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Abstract: By use of the direct-simulation method of Nanbu, the Couette flow for wall Mach
number 3 is analysed over the whole range of the Knudsen number. Gas is a monatomic
one of Maxwell molecules. By comparing the numerical solution obtained from simulation
calculations with the approximate six-moment solution of Liu and Lees, the accuracy of
the latter is examined in detail. As to the flow velocity and shearing stress, the six-moment
solution shows reasonable agreement with the simulation solution. As to the temperature,
density, and heat flux, the error of the six-moment solution is not small in all flow regimes
except near-continuum one. As to the pressure, it is not uniform in the transition regime,
differently from the prediction of the six-moment solution.

1. Introduction

The direct-simulation method of Bird [1] is regarded as a technique for the com-
puter modeling of a real gas flow by some thousands of simulated molecules. It has
been developed through reference to the physics of the gas flow rather than through
reference to the mathematical description of the flow. Although his method has widely
been used, an important question as to whether the simulation solution obtained by
use of the method is the exact solution of the Boltzmann equation still remains un-
answered. Recently Nanbu [2-4] propcsed a new direct-simulation method; all
stochastic laws employed in simulation procedure were derived from the Boltzmann
equation in a systematic and rigorous manner. (Contrary to the comment of Koura
[51, Nanbu’s method is quite different from Bird’s one in the most important part of
the direct-simulation method, i.e., in the stochastic laws for simulating molecular colli-
sions [6]). It was also shown that the use of Nanbu’s method reproduces the exact
solution discovered by Krook and Wu [7]. The validity of Nanbu’s method was
further tested by calculating a temporal relaxation of spatially uniform gases initially
in large nonequilibrium [8, 9]. At that stage the new direct-simulation method was
proved to be a definite solution method of the Boltzmann equation.

Before applying the new direct-simulation method to flow problems, it is also
necessary to examine the method in all its technical aspects. The simulation calcula-
tions [2, 8, 9] showed in fact that the deviation of the simulation solution from
the exact solution of the Boltzmann equation increases with the decrease of N
and/or increase of ¢, where N is the number of the simulated molecules and ¢
is the time. It was found that this fact is closely related to the degree of violation of
molecular chaos hypothesis [10]. That is, the correlation of velocity between a
molecule and its collision partner increases with #/N. Comparing the error of the
simulation solution with the correlation coefficient p(¢ ; N), it was concluded that the
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number N should be chosen in such a way that the condition p(¢; N) <1 holds. In
making actual simulation calculations, not only the number N but also other simula-
tion parameters such as the sample size, the step size, and the cut-off value of the
deflection angle should be chosen in an appropriate manner. A guide for the choice
of these parameters was presented in [11].

In the direct-simulation method the flow is always unsteady and a steady flow is
obtained as the large time state of the unsteady flow. Two important questions arise
in determining the flow properties at the steady state. It appears that if the correlation
coefficient p(¢ ; N) increases with time ¢, the condition p(¢ ; N) € 1 would never hold
as t—oo. The first question is as to whether or not the simulation solution results in
a breakdown as t—oco. This was answered as follows [12]. For usual flows such as the
flow past a body or through a channel, the exchange of molecules takes place across
the boundaries of a computational flow region; uncorrelated fresh molecules come into
the region and correlated molecules go out of the region. In this case p(f; N) is at
most of order N-1 no matter how large the time ¢ may be; by use of a large N, p(¢ ; N)
can be made as small as one desires. For confined flows such as the flow in a vessel
and the Couette flow considered in this paper, the situation is different, i.e., the mole-
cules never go out of the computational region. In this case the mechanism of keeping
p(t ; N) small is the collision of the molecules at a solid wall; if a molecule that strikes
the wall is reflected with a refreshed velocity uncorrelated to the one just before a
strike, the correlation coefficient (¢ ; N) is again of order N-! at any time. A simplest
example of such a wall is a diffusely reflecting wall. The second question is the one
as to the ergodicity of the simulation solution, i.e., as to whether the time-averaged
data agree with the ensemble-averaged data. (Unless the simulation solution were
ergodic, the flow properties at the steady state could be determined only through
ensemble-averaging, which would take an excessive computing time). Fortunately,
the simulation solution is certainly ergodic on condition that the number of molecules
and the sampling interval used in obtaining the time-averaged data are so chosen that
the correlation coefficient and the correlation function are sufficiently small [13].

The new direct-simulation method of Nanbu was not applied to the flow problems
until these preliminary studies were completed. In this paper the Couette flow for
wall Mach number 3 is analysed over the whole range of the Knudsen number by use
of Nanbu’s method. The simulation solution obtained should be regarded as the exact,
though numerical, solution of the Boltzmann equation. By using six moment equa-
tions, Liu and Lees [14] found an analytical solution of the Couette flow problems
over the whole range of the Knudsen number. The accuracy of the approximate solu-
tion of Liu and Lees is examined by comparing it with the simulation solution. Also,
the solution of the Navier-Stokes equations is obtained by use of slip velocity and
temperature jump boundary conditions and compared with the simulation solution.

2. Solution of Six Moment Equations

Liu and Lees [14] employed the six moment equations to find an approximate
solution of the problem of the steady Couette flow. The upper wall moves with
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velocity +U/2 in its own plane at y=d/2 and held at temperature 7;, while the lower
wall at y=—d/2 moves parallel to the upper wall with velocity —U/2 and is kept at
temperature T;. The boundary conditions assumed are completely diffuse reflection
and complete thermal accommodation. In this paper our attention is limited to a
special case when the temperatures of both walls are equal, i.e., T;=7T,4=T,. The
approximate solution of Liu and Lees holds for any value of the Knudsen number;
it agrees with the solution of the Navier-Stokes equations at the continuum-flow limit
and with the exact solution at the free-molecular limit. Gas is assumed to be a
monatomic gas of Maxwell molecules, hence the Chapman-Enskog viscosity and heat
conductivity are proportional to temperature.

We rearrange the results of Liu and Lees as follows so that the comparison of
these with the simulation solution may become easier. To specify the density level
of the gas between the walls, Liu and Lees selected, as a reference density, the density
o at y=—d/2 of upward streaming molecules. This is somewhat awkward. We re-
define the reference density p, as follows. The product of eqs. (40b) and (40c) of
[14] shows that the pressure is everywhere constant; we select this constant pressure
as a reference pressure p,, which is considered to be given. The reference density
o, is defined by

p.=p,/RT.,, (1)

where R is the gas constant per unit mass. The ratio of p, to py(=pRT,) is,
from the product of eqgs. (40b) and (40c) of [14]

2o (14, (2)

2
P o

where 7 (=5/3) is the ratio of specific heats, M[=U/(rRT,)"*] is the wall Mach
number, and «, is defined by

s 1/2
a2:1+[1—za1(1+a1)] > (3)

with s=7M?*. The constant «, is the solution of the following algebraic equation
[14]

4 R\ «
d—2) R —a)* + 2,2 —a, —(“> L, 4
(A, 2,—2) 2 —a)* + 2,2 —ay) + @i \m ), (4)
where
= 21+ s(a,/a)*+ (32/5) (ay /e )? ’ (52)
3(sai+-5a3)
zzzaz(i G _ o ) (5b)
s o
13:i(a211+i)(i_“i_fi)_ (5¢)
3 «, S a, o,
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The ratio R,/M in eq.¥(4) is rewritten as [14]

Rez(ﬁ)l/"’d (6)
M 2 Ay

where A;; (the mean free path at density p; and temperature 7,) is defined by

1/2
2 :ﬁw_( z ) 7
11 P ZRTw ( )

Here g, is the Chapman-Enskog viscosity at temperature 7,,. Since R,/M depends
on py, it is not a convenient parameter. In place of R,/M we introduce the
Knudsen number defined by

2
K,=2, 8
= (8)
where
172
A= ”w( z ) . 9
p- \ 2RT,, )
The relation between R,/M and K, can be obtained from egs. (6) to (9):
R (7&'7’ )1/2( D >_1K-1 (
Ze=(ZL)"(2) Ky, 10)
M 2 Pu

where p,=p,RT, and p; = pRT, are used. By use cf eqs. (2) and (10), eq.
(4) takes the form

k=) @—a)+42—a)+ (142 %) k0. ap

o? 3 o

Once M and K, are given, this equation determines «,, which is —1<a,<O0.

Then the constants «, and 2’s are readily determined from eqgs. (3) and (5).
The flow velocity u, the temperature T, the density p, and the pressure p are

given by

u__ 2 a , 1 o )F ,
r_o_(£ = , 12
U (s o, + 2 a, 12)
T 1 S az)

L 12! G —F?),

7. "% + 3 o (e ) (13)
P ___(L)“ 14
O=(7) (14)
P 1. (15)

Here, F is a function of 7 (=y/d) and satisfies the cubic equaticn

F*—34AF+2B=0, (16)
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where
A=t o
32,
B— A (1+i « >”1K,:1*,
Aq003 3 o
with

=1+ 2,2 —ay)’.
The solution of eq. (16) is [15]

F(5)—=24" sin [_(a— i)]
where

6=cos‘1(——

B
A2 ’

G=(a,— LF)",

The function G(¥) is given by

Note that u is an odd and T is an even function of 7.
and heat flux g, are, in nondimensional forms

/2 2 -1
(o) ()

3 ok o,

b

2 \ ~1 2
t= (1425 (142 “DFo,

o 4 ok

~ o,—2 s ot \!
@)= (1+? ;) (1

X2

T

0<o<n).

__S_af>
+4a§,

a7

(18)

The shearing stress <z,

(19)

(20a)

(20b)

where #,,=7,,/[p,QRT,)], §,=4q,/[p.QRT,)*?], and (§,), denotes the heat flux
to the upper wall. (The heat flux to the lower wall is —(4,),.) Note that the

~

shearing stress does not depend on J.

Table 1 gives «,, %,,, (§,), for M=3 and

Table 1. Values of ay, Zzy, (§y)w for M=3 (Liu-Lees solution)

K, ay Try (fl'y)w
0.03473 —0.09690 0.06886 0.08580
0.06417 —0.1776 0.1186 0. 1366
0.1183 —0.3017 0.1841 0. 1870
0.2628 —0.4944 0.2631 0.2114
0.4906 —0. 6279 0. 3030 0.1950
0.9407 —0.7358 0.3263 0.1627
2.281 —0.8368 0. 3403 0.1162
4.515 —0.8882 0.3441 0.08573
9.001 —0.9242 0.3454 0.06132
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various values of K,.
Consider the continuum and free-molecular limit. In the limiting case of K,—0,

we have

u 4
u__4p 21
U ;o (21)
T 32
a2 22
T. 7 155 ° @2)
where
i a1
Fy(5)=2A4Y sm[_3_(00—§)],
with

f,=cos™( - j’;;z), (0<6,<7)
0

15 1
A=__(1 __)
=35 ' T30°°

45 ( 1 )
B—=—_"" 14+ ~—_ .
=25\ T35 %)

The shearing stress and heat flux take the forms

( s )”2(1+ 1 )K 23)

(s 10\

‘v =\ 2n 45 )"

@ )w=_~s—-(1+-1—s)Kn. 24)
e=om\ T s

Although #,, and (4,), are O(K,), these correspond to egs. (21) and (22) which
are O(1). In the other limiting case of K,—oco, we have

u_ OIS gy o, @25)
U (16—s) (1249

T 1

T 41 26
T + 75 (26)
. s 1/2( 1 )-—1

(Y (1 L) 27
Fav (87;) BTN @n
G o= 216+8) g g (28)

(124 5)M(16—s) "

If K, is large but finite in eq. (25), u must be positive for #>0, so that 16—s>0 or
M<3.098 must hold, i.e., there is a ‘critical’ Mach number in the solution of Liu and

Lees [14].
Equations (21) to (24) agree with the results obtained by solving the Navier-
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Stokes equations by use of boundary conditions of no slip velocity and no temperature
jump. On the other hand, eqgs. (25) to (28) are exact because the two-stream Max-
wellian distribution assumed by Liu and Lees becomes exact at the free-molecular
limit. That is, the solution of Liu and Lees is exact for both limiting cases of K,=0
and co.

3. Solution of the Navier-Stokes Equations

The Navier-Stokes equations, together with slip velocity and temperature jump
boundary conditions, are considered to be adequate for the Knudsen number of the
order of 0.01 to 0.1 [16]. The solution of the Navier-Stokes equations is given here
to make a comparison with the simulation solution. The Navier-Stokes equations are
[17]

dp

—£ =0, 29
dy (29)
i( ﬂ)zo 30
dy #dy , (30)
d [ <3cp dT du)]:O 31
dy # 2 dy+u dy ’ GD

where p is the coefficient of viscosity and ¢, (=5R/2) is the specific heat at constant
pressure. The boundary conditions are

U* d

= nd T=T* at y= — 32a
U= a y +2 (32a)
u=—U" and T=T* aty=_-2, (32b)
2 2
where
*
T*=T,+T, (33b)

The slip velocity u, for completely diffuse reflection and the temperature jump T,
for complete thermal accommodation take the forms [18]

u—=294 (34a)
dy
15 | . dT
T:Mlxﬁ. 34b
1= & (34b)

The right-hand sides of eqs. (34) should be evaluated at y=+d/2 or —d/2. The mean
free path 2 should be evaluated at the gas temperature (and the gas density) at the
wall, and not the wall temperature. Note that the symmetry of the boundary condi-

This document is provided by JAXA.



130 Report S. P No. 1

tions implies that u is an odd and T is an even function of y.

Equation (29) shows that the pressure is everywhere constant as it is for the Liu-
Lees solution. Let the pressure be p, as before. The solution of egs. (30) and (31)
can be obtained after the manner in [17]. (Regard the wall velocities as 4 U*/2 and
the wall temperatures as 7%, and obtain the solution by use of no slip and jump
boundary conditions.) The flow velocity u is

~ 2 -1 u  da*( u\’
7= (o) Jorean =555 ] 352
where
wr=_U"
12¢,T*

The solution of this cubic equation is

somaranfLa-3)]

where

01=cos—1-(_f{/2), (0<6,<r)
A=14a*",
3 N\
B—=(1 #>2 .
( +52)e

The temperature is

%=1+a*[1—(%)2]. 36)

The quantities U* and T* can be determined from eqgs. (34) as follows. Define the
mean free path 2* by

1*2#_*( m )”2, (37)
o* \ 2RT*

where p*=p,/RT* and p* is the coefficient of viscosity at temperature 7*. The
mean free path 2 in eqs. (34) must be replaced by i*. From egs. (9) and (37)

we have
X %\ 3/2
()" G9)

Using eqs. (34), (35a), and (36), we have from egs. (33)

L =1a(i+-2e)(Z)(E)
12142 4% K 39
U T3 N N ) (392)
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Pt B o)) om
where
-2
U T,
with
U 1

a=—_=—TM2_
12¢,T,, 30
Substitution of eqgs. (38) and (40) into (39) shows that egs. (39) are a set of

coupled equations for U*/U and T*/T,. Neglecting the terms of order K2, K3,
.-, we obtain

Z;=1_2(L+%40Km (41a)
T* 15 < 2 > k

T* 1435 (142 0)k.. 41b
T + 5 @ +3a (41b)

Once M and K, are given, then u/U and T/T, are determined from eqs. (35b),
(36), and (41) by use of u/U=(u/U*)(U*/U) and T/T,=(T/T*)(T*/T,). It can
be shown that in the limiting case of K,—0, the Liu-Lees solution given by egs.
(21) to (24) agrees with the Navier-Stokes solution.

4. Solution from Simulation Calculations

4.1 Outline of Simulation Procedure

In the direct-simulation method the flow is always unsteady and a steady flow is
obtained as the large time state of the unsteady flow. Before starting the simulation
calculation initial conditions for simulated molecules must be specified. Here it is
assumed that gas is initially in equilibrium at temperature T, and density po; T and
po are everywhere constant. The temperature T, is chosen to be equal to the wall
temperature 7T,,. Two flow parameters must also be given before starting the calcula-
tion. One is the wall Mach number M. Of course, one can give M any value in
advance. The other is the Knudsen number. However, one cannot know the value of
K, defined by eq. (8) until the steady flow is established. A related parameter to
which one can give a value at time t=0 is the Knudsen number K,, defined by

K7z0=%io" (42)
where 1, is the mean free path at r=0, i.e.
1/2
2 :&( r ) ,
"= oy \2RT, (43)
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As will be seen later, the Knudsen number K, is a function of K,, and M.

The flow from y=—d/2 to d/2 is divided into J cells. Since p, is constant, the num-
ber N, of the simulated molecules in each cell is equal at t=0. These molecules are
distributed uniformly in each cell. The initial velocity of each molecule is sampled
from the equilibrium distribution at temperature 7,,. Once the positions and velocities
of the simulated molecules are given at =0, these at later time-points t=4¢, 24, . . .
can be determined step by step [8]. The principle of uncoupling makes it possible
to treat molecular displacement and intermolecular collision separately. First, the
molecule is moved freely over 4¢. Some molecules are reflected at the wall surface
during this motion. Next, the collision is calculated. Let N, , be the number of
molecules in cell j at time-point k4¢. The collision probability P, , of a molecule in
cell j over one time-step from (k—1) 4t to k4t is given by

Py =K(Nex=L )4, 44)
0

where 4f is the time step measured in units of 2,/(2RT,)"?, K=r"g/[34,(4)],

and A4,(4)=0.4362. The value of K is 7.743 for 8,=2.391, which is corresponding

to the cut-off angle of 2° [8].

A set of velocities of N;;, molecules in cell j plays the role of the velocity-
distribution function, i.e., it determines the flow properties at the center of cell
j at time-point k4t. The gas density p, , and the flow velocity ¢, , are determined
from

s — Ny (45)
0o N,
- 1
€= 2. Cies (46)
et

where ¢, , is the velocity of the ith molecule and the summation is over all mole-
cules in cell j. Similarly, the temperature T, , is determined from

1 < N )( 1 9 s )
T, .=— 1.k Cii—Cix)s 47
"7 3R N;.—1/\N,;, Z: Tk 47

where ¢ ,=(C,)} 4 ()3, + ()} When the flow is in the steady state, (¢,), .
and (C,);,, vanish except for statistical fluctuations. Since the fluctuations are never
null for a finite N, ,, however, one must not set (¢,);, ,=(¢,),,=0. The shearing
stress 7., and heat flux (g,), are based on the sampled flux of molecular number,
momentum, and energy incident on and reflected from the wall. Introduce the
nondimensional variables by dividing velocity by (2RT,)"?, length by 4,, and time
by 2,/(2RT,)"?, and denote such variables by a caret placed over the symbol.
Then, z,, and (q,), are given by

Tay — _ﬁ (¢ ] NTA____};_ 48
pO(ZRTw) [ 2 (cx)i No(fz—fl) ’ ( )
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ql/ :l[g G .]————-——T‘Ty — 49
werTy" 212 T arTy “

where 4y is the cell height, N, is the total number of the molecules that are
incident on the unit area of the wall from time 7, to 7,, and (¢,), is the x-com-
ponent of the mean velocity of such molecules.

4.2 Results of Simulation Calculations

4.2.1 Preliminaries

Although a full unsteady flow is calculated, our concern is in the ultimate steady
flow. The flow properties in the steady state can be determined through the time-
averaging of the simulation data of eqs. (45) to (47). Before doing so, however, the
time at which the flow practically becomes steady must be determined. This can
be done through the ensemble-averaging. Preliminary calculations are made for K ,,
=0.05 by use of J=20 and 4f=0.01, where J is the number of cells and 4f is the
time step. The value of 4f is so chosen that P, , of eq. (44) satisfies the condition
P; .<1[2]. The choice of the number N, of molecules per cell is of crucial impor-
tance; if Ny is too small, the simulation data include the error ascribable to the cor-
relation of velocity between a molecule and its collision partner [10, 12]. The cal-
culations are made for Noy=50, 100, and 200. The time 7 is advanced up to 300.
All calculations from#=0 to 300 are repeated M, times by using M, independent
initial conditions for molecules. The result forms a set of M; members of an en-
semble. The number M, is so chosen that the sample size N,M, takes a fixed
value 1000 for any N,. Comparing the ensemble-averaged data of the flow velocity
(¢,); . at T=k4i=10, 20, 30, --., we have seen that the flow is practically
steady for 7 >50 for all three values of N,. In order to exclude any unsteadiness we
have concluded for safety that the flow is steady for #>200. Clearly, this fact for
K,,=0.05 is true also for K,,>0.05. The reason is that when the initial mean free
path 2, is fixed, the frequency of molecular collision with the wall increases with
decreasing the height 4 (i.e., increasing K,,), which results in decreasing the time
taken for the flow to settle down into the steady state.

Whether N, is large or small makes a subtle difference in the simulation data; it
is covered with the statistical fluctuations if the sample size is of order 1000. On
the other hand, a typical calculation of the ensemble-averaged data of the sample
size 1000 takes about 4 hours on the high speed digital computer (ACOS 1000 of
the Computing Center of Tohoku University), so that it is impracticable to increase
the sample size by a large margin. In order to examine the effect of N, we are
obliged to resort to the time-averaged data, the sample size of which can be made
much larger. (A typical calculation of the time-averaged data of the sample size
50000 takes about 3 hours.) The time-averaged data are obtained by summing a
sequence of the of the flow properties at £=200+(I— 1)fz (I=1,2,---,L). The
sampling interval h must be greater than 1 [13]. The greater the interval, the
better the data. The preliminary culculations are made for A=5. The sample
size N,L is fixed at 50000 for any N,, so that L is, e.g., 250 for Ny,=200. Let
o, U, and T be, in turn, the time-averaged data of p,,, (¢,);;, and T, ,. To see
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the effect of N,, the data p, u, T are obtained for N,=50, 100, 200. We have
seen that the effect of N, is most remarkable in T ; the temperature for N,=100
agrees with that for Ny,=200, whereas the temperature for N,=50 is rather lower
than that for N,=200. Since the flow properties must not depend on the number
N,, one should use N, greater than 100.
4.2.2 Results

Full simulation calculations are made for a fixed Mach number M=3, which is
lower than the critical Mach number 3.098 of the Liu-Lees solution. The Knudsen
number K,, is changed between 0.05 and 20. The simulation parameters used are
as follows.

time step: 4f=0.01,

cell number: J=20 for K,,<2 and J=10 for K,,>2,

initial molecular number per cell: N,=200,

sample size: N,L=50000,

sampling interval: h=3,

starting time of sampling: £,=200. |
The choice of these is based .on the preliminary calculations. The cell number J is
reduced to 10 for K,,>>2. The reason is that as eqgs. (25) and (26) show, the
variation of the flow properties between the two walls is small for large Knudsen
number. The sampling interval h is reduced to 3 to save the computing time.

We are concerned only with the flow in the steady state. The Knudsen number

K, (=2,/d) defined by eq. (8) is preferred to K,, in describing the steady flow.
The reference density in eq. (9) is defined by p,=p,/RT,, where p, is the pressure
for the steady flow. Both the Liu-Lees solution and the Navier-Stokes solution show
that the pressure p is everywhere constant. This constant pressure is chosen as a
reference pressure p,. The simulation solution shows, however, that this is true only
for K, &1 or K,>»1. In the transition regime the pressure p shows a weak depen-
dence on y. Therefore, p, is defined here as the mean pressure, i.e.

Ly
pr—7 j=1pj’

where p; is the pressure at the center of cell j. The relation between K, and K,
is, from eqgs. (8), (9), (42), and (43)

p -1
K= (L) Ko, (50)
Do
where p,=p,RT,. The ratio p,/p, can be determined as follows. The time-
averages of eqs. (45) and (47) give p/p, and T/T,. The product of p/p, and
T/T, is equal to p/p,, the mean value of which is p,/p,. Table 2 gives p,/p,
and K, for various values of K,,. (The wall Mach number is 3.) Once p,/p, is

determined, p/p, and p/p, are given by

£-(2)(e)
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P (L)(_P_) (52)
P Po Do
The shearing stress #,, and heat flux (§,), are
F = p, _1[ Try ] 53
e (po ) 0@RT) Y’ &9
~ — pr >_1[ (qy)w ]. 54
@) (po 02RT ) S

The bracketed expressions in eqs. (53) and (54) are given by eqgs. (48) and (49).

The flow properties u/U, T/T,,, po/p,, P/P., and wall properties #,,, (§,), thus
determined are now compared with the Liu-Lees solution given by egs. (12), (13),
(14), (15), (19), (20b) and the Navier-Stokes solution calculated from egs. (35b),
(36). Figure 1 shows the flow velocity u/U. The solid curves represent the Liu-
Lees solution and the symbols represent the simulation solution. The results for
K,>0.0642 are shifted to the right; the vertical lines represent u/U=0. The Navier-
Stokes solution is not shown in Fig. 1. However, comparison of the Navier-Stokes

Table 2. Values of p,/po, Kn, Zzy, (Gy)w for M=3
(simulation solution)

Ko Dr/Po K, E:cy (éy)w
0.05 1.440 0.03473 0.07370 0.09047
0.1 1.558 0.06417 0.1156 0.1305
0.2 1. 690 0.1183 0.1704 0. 1669
0.5 1.902 0.2628 0.2373 0.1728
1 2.038 0.4906 0.2749 0.1471
2 2.126 0. 9407 0. 3030 0.1111
5 2.192 2.281 0.3252 0.06549

10 2.215 4.515 0.3351 0.04033

20 2.222 9-001 0.3412 0.02365

[ O 5 ﬂ T

>

v
3y
A | 0
0.5
u/u

Fig. 1. Velocity profiles for M=3. The symbols represent the simulation
solution and the solid curves represent the six-moment solution.
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and Liu-Lees solution has shown: the Navier-Stokes solution for K, =0.0347 is in-
distinguishable from the corresponding Liu-Lees solution; a slight difference appears
between the two at K,=0.0642; the difference is of an appreciable magnitude at
K,=0.118. The magnitude of the slip velocity given by the Navier-Stokes solution
amounts to 9% of the wall velocity U/2 at K,=0.0347, 17% at K,=0.0642, and
32% at K,=0.118. Since an upper limit of the slip correction for the Navier-Stokes
solution may be about 10%, only the Navier-Stokes solution for the lowest K,,
which agrees with the Liu-Lees solution, is considered to be accurate. For this
reason we hereafter dispense with the comparison of the simulation solution and
the Navier-Stokes solution. The simulation solution, though numerical, is exact, so
that we can now examine the accuracy of the approximate solution of Liu and Lees.
It is seen from Fig. 1 that the Liu-Lees solution generally agrees with the simula-
tion solution for any K,. In particular, the agreement is very good for both limits of
the smallest and largest K,, which is consistent with the fact that the Liu-Lees solu-
tion is exact at K,=0 and co. In the transition regime of 0.118 <K,<0.941, the
Liu-Lees solution shows a deviation from the simulation solution near the walls; the
slip velocity of the Liu-Lees solution is somewhat greater than that of the simula-
tion solution.

Figure 2 shows the temperature T/T,. It is seen that the Liu-Lees solution is
accurate at K,=0.0347. However, the error of the Liu-Lees solution is large in the
transition regime. Figure 3 shows the density p/p,. Again the Liu-Lees solution is
accurate at K,=0.0347. The Liu-Lees solutions for all other K,’s are qualitatively
correct. Figure 4 shows the pressure distributions. The results for K,>0.0642 are
shifted to the right; the vertical lines represent p/p,=1. The Liu-Lees solution pre-
dicts that the pressure is everywhere constant for any K,. It is seen from Fig. 4
that this is true only for the smallest and largest K,. In the transition regime the
pressure lowers near the walls. Figure 5 shows the nondimensional shearing stress
%5, as a function of K,. The Liu-Lees solution shows reasonable agreement with the

0.0347  0.118 0.49|
Kn=0 / 9.0642/ p.zez/ 0.941 4.5
AN A H

05 %
\\ l. ;,(D
y N, .|
—_— — s _
d o Kn=o.034\\ " !
® K,=0.0642 aav
AKq=0.118 aq J
O A K,=0.263 od .
a Kn=0.491 oY
" Kh=0.941 °3d
K. =4.51
LV R_n , Y vi 4
[ J
/ . v'
-0.5=" v
1.0 1.5 2.0 2.5

T/ Tw

Fig. 2. Temperature profiles for M=3. The symbols represent the simula-
tion solution and the solid curves represent the six-moment solution.
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Fig. 3. Density profiles for M=3. The symbols represent the simulation
solution and the solid curves represent the six-moment solution.
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Fig. 4. Pressure distributions for M=3. The symbols represent the simu-
lation solution and the solid lines represent the six-moment solution.
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Fig. 5. Shearing stress for M=3.
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Fig. 6. Heat flux for M=3.

simulation solution, which is consistent with the agreement of the velocity profiles
given by the two solutions. The continuum-flow limit is given by eq. (23), which
is represented as the Navier-Stokes solution in Fig. 5. Note that the Liu-Lees
solution slightly overshoots the free molecular limit given by eq. (27) before settling
down into the limit. Figure 6 shows the nondimensional heat flux (§,),. It takes
the maximum near K,=0.2. Equation (24) is represented as the Navier-Stokes
solution. As K, increases, the Liu-Lees solution deviates from the simulation so-
lution. Table 2 gives the values of #,, and (4,), determined from the simulation
calculation.

5. Conclusions

By use of the direct-simulation method of Nanbu, the steady Couette flow for wall
Mach number 3 is analysed over the whole range of the Knudsen number. The
obtained solution is the exact numerical solution of the Boltzmann equation, al-
though it includes small statistical fluctuaations. The accuracy of the approximate
solution of Liu and Lees is examined by comparing it with the simulation solution.
The results are summarized as follows.

(1) The velocity profile of the Liu-Lees solution generally agrees with that of
the simulation solution for any Knudsen number. Strictly speaking, however, the
slip velocity of the Liu-Lees solution is somewhat greater than that of the simula-
tion solution in the transition flow regime.

(2) The temperature profile of the Liu-Lees solution is accurate in the near-
continuum flow regime. In the transition flow regime, however, the difference of
temperature profile between the Liu-Lees and the simulation solution is fairly large.

(3) The density profile of the Liu-Lees solution is also accurate in the near-
continuum flow regime. In all other flow regimes, however, it is only qualitatively
correct.

(4) The prediction of the Liu-Lees solution that the pressure is everywhere
constant is correct only for small or large Knudsen number. In the transition flow
regime, the pressure lowers near the walls.
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(5) The shearing stress of the Liu-Lees solution generally shows reasonable
agreement with the simulation solution in all flow regimes, although the former
gives a slight overestimation in the transition flow regime.

(6) The heat flux of the Liu-Lees solution agrees with that of the simulation
solution in the near-continuum flow regime. Beyond the regime, however, the error
of the Liu-Lees solution increases with the Knudsen number.
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