東京大学-JAXA社会連携講座シンポジウム ~産官学の連携による宇宙開発分野でのブレークスルー~

有人安全性に関する研究 連携講座の活動成果

特任教授 酒井信介 JAXA 藤本圭一郎

有人安全性研究における 連携講座の位置づけ

- 月や火星などへの有人宇宙ミッションの実現のためには、ロケットの高い信頼性に加えて、宇宙飛行士を破局的なハザードから究明するための打上げアボートシステケム(LAS)などの安全化機能が要求される
- これまで、H3ロケット開発等で高信頼性開発が多く行われてきた一方で、打上げアボートシステム等の量的安全性評価が不十分であった
- →連携講座の主要なテーマとして取り組んだ

成果の概要

- 安全性定量評価
 産業界との連携により, JIS B 9955「機械製品の信頼性に 関する一般原則」開発,発行した(2017)
- 人体衝撃解析
 - 破局的ハザード時の,人体傷害評価へ各種モデルへの適用性を確認。破局的ハザード: JAXAシミュレーション結果,実験結果の活用。広範囲の着水状態のシミュレーション実施。新たな人体傷害基準の作成。シートなどの設計指針の提示。
- 破壊•爆発
 - き裂伝播シミュレーション技術の検討, 宇宙用材料高速ひ ずみ下構成式の実験的検討, シミュレーションへの適用。

安全性定量評価技術における人体傷害評価の位置づけ

衝撃撃荷重下の乗員傷害リスク評価手法の開発手順

(手順1) 剛体シート+無装備乗員+ダンピング効果なし (手順2) 設計シート+圧力スーツ+ダンピング効果あり (手順3) 搭乗員安全規準、安全要求の検討.

- Various magnitude and direction

(2)人体応答評価

用いられる人体モデル

- Brinkley dynamic response model for trajectory feasibility analysis

⁷ - Multi-body analysis for the initial study, FEM for more detailed analysis

着水解析手法

■ALE(Arbitrary Lagrangian Eulerian)法を 用いた流体構造連成解析 (解析ソフト:LS-DYNA)

■着水解析

- 着水時のカプセルの傾き (pitch), • 垂直速度.水平速度を入力
- 着水時に人体にかかる加速度(A'z, A'x) を出力

A'z:人体に対して上方向にかかる加速度 A'x:人体に対して前方向にかかる加速度

- ■着水モデル
 - 時間発展手法:陽解法
 - タイムステップ:CFL条件を満たすよう 自動設定
 - カプセル:剛体

着水解析の様子

t

ν

а

9

模型サイズ

 $\lambda^{\frac{1}{2}}t$

 $\lambda^{\frac{1}{2}}v$

а

65

着水解析モデルのV&V λ:縮尺 実機サイズ メッシュサイズの検討 時間 実験との比較 速度 模型サイズモデル,実機サイズモデルをフルード 加速度 相似則を用いて比較

NASA^[1]やJAXA^[2]の着水実験でも用いられた. 実機サイズモデルに妥当性があるならば、

フルード相似則が成り立つはずである.

[1]Sandy, M., NASA TN D-3980, 1967 [2]中野英一郎ら, "有人宇宙船帰還時の着水衝撃に関する研究", 2012 10

着水衝撃解析の検証

格子解像度スタディ

【解析手法】LS-DYNA ALE法,及びCIP-LSM 【対象】理論解比較, HTV-R6.8%, Apollo1/4モデル 【条件】オフノミナル条件を含む機体速度・姿勢角

9.381

10.065

9.881

14.276

13.766

解析A:

0.033

JAKA加速度

0.038

広範囲にわたる着水解析条件での検討

- 重直速度ItNASAの論文[1]より
- パラシュート3個:7m/s
- パラシュート2個:9m/s
- パラシュート1個:13m/s
- 水平速度,pitchはNASAが求めた^[2]確率分布より 起こりうる最大と最小と中間の値を選択した

[1]Justin, D. Littell, et.al, NASA TM-2007-214681, 2007 [2]Arthur, M. Whitnah, NASA TM X-2430, 1971

12

(2)人体衝撃解析手法の検討

-			
	実験	マルチボディ解析	有限要素法
概要	自動車研究所・スレッド試験	MADYMOによる解析	LS-DYNAによる解析
対象	ダミーモデルHybird-III 自動車業界で最も一般的な ダミーモデル。前突の頭部や 頸部で特に高い生体忠実性	Hybrid-III Elipsoid型,THOR 楕円剛体を組み合わせてダ ミーモデルを表現 Jointに関節の特性を負荷し て人体挙動を再現	THUMS Ver.3,Hybrid-III 骨や脳を中心に有限要素法 で人体を表現 関節や腱も再現
出力	各部位における加速度や荷重	各部位における加速度や荷重	人体細部における加速度や応力

人体ダミーモデルの応答特性・妥当性評価

▷ 剛体シート+ Hybrid III AM50 + Harness compatible with SAE AS 8043B.

▷ 施設の性能限界で、想定破局加速度を完全に再現できない

マルチボディ解析による人体ダミーモデル応答の妥当性評価

▷ 不確定因子1)bounce, 2) friction 3) initial position of harness, and gap. 広範囲の条件で、物理量の応答の一致を確認 \triangleright

▶ THOR とHybrid III の併用による宇宙環境条件での解析合理化検討

NOMINAL: AIS1 4.8% OFF-NOMINAL : AIS1 19.1%

AIS1 軽傷 AIS2 中等傷 AIS3 重症 AIS4 重篤 AIS5 瀕死

人体傷害リスク評価基準

$$HIC15 = \left\{ (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{2.5} \right\}_{\text{max}}$$
$$BrIC = \sqrt{\left(\left(\frac{\omega_x}{\omega_{xc}} \right)^2 + \left(\frac{\omega_y}{\omega_{yc}} \right)^2 + \left(\frac{\omega_z}{\omega_{zc}} \right)^2 \right)^2}$$

AIS1 4.8% AIS1 19.1%

		Assessment values		
Injury Criteria	Injuries	Nominal	Off-Nominal	
HIC15	Head injury	340	470	
BrIC	Head injury	0.04	0.07	
Neck axial tension [N]	Cervical spine trauma	880	1000	
Neck axial compression [N]	Cervical spine trauma	580	1100	
Max chest deflection [mm]	Rib fracture	25	32	
Thoracic spine compression [N]	Thorax-lumbar spine trauma	5800	6500	

Table 1 Injury assessment criteria (Jeffrey et al., 2014b).

搭乗員傷害リスク解析

▷剛体シート+無装備ダミー+ダンピング効果なし ▷かなり厳しめの評価

▶首と頭の防御が重要な要素

			Head		Neck		Chest	Lumbar
	·		HIC15	BRIC	Tension	Comp.	Deform	Load
			340	0.04	880N	580N	25mm	5800N
Water [Landing	pitch-11	36.7	48.8%	948.9%	82.7%	260.9%	56.7%	90.9%
	pitch-21	17.5	5.0%	398.3%	34.0%	119.2%	25.6%	48.0%
	pitch-38	3.1	0.1%	100.6%	4.5%	31.2%	6.2%	15.2%
	case1	55	9.9%	414.9%	56.3%	112.4%	29.5%	62.1%
	case2	11.7	13.4%	382.3%	69.5%	96.6%	12.5%	50.1%
Diast	case5	41.3	88.8%	611.4%	148.8%	242.1%	56.1%	98.8%
Blast -	case7	103.2	716.8%	1124.5%	336.9%	633.2%	125.4%	179.8%
-wave	case8	25.7	39.5%	502.7%	102.7%	167.9%	39.7%	75.5%
	case9	90.29	150.9%	800.9%	190.4%	330.9%	74.9%	122.5%
\triangleright	可能な限り	りあらゆる	傷害,体型	型,性別に	依存せず	を基準値」	以下とする	ことがゴー

▶ 種々の不確定要因に対して、ロバスト設計を実現する必要がある

THUMS人体傷害解析結果

	Acceleration [G]		Head		Neck		Chest	Lumbar	
	X axis	Z axis	HIC	BrIC	Tensile force[N]	Compressive force [N]	Deflection [mm]	Compressive force [N]	
Off-nominal tolerance value	5. 6.		470	0.070	1000	1100	32	6500	
CaseBW1	53.0	0.0	42	0.131	462	78	21	610	
CaseBW5	35.4	21.3	246	0.317	1069	415	39	5095	
CaseBW7	88.5	53.2	1416	0.676	1635	239	34	12306	
CaseBW8	25.8	0.0	362	0.169	687	86	34	852	
CaseBW9	87.0	24.1	579	0.251	1266	276	38	3556	
CaseWL1	36.7	7.0	314	0.222	1005	151	36	1937	
CaseWL2	17.5	6.7	36	0.152	570	52	20	600	
CaseWL3	3.1	2.4	2	0.065	196	18	5	1570	

BrIC Risc Curve

搭乗シート設計指針の策定(2/4)

信頼性工学の社会への実装上の課題

- ・機械製品の設計,製造,維持の各段階での安全の 確認→安全係数
- ・ 安全係数→不確定性に対する安全裕度
- 典型例→許容応力値
- 公式設計→規制側,事業者側にとっても極めて簡易
- 機械製品に対するリスク管理要求の高まり
 機械製品に対する信頼性設計導入の機運高まる
- 結果として我が国の産業が不利な状況に追い込まれているケースがある

JIS B 9955:2017 「機械製品の信頼性に関する一般原則」

- 第1章 適用範囲
- 第2章 用語及び定義
- 第3章 記号
- 第4章 要求事項および概念
- 第5章 限界状態設計の原則
- 第6章 基本変数
- 第7章 解析モデル
- 第8章 確率に基づく設計の原則
- 第9章 部分係数法による設計
- 第10章 供用期間中の機械製品の評価

附属書A(参考)品質管理と品質保証 附属書B(参考)持続荷重、過渡荷重及び偶 発荷重の例 附属書C(参考)累積破損のモデル 附属書D(参考)実験モデルに基づく設計 附属書E 信頼性に基づく設計の原則 解説

- 経産省の支援のもと、産官学の協力のもとに実現
- 建築分野ではISO2394が存在して いたが、機械分野では世界初

将来の信頼性規格体系(イメージ)

<u>今回作成したJIS原案が、規格基準体系を構築する上で</u> 基盤として活用されることを期待したい。

規格への適用事例

- 日本高圧力技術協会HPIS Z109 TR「信頼性に基づく圧力設備の減肉評価方法」(2016)
- 日本機械学会基準「部分安全係数法を用いた機 械製品の信頼性評価に関する指針」(2018年発行 予定)
- 移動式クレーン構造規格への限界状態設計法の 取り入れ(2018年の予定)

27

分野ごとの安全裕度の特徴

分野	限界状態の明 確化の必要性	特徴
原子力	Δ	過剰に安全裕度をとっても、機能 上は各段の問題を生じない。経済 性、競争力の点で不利になるだけ。
移動式クレーン	0	過剰に安全裕度をとると、長尺化 を実現できず、競争力を失う。許 容される安全裕度の範囲内での 機能を実現できる。
航空機・ロケット	Ø	過剰に安全裕度をとると、そもそも 機能を実現できなくなる。高度な 科学技術の導入で、限界状態を 明確化することが必須。