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Summary: A new method of generating an orthogonal, body-fitted grid is presented. It
uses the equi-potential lines and the streamlines in an imaginary, potential flow around
a body calcutated by the panel method as the grid lines. The computation is stable and
grid density control is easy to achieve. It may also be extended to the generation of the
so-called C-grids.

1. Introduction

When applying the finite-difference method to the solution of flow fields around
bodies with arbitrary shapes, it is necessary to introduce some kind of coordinate
change which transforms an equi-spaced calculation grid to a curvilinear grid
system which is tangent to the body surface. This problem of generating the
so-called body-fitted grid has seen great advances in recent years, and many
useful methods have been proposed [1]-[5].

Most known among them is the method due to Thompson, Thames and Mastin [2]-
[5], which is based on solving elliptic partial differential equations describing the
transformation by a finite-difference method. The grid-point density control is
achieved by controlling the forcing terms in the Poisson equation, which seems to
need much experience. Moreover, the resulting grid is not orthgonal.

For fluid dynamicist, the system of equi-potential lines and streamlines in the
potential flow around a body constitutes the most familiar example of an orthogonal,
curvilinear grid. The potential flow around a body, in return, can be calculated
explicitly using the panel method. We have combined these two ideas to obtain
a new method of generating an orthogonal, density controllable, bodyfitted grid.

2. Method of Grid Generation

(A) Outline of the Method

The sequence of coordinate transformiations is shown schematically in Fig. 1.
Let us represent the velocity potential and the stream function of the inviscid flow
around the body by « and p respectively. Note that the potential flow treated
here is purely imaginary, used only to generate the grid system and has no relation
to the physical flow to be solved using the generated grid.
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Fig. 1. Steps of coordinate transformation.

The first step of grid generation is to obtain the potential flow solution. Although
the finite-difference method may be used to do it, the simpler way is to use the
panel method, in which the body is represented by a polygon with singularity dis-
tribution on its sides and the flow around it is determined by solving for the
strength of the singularity so as to satisfy the boundary conditions on the control
points placed one on each side of the polygon.

After the potential flow is determined, constant « and J values constitute
rectangular grid lines in the o—p plane. It is more useful for practical purposes,
however, to apply one more stage of transformation independently to « and B
and make the final £ —7 plane the calculation plane. The transformation relation
can be arbitrarity chosen so as to obtain some measurz of grid-point density
control.

Thus the grid generation is achieved by the following steps:

i) The potential flow around the body is solved by the panel method.

ii) The grid density control transformation £=£&(«), p=7(p) is chosen.

iii) For each grid point in the &—7 plane, the corresponding x —y coordinates

are traced.

iv) Steps ii) and iii) are repeated, if necessary, until the desired grid con-

figuration is obtained.
(B) Solution of the Potential Flow

Let us consider a problem of a potential flow outside a single body in an open
space for simplicity, although multiple bodies or a body in a closed space may
be treated similarly. It is also convenient to use the complex velocity potential
formulation, since complex calculation is available in Fortran. ’

The body is approximated by a polygon, whose Nr vertices are denoted by
position vectors z,, Z,, ---, Zy, and the sides by vectors
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Fig. 2. Notation concerning the body approximation.

dj:zj+1—'zj; j=1~N, (1)

as in Fig. 2. In the following expressions, suffix Nr4+1 means 1 and 0 means
Nr. A vortex sheet with linearly varying strength per unit length

1®)=7;4+T;,—7)s;  0<s<l1 (2)

is assumed on each side d; of the polygon. The velocity vector induced by all
of these vortex sheet at a point z, is

Nr
qc‘:jZ_IAj T; (3)
where

A,= g; {d;|ld;oils, ,—z,_ )—|d,|[d],,— (2. 4+d ), +20,)}  (4)

and the integrals I,, through I, are given as

Ioj:--——l,——{tan"[ _1 (‘ 4 —Cos 5>]+tan“ﬂ5—}
|d;z,sin d] |sin 4] Z, |sin 6|
I,= 1 log d;—z. +I Ze cos -1,
|d;[* 2, d,
1 z d,—z Z, P (5)
L=~ 2I ¢ lcosé-lo §7" L ‘ c | (2cos?—1)I,.
SN g T &
s=Arg %
84

Y

when the point z, is neither on the side d; nor on its extention, or as
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d,

otherwise.
The normal velocity component g,, at the control point z,, placed at the mid-
points of each side, d,, is

Nr
qn¢=ZI<”ci'Aj>Tj (7)
ye

where n,, is the unit outward normal vector and {(  means the inner product.

The boundary condition is that the normal velocity component given by Eq. (7),
or by the sum of Eq. (7) and the normal component of the uniform flow when
it is superposed, vanishes at every control point. This gives rise to a system of
Nr linear equations in 7, through 7,,. Since the total circulation must be specified,
as unity for example, there remains only Nr—1 independent variables for the
Nr boundary conditions. One method to solve this redundancy would be to omit
some control point from the system of equations. This it not satisfactory for the
present purpose since small but finite residual normal velocity is observed at the
omitted control point when Nr is finite. Instead we have chosen to evaluate the
boundary condition at every control point and include the residual, constant normal
velocity component itself, U,,, into the system of equations. This has the effect
of distributing the discretization error on all control points. U,, tends to zero
when Nr tends to infinity.
(C) Grid Tracing

As the first step for tracing grid lines, formulations must be obtained for the
velocity potential, «, and the stream function, §, induced by the calculated vorticity
distribution.

The value of the stream function which one vortex sheet induces at a point z, is

8=t o =10, (8)

where the integrals J,, and J,, are

Joj:lall—|[xlog(x2+C)——2x+ZCIA]ﬁ
; . (9)
= gy Olog e+ O =Tzt | 2 |cosa,
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and
C=|z.I'sin’*s
1 x
——tan~' —_...C>0
Ve e
A:
_1 . eeC=0 (10)
X
Xo= —|z.|cos
=|d (1—l Ze a)
x,=|d,| i cos

The total stream function at a point is determined by summing Ex. (8) for j=1
to N, except for an arbitrary additive constant. These constants in g and also
in & are determined when « and B values at some point z are specified. Usually
a=1.0 and =0 are specified at the control point, z.,.

The velocity potential, «;, induced at z, by the vortex sheet on d, is given by

d. 1 h*+b?
afz—%ﬁikn+omw—nwﬂ}+&b—&w—4%%5hk%;aqf:Ty}

7 R N
e [0+ 5) 0.k + (b nn+2ﬂ 11)

— =)

where z and @ refer to the angles as shown in Fig. 3(a), and h and b as shown
in Fig. 3(b) in d, oriented coordinates.

It can be shown from Eq. (11) that there appears a potential jump of
|d;|(7;+7;.,)/2 when @ moves across the negative real axis. This corresponds to
the fact that the velocity potential outside a body with circulation is a multi-valued
function. In order to keep a single-valued, the grid point where « is evaluated
must be moved in some regular manner in the x—y plane, and whether # crossed
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(a) Relative angles (b) Angles and lengths relative to d;

Fig. 3. Notation for potential calculation.
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the negative real axis or not must be decided for each d, from the movement of
the point. The potential jump is then compensated for if necessary.

The next step of grid point tracing is to obtain some iteration scheme for x
and y, since what is really needed is the values of x and y for a specified set
of @ and B, not vice versa. The Newton-Raphson iteration in two variables has
been found suitable for this purpose.

In practice, the a=1 equi—poteniial line extending outward from z,, is treated
first, then each streamline starting from it is traced counterclockwise around the
body. The grid points on the body wall must be treated separately, since calcu-
lated « and B are good approximations only at the control points and show
singular behavior at the vertices. This difficulty is avoided by linearly interpolating
between the function values at neighboring control points when a grid point is
on the body surface.

(D) Calculation of the Metric Parameters

In order to perform finite-difference calculations, not only the x—y coordinates
but other metric parameters such as h*=(9a/0x)*+ (a/dy)?, d*a/0x3y, 3%c/0x* must be
known at each grid point. The second derivatives of « (those for g are obtained
from them by the Cauchy-Riemann equations) are obtained as

Wi:Re(ﬁ), Fer =——lm<d2f) (12)
0x® dz* 0x0y dz?
where f is the complex velocity potential. The second derivative of f can be
easily determined from the formulation in 2(B).

3. Applications and Extensions

Figures 4 through 8(a) show examples of grids generated by this method, while
Fig. 8(b) shows streamlines around an NACA 0015 airfoil at Re=20 calculated
by the N—S equations with the grid in Fig. 8(a). Experiences with this generation
method have shown that the method is easy to use with any kind of body shape
because it is free from instability phenomenon as the potential solution is obtained
explicitly, and that the grid point clustering through a«—p8 to &—z transformation
is easy to realize.

The computation time requirement, however, is not small from two reasons:
1) the grid point coordinates must be determined iteratively; 2) the number of
vertices, Nr, must be much larger than the number of grid points along the body
wall, since the wall values must be obtained by linear interpolation between
control point values. The computation time needed to trace the grid lines may
be shortened to about one third by replacing the vortex sheet with a point vortex
with the same circulation placed at the centroid of the vorticity distribution. At
present, it takes about 20 seconds of CPU time of FACOM M-200 to trace a
40-by-15 grid after the above modification.

All the grids shown so far are the so-called O-grids. The so-called C-grids are
more useful for many applications like the airfoil calculations. This may be
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generated by placing another body with the same shape in the mirror-image
position and connecting them with a vortex sheet as shown schematically in Fig. 9.
The strength and vertical location of the vortex sheet are determined from two

conditions: 1) the normal velocity component at the control point on the vortex
sheet segment must be zero; 2) If «=«;, on the lower surface of the vortex sheet

Fig. 4. Grid around a body with convex Fig. 5. Grid around a flat plate.

and concave corners.
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Fig. 6. Grid around a Kirmdan-Trefftz wing Fig. 7. Grid around a Karman-Trefftz wing
with Superposed Freestream.
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(b) Re=20 Streamlines around it by N-S
calculation

on the airfoil calculation.

(@) Grid around an NACA 0015 airfoil

Fig. 8. Application
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Fig. 9. Method of generating a C-grid. Fig. 10. An example of a C-grid.

at the control point, that on the upper surface must be 1—a;, when total circu-
lation left of the origin is 1.0. The latter guarantees that the resulting @ =constant
grid lines are continuous across the vortex sheet, which is essential for the appli-
cation of the periodicity condition there.

Fig. 10 shows one example of such a grid. The present algorithm for determining
the free vortex sheet configuration needs further improvements, however, and a
small amount of discontinuity of a-lines across the vortex sheet is observed in the
figure. Moreover, the configuration of the grid shown in Fig. 10 is not completely
satisfactory since the g-lines fan out fairly rapidly downstream of the body. The
density control through a«—p to &—z transformation is not effective enough.
Further control may be possible if the bodies should be placed in a closed space
and the shape of the external boundary should be changed to effect the desired
grid-point clustering.

4. Conclusions

A new method of generating orthogonal, body-fitted finite-difference grid which
utilizes the solution of the imaginary, inviscid potential flow around the body
calculated by the panel method was developed, and its usefulness was shown by
several examples of grid generation and Navier-Stokes calculation using it.

The calculation is straightforward since no finite-difference calculation is needed
for the grid generation, and the control of the grid-point density is easy.

This method may be extended to the generation of the so-called C-grids.
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