Cond.: M = 0.17, Re = 1.71 x 10⁶
- AoA: 5.5 [deg]
- List of data(time averaged):
 - Aerodynamic coefficients(C_D,C_L,C_m),C_p,C_f
 - Surface contours of C_n,C_f
 - Surface streamlines
 - Contours of \tilde{v} / v
 - Spatial streamlines
 - Velocity profiles

Case 2-3: Contours of $\tilde{\nu} / \nu$ (30P35N)

83

AoA=5.5deg, Comparison with 30P30N Α3 E1 E2 A6 C1

Case 2-3: Contours of $\tilde{\nu} / \nu$ (30P30N)

AoA=5.5deg, Comparison with 30P30N

85

Case 2-3: Spatial streamlines(30P35N)

Case 2 Summary

- Prediction of flow separation at flap (30P35N)
 - CD increased in all participants compared to 30P30N.
 But CL and Cm showed different behavior.
 The position of flow separation at flap also varied by flow solvers.
 - The computational results seemed to be affected by periodic boundary condition.

Case 3: Prediction of aeroacoustics

- Case3-1: Near field acoustics

- Geom.: 30P30N (modified_slat_configF)
- Grid:provided(required:L2, optional:L3) or custom
- Cond.: M = 0.17, Re = 1.71 x 10⁶
- AoA: 5.5/9.5/14 [deg] (red:required, black:optional)
- List of data:
 - PSD of Pressure
 - Contours of spanwise vorticity
 - Contours of time-averaged 2D TKE
 - Contours of Cp_{rms}

Legend(paticipant ID / grid type [J:provided by JAXA, C:custom] - grid resolution [L1~L5])

EXP		- - A2/J-L3			A6/J-L2	-A6/J-L3 -A7/J-L2
	A8/J-L2	- B1/J-L3	- B 2/J-L3	- B 3/J-L3		
- F1/J-L3			G1/C-L2			- - L1/C-L2

Sample data where Z = 1[inch] on the center line of wing span Slat:5point, Main:2point, Flap:1point

Case 3-1: PSD

CFD results showed good agreement with experiment.

CFD results showed good agreement with experiment.

95

L3 grid successfully predicted the level of NBPs. Almost all results captured the peak around 20kHz.

Almost all results captured the peak around 20kHz.

Case 3-1: z-vorticity(with peak from slat-TE)

High order/resolution schemes could capture vortex shedding from slat-TE with L2 grid.

Case 3-1: TKE2D(with peak from slat TE)

High order/resolution schemes can capture vortex shedding from slat-TE with L2 grid.

107

Case 3-1: Contours of Cp rms(No peak) ADA=5.5deg, Comparison by the existence of high frequency peak $\begin{bmatrix} 42(L2) & F2(L2) & F2(L$

have peak except for S10

H1(L2)

L2 grid couldn't capture the high frequency peak from slat TE due to the lack of resolution.

108

F1(L2)

High order/resolution schemes could capture the high frequency peak from slat TE with L2 grid.

CFD results showed good agreement with experiment.

CFD results showed good agreement with experiment.

113

Case 3-1: PSD

Case 3: Prediction of aeroacoustics

– Case3-2: Far field acoustics

- Geom.: 30P30N (modified_slat_configF)
- Grid:provided(required:L2, optional:L3) or custom
- Cond.: M = 0.17, Re = 1.71 x 10⁶
- AoA: 5.5/9.5/14 [deg] (red:required, black:optional)
- List of data:
 - PSD of Pressure

Legend (paticipant ID / grid type [J:provided by JAXA, C:custom] - grid resolution [L1~L5])

EXP		- - -A2/J-L3	- A3/J-L2	- - -A3/J-L3	- A6/J-L2
A6/J-L3	A7/J-L2	- A7/J-L3	A8/J-L2	- -B1/J-L3	- E -B2/J-L3
- -B3/J-L3	- E -F1/J-L2		F2/C-L2	F2/C-L3	- E -H1/C-L2

121

Case 3-2: Sampling position of PSD

The following sequence of steps was applied during the data reduction of the acoustic measurements:

- (i) First, the data obtained by the integration of SD3+FD3 regions using microphone array were normalized to 1m location from the model rotation center (see attached 2018 AIAA Paper by Murayama et al. for further details).
 - Microphone array locations:
 - 1. 249deg (Upstream of 270 deg location)) X=-431.5mm, Y=+1124.1mm ->R=1204.07mm(=2.63358c stowed)
 - 2. 270deg (Center)
 - X=±0mm, Y=+1204.1mm ->R=1204.10mm(=2.63364c_stowed) 3. 291deg (Downstream)
 - X=-431.5mm, Y=+1124.1mm ->R=1204.07mm(=2.63358c_stowed)
- (ii) The data was normalized to 1 inch spanwise width of the source region
- (iii) Finally, the data was adjusted to account for the attenuation of acoustic signal from 1m to 10c.
- (b) The definition of center of directivity for CFD (rotation center when AoA changes) is trailingedge of slat or the origin of geometry/mesh data. The directivity in CFD was defined so that a reference angle of 0 deg. corresponds to the flow direction.
- (c) The definition of center of directivity (rotation center when AoA changes) for wind tunnel data is 0.4c. The microphone was fixed and the model was rotated. The center location is
- slightly different from CFD, so the angles of directivity are slightly different from the CFD definition.
- Also, the difference between uncorrected and corrected angles of attack is approximately 1.5 to 2.0deg. Therefore, a difference of 1.5 deg, to 2 deg, with respect to the desired directivity angle may occur.
- (d) The datafiles currently provided in this folder do not include coherence data based on the measurements of surface pressure fluctuations. They will be included at a later date.

This document is provided by JAXA.

Case 3-2: PSD

125

136

Case 3 Summary

- Near/Far field acoustic prediction
 - Submitted near field data (PSD) showed good agreement with experiment.
 - In L2 grid, NBPs (1k~10kHz) were overestimated and the peak from slat TE (20kHz) was not captured by low-resolution schemes.
 - High-resolution/order scheme and high-resolution grid enabled the capturing of the peak from slat TE. These results showed good agreement with experiment.

• We would like to thank all participants for submitting data.

Acknowledgements

- We also would like to thank for the following corporations,
 - Geometry and Grid data: Dr. Kazuomi Yamamoto (JAXA), Mr. Kentaro Tanaka, Mr. Tohru Hirai (Ryoyu Systems)
 - Web, Pre/Post processing: Mr. Kenji Hayashi, Dr. Keiji Ueshima, Mr. Takahiro Yamamoto (Ryoyu Systems)
 - Experimental data: Dr. Meelan Choudari (NASA Langley Research Center)
 - FieldView lisence: Dr. Atsushi Toyoda (Intelligent Light)

