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Abstract: The correlation of velocity between the molecules in a simulation cell is lessened
by a renewal process such that new uncorrelated molecules come into the cell and some
correlated ones go out of the cell. Moreover, if a portion of the cell boundary is a diffusely
reflecting wall, the molecules are subject to another renewal process; each time a molecule
is incident on the wall, its velocity is renewed. It is shown that the correlation coefficient
between the velocities of the molecules subject to these renewal processes is O(N™) no
matter how large the time may be, where N is the number of the molecules in the cell; by
choosing a large N one can make the correlation coefficient as small as one desires. This
fact assures that the exact direct-simulation method is applicable to the calculation of steady
flows, which are obtained as the large time states of unsteady flows. Also, the expressions
for correlation functions are obtained. These are necessary for the estimation of the sampling
interval used in obtaining the time-averaged data of the steady flows.
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1. Introduction

It is now possible to obtain exact, though numerical, solutions of the Boltzmann
equation by use of the new direct-simulation method proposed by the author [1, 2].
It was in fact shown in ref. 2 that the velocity-distribution function determined
by use of Nanbu’s method agrees up to three places of decimals with the exact
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solution discovered by Krook and Wu [3]. Note, however, that it is only if the
correlation of velocity between a simulated molegule and its collision partner is
very weak that the obtained simulation solutiong become the exact solutions of
the Boltzmann equation. (Unless the correlation is weak, the assumption of mole-
cular chaos would not be satisfied.) It was shown that the correlation coefficient
p between the two molecules increases with z/N, where N is the number of simulated
molecules and r is the time measured in units of mean free time per molecule [4].
In calculating collisional relaxations of nonequilibrium gas the time z is O(1) since
the molecular system settles down into an equilibrium after a few collisions. If
one chooses N such that /N1 in the simulation calculation, p is very small
and hence the obtained solutions are the exact solutions [5].

Consider the simulation calculation of steady flows. In the direct-simulation
method the flow is always unsteady and a steady flow is obtained as the large
time state of the unsteady flow. In this case the time z at which the flow
practically becomes steady is much greater than unity. It seems, however, that
if p increases with the time 7z, the condition p&1 would never hold as r—oo.
That is, the calculation of the steady flows seems to be impossible. The purpose
of the present work is to show that this is not true, i.e., to show that the direct-
simulation method is applicable also to the calculation of the steady flows. In
ref. 4 the expression for p is obtained for a closed system of molecules across
the boundary of which no exchange of molecules takes place. Contrary to this,
such exchange does take place in an actual simulation cell, i.e., fresh molecules
come into the cell and correlated molecules go out of the cell. We call this
situation as follows: the velocities of the molecules in the cell are subject to a
renewal process. Moreover, if a portion of the cell boundary is a diffusely re-
flecting wall, the molecular velocities are subject to another renewal process.
That is, each time a molecule collides with the wall, it is emitted with a renewed
velocity uncorrelated to the incident velocity. We show that if the molecular
velocities are subject to one of the renewal processes, the correlation coefficient
p is at most O(N~') no matter how large the time r may be; by use of a large
N, p can be made as small as one desires. This fact makes it possible to
calculate the steady flows by use of the direct-simulation method.

We consider the renewal process due to the molecular exchange and that due
to the diffuse reflection separately. Molecules are assumed to be Maxwell mole-
cules.

2. Renewal Process due to Molecular Exchange

To make the problem tractable without loss of its essential character, the pro-
cess of the exchange of molecules across the cell boundary is replaced by a
much simpler model of a renewal process; it occurs with the probability ¢dc
that in the time interval 4r each molecule in the cell disappears and immediately
reappears with a renewed velocity, i.e., a velocity uncorrelated to the one at the
moment of disappearance. Here, ¢ is the rate of renewal. Clearly, disappearance
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corresponds to going out of the cell and reappearance to coming into the cell.
Thanks to this model, there is no necessity to take into consideration the collisionless
free molecular motions. Moreover, a set of molecules in the cell can be regarded
as if it were a closed system, for the number of molecules in the cell is constant
at any time.

It is assumed that initially there is a uniform flow of velocity U to the x-direction
of Cartesian coordinates system, and that the initial distribution function is
spherically symmetrical in space of peculiar velocity.

2.1. Correlation Coeflicient

Here we consider the correlation of velocity between a molecule and its
collision partner. Thanks to the introduction of the renewal model we can now
extend the previous theory [4]. We consider the fate of a set of N molecular
velocities {¢;,;i=1, 2, - - -, N} sampled from the initial velocity-distribution function
f(e, 0), where ¢ is the molecular velocity. Let C be the peculiar velocity, and
f(e, 0) is a function of C(=|C| from the assumption of spherical symmetry.
Write C=c—U. Here is treated the case of U,=¢,,U, where U (a=x,y, 2) is
the a-component of U and g,, is the Kronecker delta. Let ¢, , be the velocity
of ith molecule at time point r=ndr, 4r being the time step. (In this paper
the dimensionless time z denotes fr in ref. 4. Roughly speaking, z is the time
measured in units of mean free time per molecule.) The process {c,,; i=1, 2,
.-+, N} is defined by the recurrence relation

ci,n+l=Xi,nc;':n+(l_Xi,n)(ci,n—l_zi,n)a ( 1 )
where X, , is a random variable whose probability law is given by

P[Xi,nzl]zPry (23)
P[X,,=0]=1—P,. (2b)

Here P[A] denotes the probability of the event 4 and P, is the probability of
renewal. It is given by P,=¢dr, ¢(>0) being a constant. If X,,=1, then
Cini1=CFy, 1.€., ¢f, denotes a renewed velocity. Here we consider the case when
¢}, is a random sample from the probability density f(¢,0). If X,,=0, the
renewal process does not occur. The variable Z;, is defined in ref. 4. (Note
that capital C in the definition must be replaced by lower case ¢.) It is a function
of four random variables Y, ,, J(i, n), B; .., & ., so that ¢, ,,, is now a function
of six random variables X, ,, ¢f,, Y, ., J(i, n), B, ., &, .- Note that the members
in a set {X,,:i=1,2,---,N;n=0,1,2, ---} are independent identically dis-
tributed random variables. This is true also for {c¢},}, {Y,.}, {J(G, n)}, {B..} and
{e..}. Moreover, these sets are mutually independent.

If P,=0, eq. (1) is reduced to the starting eq. (1) of ref. 4. Since the pro-
babilistic analysis of eq. (1) is analogous to that in ref. 4, we here omit it and
present only resulting expressions. Since the initial velocities ¢;, are campled
from f(c, 0), the expectation E(c,,,) is
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E(Cia,o) - 5¢wU,

where c,,, is the a-component of ¢;,. It can easily be shown by means of
mathematical induction that for any n

E(cia,n)zaazus (n=0’ 1: 29 * ) (3 )

where we have used E(c}f, ,)=46,,U, which is a result from the fact that ¢}, is
also sampled from f(e, 0).

Next we consider the variance Var(c,, ,) and the covariance Cov(c,, ., Cja.,.) Of
ixj. The latter represents the correlation of velocities of any two randomly
chosen molecules. In a system of Maxwell molecules, the collision partner of a
molecule is chosen randomly from the rest. That is, Cov(c, ., Cja,n) IEpresents
the correlation of velocities of two molecules which are going to collide. Using
eq. (3), we have

Var (cia,n) = E(C%a,n) - 5aa; U2,
Cov(cia,n’ cja,n)=E(cia,ncja,n)—6axU2' (l#]‘)
At n=0,
Var(c,.,0) =RT(=V), (4a)
COV(Cm,o, Cja,0)=09 (lﬂF]) (4b)
where R is the gas constant per unit mass and T is the temperature, which is
independent of a because of spherical symmetry of f(e, 0). Equation (4b) can
be obtained by noting that ¢, , aud ¢;, are independently sampled from f(c, 0).

It can be shown by mathematical induction that Var(c,, )=V, holds at any n
and C,=Cov(c,, ., C;.,») satisfies the recurrence relation

Cn+l=(1—p_2Pr)Cn+pV0; (5)

where p=(2/N)4r and terms of order (4r)* are disregarded. By noting that
C,=0, the solution of eq. (5) is

pV,

= 2P [1—(1—p—2P)"]. (6)

n

Define the correlation coefficient by

— Cov(cia,n’ cja,n)
On [Var(c,,..) Var(c,q, )17

and we have p,=C,/V,. Consider the limit of 4c—0 by requiring that r=ndr
is fixed, and write p(z; N, ¢) in place of p,. We have

p(z; N, $)=(1+Ng)"{1—exp[—-2(3+N")z]}. (7)

Note that p(z; N, 0) is the expression derived in ref. 4. The correlation coefficient
p(z; N, ) increases monotonically from O to
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p(o; N, ¢)=(1+Ng)~". (8)
It is easy to show that 9p/d¢<<O for z>0. Hence,
p(z; N, $)<p(z;N,0) - for ¢>0. (9)

That is, the renewal process lessens the correlation. Note that p(r; N, ¢)<<
p(oo; N, g)<(Ng)~'. Usually N>1, and hence the correlation coefficient is at
most O(N-") at any time. This forms a marked contrast to the result in ref. 4.
That is, in case of ¢=0 we see from eq. (7) that however large N may be,
p(z; N,¢)=1 for z>>N.

The expressions of the covariances of different components of velocity take the
same forms as those for ¢=0, i.e.,

Cov(Ciapns Ci5,)=0,  (a=p) (10a)
COV(cia,na cj;?,n)ZO; (a#ﬁa l:’;]) (IOb)

hold at any n.

2.2. Correlation Functions

As before [4], consider the covariance functions

F(n: n+h):COV(cia,m cz‘a,n+h), (lla)
G(n, n4+h)=CoV(Cja,ns Cian+n)- () (11b)
These represent the correlation of velocities at two time points ndr, (n+h)dr,
where hdr is the lag. Expression (11a) denotes the case when the two velocities
belong to a single molecule, whereas expression (11b) denotes the case when
they belong to two different molecules; (11a) may be called the autocovariance
function and (11b) the cross-covariance function. The covariance functions are
indispensable to examine ergodicity of simulation solutions [6]. It can be shown
by use of eq. (1) that F(n,n+h) and G(n, n+h) are subject to the following
recurrence relations.
F(n, n+h+1)=1—P)F(n, n+h)—(N—Dpd(n, n+h), (12a)
G(n, n+h+1)=1—P,)G(n, n+h) +3pd(n, n+h), (12b)

where A(n, n+h)=F(n, n+h)—G(n, n+h), and terms of order (4z)* are disregarded.
Initial conditions for eqs. (12) are

F(n, n)=V,, Gn, n)=C,,.
The solutions of eqs. (12) are

u(n, n+h)=§h—<NT_1)(1—pn) (e —), (13a)

v(n, n+h)=$hpn+%(1-—pn) & —om, (13b)
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where £=1—¢dr, {=1—(p+ D4z, p(n, n+h)=F(n, n+h)/V, is the autocorrelation
function and v(n, n4+h)=G(n, n+h)/V, is the cross-correlation function. Write
t=ndr and p=hdr and take the limit of 4r—0. Writing u(z, z+7; N, ¢) and
v(r, t+75; N, ¢) in place of u(n, n+h) and v(n, n4h), we then have

(e, c47; N, ¢)=e“¢’7{1 _(i;_l)u —o(e; N, ¢)](1_e-v)}, (14a)

v(z, t47; N, ¢)=e”"’{p(f; N, ¢)+-]{I-[1~p<r; N, ¢)](1—e-v)}. (14b)

Since these correlation functions depend on r through p(z; N, ¢), the stochastic
process defined by eq. (1) is not stationary.

If >0, then p(r; N, $)<p(z; N, 0) from inequality (9), hence the quantity in
curly brackets of eq. (14a) is less than u(z,t+%;N,0). We now have, for
$>0 and N oo

p(z, t+9; N, g)<e *1u(z, z+7; N, 0). (15)

That is, the renewal process reduces the autocorrelation function at least by a
factor e #2. Since p(z; N, §)—>0 as N—oo, we have from eqs. (14)

p(r, 49 0, g)=e"*V1=ef1y(r, r45; 0, 0), (16a)
v(r, 7+7%; 00, $)=0. (16b)

Consider the case of
¢~0O(), N>»1 and =>1. an

We then have p(z; N, §)~(Ng)~' from eq. (7). Substituting this into egs. (14)
and neglecting the terms of O(N-%), we have '

u(z, T+ N, ¢):e-<¢+‘>ﬂ+%(1+%)e-¢v(1—e-v), (18a)
v(r, z+79; N, ¢):%(l+%——e‘ﬂ)e‘¢ﬂ. (18b)

Since the right-hand sides of eqs. (18) do not depend on 7, the stochastic process
defined by eq. (1) becomes stationary in case of (17). In case of ¢=0 it was
shown that it is for t«N that the process is stationary [4]; there exists an upper
limit of ¢ for ¢=0. This forms a marked contrast to the fact that stationariness
condition is always satisfied for ¢~O(1) and N»1 in so far as z»1. The
stationariness condition for ¢~O(1) makes it much easier to obtain accurate
time-averaged values of macroscopic observables. Assume that the state of gas
has reached a stationary state at z=17,>1. Choose a lag 5, such as exp[—(¢-+ 1)7,]
«1; data of the observables at the time points z, z-+7, are almost uncorrelated.
The time-averaged observables can be obtained by averaging a sequence of the
data at time points r=r7,+(@m—1)p, (m=1,2, ..., M). Usually, MN is called
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the sample size. In order to lessen the statistical fluctuations of the time-averaged
observables, M must be chosen as large as possible. In case of ¢=0, the upper
limit of = severely restricts M. Since there is no such restriction on M in case
of ¢~0O(1), however, we can obtain the time-averaged observables with the
fluctuations small as far as we require.

The expressions for the covariance functions of different components of velocity
take the same form as before [4], i.e.,

COV(Cia,mn: Ciﬁ,'n,):O, (x=xp)
COV(cia,n-Hw cjﬂ,n)zo, (Gf#ﬁ, i:k:].)

hold for any hA.

3. Renewal Process due to Diffuse Reflection

We discuss the strength of the correlation in reference to the molecular boundary
conditions at the solid wall. First the results of a probabilistic analysis based
on a model of the renewal process are presented. Next the data from actual
simulation calculations are presented and discussed in relation to the results from
the analysis.

3.1. Analysis Based on a Model Renewal Process

3.1.1. Model Process

It occurs frequently that a portion of the boundary of a simulation cell consists
of a solid wall. As a simplest model of such a cell, we consider a gas in a
vessel whose dimension is of the order of mean free path. Spatial non-uniformity
of gas properties can be neglected in this small vessel. Let initial temperatures
of both the gas and wall be T,. It is assumed that the initial velocity distribution
function is spherically symmetrical in velocity space but is not always Maxwellian.
Consider the case when the wall temperature is suddenly raised (or lowered) to
T* at time zero and is kept constant after that. We are concerned with the
fate of N simulated molecules. Let ¢, , and x,, be the velocity and position of
ith molecule at time point r=ndz.

Whether a molecule strikes the wall or not must be judged by examining its
position at each time-point. However, the treatment of actual molecular displace-
ment is postponed until Sec. 3.2. We here dispense with the treatment by
introducing a stochastic model of molecular reflection at the wall. The model is
analogous to that used in Sec. 2; with the probability ¢4z each molecule strikes
the wall, ¢ being a constant common to all molecules. Now the process {c; ,;
i=1,2, ..., N} is defined by eq. (1).

As to c¢f,, we consider a simplest model:

c;k,n=Wi,nci,n+(1_Wi,n)vi,n9 (19)

where W, , is a random variable whose probability law is given by
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PIW,,=1]1=1—C,, (20a)
PIW,,=0]=C,. (20b)

We call {, the percentage of diffuse reflection and (1—¢,) the percentage of
specular reflection. A set of velocities {v,,: i=1,2,---,N; n=1,2, ...} is
assumed to be independent of {¢,,} and to be a random sample of a random
variable v whose probability density is spherically symmetrical in velocity space.
We now have E(v,,,)=0 and

Var (v,,,,) =V*(=RT¥),
Cov(V,4,ns Vip,n)=0, (a=xp)

where v,,,, is the a-component of v, , and T* is the wall temperature. Of course,
V* or T* is independent of i, @, and n. Note that seven sets of random variables
{Winds {vin}s (X000} {Yin) {(JG, W}, {B.,.}s {e:,.} are mutually independent. Note
that eq. (19) is nothing but a model. If a molecule is specularly reflected, its
velocity is not ¢, but the component of velocity perpendicular to the wall is
reversed. However, the velocity of the reflected molecule is perfectly correlated
to ¢;,- This is the reason why the first term in eq. (19) will do as a specular
reflection model. Similarly, if a molecule is diffusely reflected, the probability
density of its velocity is not spherically symmetrical. However, the velocity of
the molecule is independent of ¢, , as v,, is.

From the starting eqs. (1) and (19) we can now obtain expressions for variance,
covariance, and covariance functions. We present only the final results.
3.1.2. Correlation Coefficient

Write

V(z)=Var(c,,,.), (21a)
C(f, N)zcov(cia,n’ cja,n)’ (l#]) (21b)

where t=ndr. If the limit of 4:—0 is taken by fixing =, we have
V(©)=V*+(V,— V*) exp(—¢*7), (22a)
C(zc; N)=V*{4,+ A, exp(—¢*7) —(4,+ 4)exp[ -2(p*+N-N)cl}, (22b)
where V,=Var(c,, )=RT,, ¢*=C{,¢$, and

A=—° A= i (@—1)

1+e’

with e=1/(N¢*) and o=V, /V*=T,/T*. The correlation coefficient o(r; N) is
given by C(z; N)/V(z). In case of {,=0, the limit e—>c0 must be taken. If
w=1, then V(z)=V,, hence p(zr; N) takes the form

p(z; N)=(1+Ng*) {1 —exp[—2(¢*+N-)]}.  (0=1) (23)

In case of {,=1 we have ¢*=¢, so that eq. (23) agrees with eq. (7). We see
from eq. (23) that p(z; N), which is at most (1+Ng*)-!, decreases drastically as
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¢* or {, increases because of N> 1.

It is important to pay attention to the maximum value of C(z; N). If w<l1,
then C(z; N) takes the maximum of V*A, at t=oc0. If ©>1, however, C(z; N)
for any {,20 takes the maximum at a finite z. For simplicity, we show this
fact in a special case. The number N is large in usual simulation calculations.
Consider the case of e€1 (or N>1 and &,%0). Neglect of terms of O(e) in eq.
(22b) yields

C(z; N)/C(c0 ; N)=1+2(w0—1)e *"— Qo —1)e %™, 24)

where C(co ; N)=¢V*. The right hand side of eq. (24) is a quadratic function

of e~**. We see that C(r; N) takes the maximum [0*/Qw—1)]eV* at r=¢*!

In[Qw—1)/(w—1)]. Since the maximum increases with o, it is desirable to increase

the number N and hence reduce ¢ in simulating a hot gas in a cold vessel.
Covariances for different components of velocity vanish, i.e.

Cov(cia,n’ Ciﬂ,n)zoa (a:\?ﬁ)
Cov(cia,n, cjﬁ,n):oy (C(#ﬁ, i#j)

3.1.3. Correlation Functions
Write

F(z, t4+75; N)=CoV(Cis,n> Cia,n+1)>
G(T’ T+7]; N):COV(cja,rn Cia,n+h)7 (i#]‘)

where r=ndr and p=hdr, h being a non-negative integer. If the limit of 4z—0
is taken by fixing « and 7, we have

F(z, t+7; N)=e#¢*v{V(r)—lN“—1 [V(5)—C(x; M]A —e-v>}, (25a)
Gz, t47; N)=e-¢*v{c<r : N)+%[V(:)-C(r; N)](l—e-v)}. (25b)

The autocorrelation function is given by F(z, z+75; N)/[V(@)V(z+]/* and the
cross-correlation function is given by G(z, ¢+ ; N)/[V()V(c+ 172
Covariance functions for different components of velocity vanish, i.e.

Cov(cia,n+h’ ciﬁ,n)zo, (x=xP)
CoV(Cianins €15, =0.  (ap, ix])

3.2. Simulation Calculations

In Sec. 3. 1. we introduced a renewal model and dispensed with the treatment
of molecular positions {x;,}. We here make actual simulation calculations by
taking {x, ,} into consideration. We direct our attention to the case of T*=T,
since it is only in this case that the exact solution of the Boltzmann equation is
known. Let a gas of temperature T, be initially in equilibrium. Clearly, the
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exact solution is the Maxwellian distribution for temperature 7,. Let the vessel
be a cube a side of which is equal to the mean free path 2,. Before presenting
simulation data we give an expression for the renewal rate ¢, which is necessary
to discuss the data in reference to the analytical results in Sec. 3. 1.
3.2.1. Renewal Rate

For a while, let a side of the cube be of length 2L. Take the origin of the
Cartesian coordinates system at the center of the cube and let (X,, X, X,) be the
coordinates of a molecule. Since X, (e=x,y, z) is uniformly distributed, the
probability density g(x,) of X, is given by

g(x)=QL)! for [x,|<L. (26)

Of course, g(x,)=0 for |x,|>L. Let (C,,C,,C,) be the molecular velocity.
(Capital letters are used here since they are random variables.) Strictly speaking,
the probability density of (C,, C,, C,) is given by the Maxwellian distribution only
at time t=0. (Here, ¢ is the dimensional time.) Since this is, however, approxi-
mately true at any time insofar as the correlation coefficient is small, let the
probability density f(c,) of C, be always

f(c,)=(QrRT) " exp( _ 5}%;_) @7

Define the event A, by A,={X,+C,4t|>L}, where 4t is the dimensional
time-step. We have [7]

gdc=P[A,UA,UA,),
—P[A,4,]—P[4,4,]+P[4,4,4,]. 28)

Since A,, A,, A, are mutually independent and a symmetry relation P[4 ]=
P[A,]=P[A,] holds, eq. (28) becomes

¢dr=3P[A,]—3{P[A4, 1} +{P[A4,]}. (29)
The probability P[A4,] is given by
2L/4t L—cqdt
PlAl=1-2 " fepde. [ ™" sxax. (30)
0 —-L
Substitution of eqs. (26) and (27) into (30) yields
PlA. ]l=erfca+a 'z~ [1 —exp(—a?)], (31) 1

where a=2L/[4t(2RT,)"*] and erfc is the complementary error function. From
ref. 8, erfc a=a 'z~ exp(—a®) as 4t—0, so that

— A 4
P[A,]= E;:JTL— 4t (32)
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where 4f=At(2RT,)*/4,. Substituting eq. (32) into (29) and neglecting the terms
of O(4f), we have

A

3% 4. (33)

= oL,

The relation between 7 and r should be given here. The nondimensional time
= is defined by

r=[22A4,(5)n(2bjm)""1t, (34)

where A4,(5)=0.4219, n is the number density, b is the constant in the potential
law, and m is the mass of a molecule. The time f[=t(2RT,)"*/4,] is in essence
the time measured in units of mean free time. We define 2, by A,=Q2"’ng,)"!,

where @, is the momentum-transfer cross-section averaged over the Maxwellian
distribution. It is [9]

Gy =4A,(5)Qrb/mRT)"".

Now ¢ takes the form

{ =[8A4,(5)n(2xb/m)"*]t. (35)
We have from eqs. (34) and (35)

f=(4/a")z. (36)
Using eq. (36) and setting 2L=21,, we have from eq. (33)

¢=12/x. (37

3.2.2. Simulation Data

Initial positions and velocities of N simulated molecules are sampled from eqs.
(26) and (27) respectively. All molecules are then moved freely over the time
step 4f. It a molecule lies outside the cube at 7=4Jf, it is reflected at the wall
diffusely with probability {, and specularly with probability (1—¢,). Consider,
e.g., the diffuse reflection at x= —4,/2; the velocity of the reflected molecule is
sampled from the probability density

1 ( i+t )
— cexpl ——=_—v ' 2 c,>0).
2xR*T} P 2RT, (c:>0)

Note that the density is not spherically symmetrical. The reflected molecule is
moved freely over 4f —(4f),, where (4f), is the time taken for the molecule to
arrive at the wall. If the molecule lies outside the cube at 7=Af, it must again
be reflected at the wall. The positions of all molecules at f=4f are determined
in this way.

Next intermolecular collisions are calculated by fixing the molecular positions.
The collision probability P, per molecule over the time step 47 is

p= 2B (N=1)z
° 44,5\ N ’
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where B,=2.391, which is the cut-off value of the dimensionless impact parameter
corresponding to the cut-off angle of 2°. The time step 4f is chosen to be 0.01,
for which P,=0.06. Determination of the post-collision velocities completes the
calculation of the first time step. Time is advanced up to 6004f=6. All calcu-
lations from f=0 to 6 are repeated (S/N) times, where the sample size S is fixed
at 10° for any N.

Although the exact solution of the Boltzmann equation is the Maxwellian
distribution for temperature T,, there may appear a distortion in the velocity dis-
tribution determined by means of the simulation calculations because of increased
correlation of velocity between two molecules. As a measure of the distortion
we consider, as before [4], a set of moments M,, of ¢** (k=1,2, -.-,5), ¢ being
the molecular speed. The exact solution gives at any time

M,,=QRT)*Q2k+1)!1/2*,

where 2k+1)11=1-3.5...(2k+1). Let M,, be the moments resulting from the
simulation calculations. The deviations of the ratios MZk/Mzk from unity reflect
the strength of the correlation of velocity. Note that since the sample size S is
finite, the data M}, sampled from the exact solution also show fluctuations. The
data M} /M,, lie with the probability of 99% within the bound [4]

’ 1 \ gz.ss[_;_(ﬂ&_l)]m. (38)

M,

Here is presented only some representative data of the actual simulation calcu-
lations. Figure 1 shows M, /M,, for N=100 and £,=0. (The data are shifted
upward by (1—0.2k) for each k.) The correlation coefficient p is the one calcu-
lated from eq. (23) with ¢*=0. Each two dashed lines containing a solid line
represent the bound (38) of M#/M,,. If the data M,,/M,, go outside the bound,
it is almost certain that the error of the data is no small owing to the increased
correlation. We see that the data for p<0.04 lie within the bound (38). Figure
2 shows the data for N=590 and {,=0. The data for p<0.035 lie within the

M,
M,,

My, /My, +{1- 0.2k)

~

Fig. 1. Simulation data of even moments for N=100
and 1009 specular reflection. Each two dashed
lines containing a solid line represent the theo-
retical bound of fluctuations. The lowest curve
represents the correlation coefficient.
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bound. Figure 3 shows the data for N=50 and {,=1. The correlation coefficient
p can be obtained from eqs. (23) and (37); it is very small, i.e., p<<0.005 at
any time. We see that the data for all k’s lie within the bound at any time.
That is, the simulation solution is the exact solution of the Boltzmann equation
at any time. Figure 4 shows the data for N=20 and {,=0.2. The data for
0<<0.05 lie within the bound. Figure 5 shows the data for N=20 and {,=1.
The correlation coefficient is p<<0.013 at any time. The data are always within
the bound. It is to be emphasized that these correct data are obtained by using
only 20 simulated molecules.

The behavior of the data from the actual simulation calculations can be dis-
cussed successfully in reference to the approximate analysis in Sec. 3.1. It is
concluded that if the correlation coefficient is less than a few percent, the simu-
lation solutions are the exact solutions of the Boltzmann equation.

My, /My, + (1= 0.2k)

~

p
Fig. 2. Simulation data of even moments for Fig. 3. Simulation data of even moments for
N=50 and 1009% specular reflection. N=50 and 1009 diffuse reflection.
See also the caption of Fig. 1. See also the caption of Fig. 1.
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Fig. 4. Simulation data of even moments for Fig. 5. Simulation data of even moments for
N=20 and 209, diffuse and 809 N=20 and 1009, diffuse reflection.
specular reflection. See also the cap- See also the caption of Fig. 1.

tion of Fig. 1.
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4. Concluding Remarks

Now one can obtain exact solutions of the Boltzmann equation by using the
new direct-simulation method proposed by the author. It is known, however,
that it is only if the correlation of velocity between a molecule and its collision
partner is very weak that the solutions from simulation calculations agree with
the exact solutions. In this paper the correlation is examined for the molecules
in a simulation cell. These molecules are subject to a renewal process such that
new uncorrelated molecnles come into the cell and some correlated ones go out
of the cell.  Moreover, if a portion of the cell boundary is a diffusely reflecting
wall, the molecules are subject to another renewal process; the velocity of a
molecule incident on the wall is renewed each time it collides with the wall.

It has been shown that for the molecules subject to such renewal processes
the strength of the correlation is of order N-' no matter how large the time may
be, where N is the number of the molecules in the cell. This fact assures that
the direct-simulation method is also applicable to the calculation of steady flows.
That is, if the simulation calculation is made by use of such a large N that the
effect of the correlation is negligibly small, the obtained solution is the solution
of the Boltzmann equation even at a large time when the steady flow is already
established.

The expressions for correlation functions are also obtained; these are useful
for estimating the sampling interval used in obtaining the time-averaged data of
the steady flows.
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