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ABSTRACT
SPICA (SPace Infrared telescope for Cosmology and Astrophysics) is a future mid- and far-infrared astronomy mission

after AKARI, Spitzer and Herschel, with a 2.5 m telescope actively cooled below 8 K. Thanks to the cryogenically-cooled
telescope as well as the advanced instrument technologies, SPICA provides unprecedented high sensitivity in spectroscopy,
photometry and polarimetry. In particular SPICA enables detailed spectroscopy with continuous coverage from mid- to
far-infrared ranges for the first time. SPICA has the following key science objectives: (1) revealing the rise and fall of
galaxy formation over cosmic time, (2) understanding star formation from filaments to galaxies, and (3) tracing the gas,
dust and ice in planet forming systems.

The definition of the previous SPICA mission has been revisited since 2014, and now, new SPICA is re-defined as an
international project between JAXA and ESA, with a combination of a strategic L-class mission of JAXA and a Cosmic
Vision M-class mission of ESA. If selected, SPICA will launch in the late 2020s and operate for a goal lifetime of 5 years.
SPICA carries onboard the mid-infrared instrument SMI as well as the far-infrared instruments SAFARI-SPEC and -POL;
the former is the Japanese-led instrument developed and managed by a univesity consortium. In this paper, we describe
the current status of the SPICA project, the SPICA science goals, and the conceptual design of SMI, mostly focusing on
the importance of the AKARI heritage from scientific and technical points of view.
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1. CURRENT STATUS OF SPICA
SPICA (SPace Infrared telescope for Cosmology and Astrophysics) is a future mid- and far-infrared astronomy mission

after AKARI, Spitzer and Herschel, with a 2.5 m telescope actively cooled below 8 K by mechanical cryo-coolers in
combination of passive radiative cooling to space (Nakagawa et al. 2015, 2017; Roelfsema et al. 2017). The definition of
the previous SPICA mission has been revisited since 2014, and now, new SPICA is re-defined and proposed as an ESA-led
international project with JAXA as a major partner and with participation of many institutes and universities in Japan,
Europe, U.S., Canada, Taiwan and so on. In Japan, SPICA is now allocated to the third slot for a series of the ISAS/JAXA
2020s Strategic L-class Missions. We passed Mission Definition Review at JAXA in 2015 and our current activity is
funded in Phase A1. On the European side, we submitted our Cosmic Vision M5 proposal to ESA in October 2016 with
about 600 supporters in total; as of writing this paper, we are still waiting for the announcement from ESA on the result
of the first selection. After the selection, we will soon start agency-level coordination on the project workshare plan and
ESA-JAXA joint technical feasibility study as well as preparation for System Requirement Review at JAXA. If finally
selected, SPICA would launch in the late 2020s and operate for a goal lifetime of 5 years.

Thanks to the cryogenically-cooled telescope as well as the advanced instrument technologies, SPICA provides unprece-
dented high sensitivity in spectroscopy, photometry and polarimetry. Although the aperture of the telescope has been
reduced to 2.5 m from 3 m of that of the previous SPICA mission, the sensitivity itself is significantly improved thanks
to the progress in the detector technology and further optimization of the instrument design. The imaging performance
of the telescope is designed to be diffraction-limited at 20 µm, which has been degraded from that of the previous SPICA
mission where it used to be 5 µm, but enabling us to make the SPICA project more cost-effective and affordable, and
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avoid inefficient overlap of the observational wavelength coverage with JWST. SPICA carries on-board two kinds of the
focal-plane instruments: SMI (SPICA Mid-infrared Instrument; Kaneda et al. 2016; Sakon et al. 2016) and SAFARI
(SPICA Far-infrared Instrument; Pastor et al. 2016; Roelfsema et al. 2017). SMI has three spectroscopic channels and
an imaging mode: low-resolution (R ∼ 50–120) spectroscopy covering a wavelength range from 17 to 36 µm (SMI/LR),
mid-resolution (R ∼ 1200–2300) spectroscopy from 18 to 36 µm (SMI/MR), high-resolution (R ∼ 28000) spectroscopy
from 12 to 18 µm (SMI/HR), and a wide-field (10′×12′) broad-band (R ∼ 5) photometry at 34 µm (SMI/CAM). SMI/CAM
is designed to be operated simultaneously as a slit-view for SMI/LR. SAFAI has two functions: one is spectroscopy at
R ∼ 300 and ∼10,000 for a wavelength range from 34–230 µm (SAFARI-SPEC) and the other is imaging polarimetry at
100, 200 and 350 µm (SAFARI-POL). More details about the specifications of the SPICA mission and the focal-plane
instruments are summarized in Roelfsema et al. (2017). Most importantly SPICA enables detailed spectroscopy with
continuous coverage from mid- to far-infrared ranges for the first time, which bridge the gap between JWST (James Webb
Space Telescope) and ALMA (Atacama Large Millimeter/submillimeter Array).

SPICA adopts a cryogen-free architecture, and therefore the mission lifetime is, in principle, likely to be limited by the
lifetime of the cryogenic system consisting of mechanical coolers as well as the passive V-groove cooling structure taken
from the Planck-type configuration (Ogawa et al. 2016; Shinozaki et al. 2016). SPICA uses three kinds of cryo-coolers:
20 K-class two-stage Stirling coolers, 4 K-class Joule-Thomson coolers and 1 K-class Joule-Thomson coolers, which
have heritage from the past Japanese missions AKARI, JEM/SMILES and ASTRO-H. Hence one of the most important
technologies for SPICA is mechanical cryo-coolers, the cryogenic system of which is currently being developed and tested
in collaboration with the Athena team. We expect that the lifetime of SPICA would be 5 years as a goal plus an optional
extension. Thanks to the cryogenically-cooled (< 8 K) telescope that would be secured with meticulous thermal design
of the crygenic system, SPICA would achieve ultra-low background in the mid and far-infrared. As can be seen in Figure
1, the thermal radiation from the SPICA telescope is reduced down to the level smaller than or comparable to the natural
background radiation consisting of the Zodiacal emission and Galactic cirrus emission, which is a huge improvement from
the Herschel telescope at ∼80 K in the far-infrared and the JWST telescope at ∼45 K in the mid-infrared, importantly
contributing to the achievement of the unprecedented high sensitivities with SPICA.

Figure 1. (Left) Configuration of new SPICA, which is based on the Planck heritage. The 2.5 m telescope is cooled below 8 K with
mechanical coolers and radiative cooling to space, and without using cryogen. (Right) Spectra of the thermal radiation from telescopes
as a function of temperature, compared with typical spectra of the natural background radiation.

2. SPICA SCIENCE GOALS
As its top-level science goal, SPICA would reveal the process that enriched the Universe with metal and dust, leading

to the formation of habitable worlds, the concept of which is visualized in Figure 2. For the achievement of the science
goal, galaxy evolution as well as star and planetary system formation is key processes to be understood through detailed
mid- to far-infrared spectroscopy, as well as far-infrared polarimetry for the formation of Galactic filaments. In the ESA
Cosmic Vision M5 proposal, we set the SPICA key science objectives as follows: (1) revealing the rise and fall of galaxy
formation over cosmic time, (2) understanding star formation from filaments to galaxies, and (3) tracing the gas, dust and
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2. SPICA SCIENCE GOALS
As its top-level science goal, SPICA would reveal the process that enriched the Universe with metal and dust, leading

to the formation of habitable worlds, the concept of which is visualized in Figure 2. For the achievement of the science
goal, galaxy evolution as well as star and planetary system formation is key processes to be understood through detailed
mid- to far-infrared spectroscopy, as well as far-infrared polarimetry for the formation of Galactic filaments. In the ESA
Cosmic Vision M5 proposal, we set the SPICA key science objectives as follows: (1) revealing the rise and fall of galaxy
formation over cosmic time, (2) understanding star formation from filaments to galaxies, and (3) tracing the gas, dust and
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ice in planet forming systems. After submission of the M5 proposal, a series of white papers dedicated to those SPICA
key science objectives have been published (Fernández-Ontiveros et al. 2017; González-Alfonso et al. 2017; Gruppioni et
al. 2017; Kaneda et al. 2017; Spinoglio et al. 2017), submitted (van der Tak et al. 2017), or being prepared (André et al,
Egami et al., Nakagawa et al., Kamp et al., in prep.).

Regarding the process of the galaxy evolution, SPICA aims to reveal the underlying physics on the evolutionary histories
of the cosmic star-fomartion rates and the black-hole accretion rates in galaxies over cosmic time (e.g., Madau & Dickinson
2014). What causes the rises of the activities of star-forming galaxies and active galactic nuclei toward their peaks at
around z = 1–3 and what triggered the precipitous declines of their activities from their peaks toward the present Universe?
The redshift range of z = 1–3 corresponds to the cosmic time where dust extinction is most severe, making the mid-
and far-infrared spectroscopy that is in practice free from extinction extremely useful. On the other hand, regarding the
processes of the star and planetary system formation, SPICA contributes to understanding the formation mechanism of
Galactic filaments in star-forming regions and the gas dispersal process in planet-forming disks through the measurement
of the magnetic fields and kinetic energy of gas in turbulent motions for the former and the contents and the kinematics of
gas and water with the HD, H2 and H2O lines for the latter (Trapman et al. 2017; Notsu et al. 2016, 2017). SPICA will also
perform detailed mineralogy of dust in planet-forming disks. As summarized in Roelfsema et al. (2017), the wavelength
range of SPICA contains an enormous amount of spectral diagnostic gas lines and dust bands which would reveal how the
material evolution interplays with the galaxy evolution as well as the star and planetary system formation.

Figure 2. Schematic image to show the overall goal and objectives of the SPICA science program. The top-level goal, “Enrichment of
the Universe with metal and dust, leading to the formation of habitable worlds”, is divided into two parts: “Metal and dust enrichment
through galaxy evolution” and “Star and planetary formation to habitable systems”. To achieve the former part, SPICA will study
the peak of the cosmic star formation history and beyond, their interplay with dust-obscured AGNs, and nearby galaxies including
high-z analogs through infrared spectroscopy. To achieve the latter part, SPICA will study Galactic filaments in star-forming regions,
gas dissipation processes in proto-planetary disks and dust mineralogy in debris disks and the solar system through infrared imaging
polarimetry and spectroscopy.

3. AKARI HERITAGE FOR SPICA
AKARI has provided important heritages for SPICA from both technical and scientific points of view. The most important

technical heritage would probably be mechanical cryo-coolers; AKARI adopted the hybrid cryogenic system consisting
of 180-liter liquid helium and cryo-coolers for the first time in space (Nakagawa et al. 2007), which was successfully
operated during the ∼ 5-year lifetime of AKARI. Another important technical heritage is the SiC mirrors of the AKARI
telescope (Kaneda et al. 2007); the AKARI mirrors were the world-first cooled SiC mirrors in space. Herschel also adopted
a SiC telescope. The AKARI telescope has the effective diameter of 69 cm with the wavefront error of ∼ 0.5 µm RMS,
operated at 6 K with the secondary-mirror focal adjustment mechanism. On the other hand, the Herschel telescope has the
effective diameter as large as 3.28 m with the wavefront error of ∼ 6 µm RMS, operated at 80 K with no focal adjustment
mechanism. The SPICA telescope is designed to have the effective diameter of 2.5 m with the wavefront error of ∼ 1.4 µm
RMS, operated at < 8 K with 5-axis optical adjustment mechanism for the secondary mirror. Hence the SPICA telescope
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calls for more stringent requirements than those of AKARI and Herschel as a whole, and both heritages are important for
SPICA.

From scientific point of view, AKARI has produced all-sky maps in the mid-infrared (Ishihara et al in prep.) and
far-infrared (Doi et al. 2015; Takita et al. 2015). Figure 3 shows the AKARI all-sky map in the 9 µm band, especially
providing us information on rare targets to be studied with follow-up spectroscopy in an unbiased manner. Since the 9
µm band brightness from our Galaxy is usually dominated by the polycyclic aromatic hydrocarbon (PAH) emission in
the interstellar space, the 9 µm band map is a unique product as the world-first all-sky PAH map. The near-infrared
spectroscopy of AKARI has also produced many unique science results particularly on the PAH and ice features for the
nearby Universe. For example, significant changes of the intensity ratios of the aromatic 3.3 µm to aliphatic 3.4–3.6 µm
features are found within the galaxy M82 (Yamagishi et al. 2012) and also from galaxy to galaxy (Kondo et al. 2017).
Yamagishi et al. (2015) performed a systematic study of the H2O and CO2 ice features for star-forming galaxies to find
that the abundance ratio of the H2O ice to the CO2 ice changes significantly with the evolutionary stage of a galaxy.

Figure 3. AKARI all-sky map in the 9 µm band. The original all-sky survey data are dominated by the Zodiacal emission as shown
in the upper right figure. In order to obtain a reliable all-sky map in the mid-infrared, precise modelling of the Zodiacal emission is
particularly important (Kondo et al. 2016; Takaba et al. 2017). A filamentary structure like the filaments revealed by Herschel can be
seen in the close-up image in the lower left figure.

SPICA can access the PAH features at high redshifts, while JWST studies those at relatively low redshifts. Figure 4 shows
simulated spectra of star-forming galaxies with LIR = 1 × 1013 L� at z = 5 and 7, which are compared with the sensitivity
limits of SPICA/SMI, SAFARI, and JWST/MIRI with the same conditions. The figure clearly demonstrates the SPICA’s
advantage of spectroscopic sensitivies over JWST at wavelengths longer than 17 µm, especially wide-range low-resolution
spectroscopy suited for studies of dust features. SPICA’s mid- and far-infrared spectroscopy of high-z galaxies provides
the opportunity to detect the PAH features (and silicate features as well from high-z quasars) at most distant galaxies ever
observed. SPICA would enable not only detection but also characterization of the first organic matter (and mineral) in the
Universe through inter-band ratios and band profiles. SPICA would also expand the results of the AKARI near-infrared
spectroscopy on the ice features and the aromatic/aliphatic features for the nearby Universe to the high-z Universe.

4. CURRENT DESIGN OF SPICA MID-INFRARED INSTRUMENT (SMI)
The SPICA/SMI Japanese university consortium, in collaboration with Taiwan ASIAA, is responsible for the development

of the mid-infrared instrument (Kaneda et al. 2016; Sakon et al. 2016), which is designed to provide a longer wavelength
coverage and higher spectral mapping efficiency (i.e., higher spectral survey speed) compared to JWST, in addition to
high-resolution spectroscopic capability. The SMI spectrometer/camera covers the wavelength range from 12 to 36 µm
with four separate channels, SMI/LR, /CAM, /MR and /HR with unprecedented high sensitivity. Figure 5 shows the
current structural design of SMI. The total volume, mass and stiffness of the instrument are designed to meet the system
requirements specified by JAXA. Our mechanical design concept is such that SMI should meet the stiffness requirements
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observed. SPICA would enable not only detection but also characterization of the first organic matter (and mineral) in the
Universe through inter-band ratios and band profiles. SPICA would also expand the results of the AKARI near-infrared
spectroscopy on the ice features and the aromatic/aliphatic features for the nearby Universe to the high-z Universe.

4. CURRENT DESIGN OF SPICA MID-INFRARED INSTRUMENT (SMI)
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coverage and higher spectral mapping efficiency (i.e., higher spectral survey speed) compared to JWST, in addition to
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requirements specified by JAXA. Our mechanical design concept is such that SMI should meet the stiffness requirements
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Figure 4. Simulated spectra of star-forming galaxies with LIR = 1 × 1013 L� at z = 5 and 7. For comparison, the sensitivity limits of
SPICA/SMI, SAFARI, and JWST/MIRI are shown together with the same conditions (R = 50, 10 hours, 5σ).

by itself (i.e., without the instrument optical bench) with the Eigen frequency higher than 150 Hz as a whole and the Eigen
frequency higher than 300 Hz for each optical component.

Figure 5. Current structural design of SMI, which consists of two big boxes; one is for SMI/LR and /CAM while the other is for
SMI/MR and HR. Every mechanical component is designed to meet the stiffness requirements. Optical light paths are shown in grey
lines for each channel

SMI/LR is a multi-slit prism spectrometer with a wide field-of-view using four 10′ long slits to execute low-resolution
(R = 50–120) spectroscopic surveys with continuous coverage over the 17–36 µm wavelength domain. In SMI/LR, a
10′ × 12′ slit viewer camera, SMI/CAM, a broad band imager centered at 34 µm, is implemented to accurately determine
the positions of the slits on the sky for pointing reconstruction in creating spectral maps. Two Si:Sb 1K x 1K detectors
are used, one for /LR and the other for /CAM. In Figure 5, the light passing through the slits is dispersed by the prism and
focused on the /LR detector, while the light reflected on the slit mirror is focused on the /CAM detector. In the SMI/LR
spectral mapping mode, the multi-slit spectrometer and the camera are operated simultaneously, yielding multi-object
spectra from 17 to 36 µm and R = 5 deep images at 34 µm.

SMI/MR and SMI/HR are two independent grating spectrometers covering the wavelength range 18–36 µm with R =
1300–2300, and 12–18 µm with R = 28000, respectively. Because of their different operational wavelength ranges, the
channels use different types of detectors, a 1K×1K Si:Sb array for /MR and a 1K×1K Si:As array for /HR. The SMI/MR
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employs a combination of an Echelle grating and a cross-disperser to achieve a spectral resolution of R ∼2000 with a slit
length of 1′. For SMI/HR, an immersion grating is combined with a cross-disperser to yield R = 28000 for a slit length of
about 4′′. As shown in Figure 5, a beam-steering mirror is implemented to enable spectral mapping of small areas (1′ × 1′

∼ 2′ × 2′). We adopt the AKARI design for the lens supports of SMI/HR.
Prime science drivers are high-speed PAH spectral mapping of galaxies at z > 0.5 with SMI/LR, wide-area surveys

of obscured AGNs and starburst galaxies at z > 3–5 with SMI/CAM, and velocity-resolved spectroscopy of gases
in protoplanetary disks with SMI/HR. Complementary to these specific functions, SMI/MR provides more versatile
spectroscopic functions, bridging the gap between JWST/MIRI and SPICA/SAFARI. We have performed conceptual
design studies of SMI, and found a solution which satisfies the science requirements with relatively high technology
readiness levels and practically available technical resources. Details of the result of the conceptual design study and
sensitivity estimation can be found in Kaneda et al. (2016) and Sakon et al. (2016).

5. SUMMARY
SPICA is a future mid and far-infrared mission after AKARI, Spitzer and Herschel. Based on the Planck-type config-

uration, SPICA will employ a 2.5 m telescope actively cooled below 8 K by mechanical cryo-coolers in combination of
passive radiative cooling to space. With the two focal-plane instruments, SMI and SAFARI, SPICA key science program
will focus on high-sensitivity mid- and far-infrared spectroscopy and far-infrared polarimetry. AKARI has provided us with
several important heritages for SPICA: the mechanical cryo-coolers and SiC telescope from the technical aspect as well
as the all-sky maps and near-infrared (and far-infrared) spectral data from the scientific aspect. The Japanese nation-wide
university consortium will develop the SPICA Mid-infrared Instrument (SMI) in collaboration with Taiwan ASIAA. Hence
SPICA is our next crucial step after AKARI for future mid- and far-infrared astronomy.
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