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1. Introduction

When the Knudsen number Kn, the ratio of the mean free path for gas mole-
cules to a reference length of the object, has a finite value, slips of flow velocity,
density and temperature affect the macroscopic flow outside of the Knudsen layer.
For Kng1 or for Kn»1, an asymptotic solution in the power series of Kn or
a solution for the free molecular flow is adequate to the problem. The effects of
the slips, however, are significant in the transition regime (0.1 <Kn<10), where
the both solutions become invalid; the asymptotic solution may diverge as Kn
increases. Accordingly, the solution in this regime were usually obtained nume-
rically [1]-[5].

Another approach to the problem is to obtain an interpolation formula being
valid in this regime, using the asymptotic solutions. Sherman’s formula [6] for a
property Q(Kn) is given by

QKn)/Q,=(1+Q,/Q)""

where the suffixs ¢ and f denote the values for continum and free molecular flow
limits, respectively. When a good approximation Q* for Q(Kn<g1) is obtained,
Sherman’s formular yields

O(Kn)/Q,=0*/Q,—0*/(Q7+ 0,0 = 0*/Q,+ O(Kn*/Q7).

Thus, the Scherman’s formula dose not correspond to the accuracy of the asymptotic
solution.

In the present paper, we aim to obtain an interpolation formula which is valid
in the whole range of the Knudsen number and its accuracy is corresponding to
the accuracy of the asymptotic solution. As an example, we consider the cylindrical
Couette flow problem to which the numercial solutions were obtained [1], [4].

2. Asymptotic Solution for KnK1

We consider a cylindrical Couette flow where the inner cylinder (radius a) is
rotating with the circular velocity v, while the outer cylinder (radius b) stands
still. The linearized Boltzmann equation in the cylindrical coordinates is given by
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where ¢=¢(r, c,, ¢,, c,) is the linearized velocity distribution function, c, the r
component of the particle velocity ¢, ¢, the § component, ¢, the z component, 4,
an eigenvalue of the Boltzmann equation corresponding to an eigenfunction ¢,. A
collision model that retains the correct thirteen moments of the Boltzmann equation
is given by

J=eﬁ IN-2c0+1(c—3/2) + (L= 1/B)p, (cic— €64, /3)
+(4/5) (1 —Pr/p)q.c,(c®—5/2) —¢]. (2)

By use of the eigenvalue —Pr(p/y) corresponding to the eigenfunction ¢,=
c(c*—5/2), Eq. (2) yields

J=Pr(p/@)IN+2cv+#c*—3/2)+ (1 —1/PPp, (c.c,— %3,/ — g1, (29

where p is the viscosity, p the pressure and Pr the Prandtl number.
The perturbed values of density N, temperature ¢, velocity v, and the shear force
p;; are given by

N 1 ]

v oo c

P = J“”‘—w 2/3)(c*—3/2) ‘¢e-c dc, (3)
Dij 2(cic;—c"044/3)

where g,; is the Kronecker’s delta.
Let introduce new variables 4,’s as follows:

Yv=~1/r) ”: H, (c,)¢ exp(—c;—c)dc,dc,,

where H,(c,) is the kth order Hermite polynomial, Multiplying Eq. (1) by H,
and integrating with respect to ¢, and c,, we have

c, oy +l 0 [11,“2_'_ 2k—1 wk_i_M\pk_z]——c—'—(zﬂfmz‘*‘k"fk)
or r dc, 2 4 r

=(@/1) (V01— Vs> (4)
where v, is the circular velocity of the flow. In deriving Eq. (4), we assumed that
the Mach number of the flow is sufficiently small and the temperature of the inner
cylinder is same as the temperature of the outer cylinder, i.e., N=t=0.

If we assume the diffuse reflection at the wall, the boundary conditions for solv-
ing Eq. (4) are given by

(@, ¢,>0)=v,,  Vua, ¢,>0=0 (kx1), (b, ,<0)=0. (5)
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A. Solution in the Knudsen Layer

We introduce a length scale d, d=b—a, and define a new variable x by r=a-
Knx; Kn=(u/pd)(RT)"”, where p is the density of gas and R the gas constant.
Expanding +, in the power series of Kn as

- Z(:) ‘I"g)Knis
iz

and substituting into Eq. (4), we have a set of differential equations of {"’s,

(z)

U TE

)A(wwa P, ) =G — P (6)

where ry=a/d. The concrete form of 4, can be easily found from Eq. (4). Equa-
tion (6) and the boundary conditions (5) with the restriction that {” is finite at
X—> 00 yield

\P,%O) — IU(O) — /vo, 1},(0) 1lj,(l) ,\p,(o) 1!,,(1) df@)
Knowing the solution for {”, Eq. (6) for i is solved one by one.
Equation (6) for i=1 is solved as follows: Let expand " by use of the half-

range Hermite polynomials, H <« [7],

WE 20 =2 WA 7=lc. (7)

The orthogonal relation of the half-range Hermite polynomials is given by
r H,H,exp(—7)dy=0,,.

Substituting the expression (7) into Eq. (6), multiplying it by H,(») and integrat-
ing with respect to 5 from O to co, we have a set of ordinary differential equations of
the coefficients a;’s,
d—X"'FX Xz(a;,a;,"'aa;’al—aaz_,"',a;)t) (8)

dx
where I' is the square matrix of order 2n and the superscript ¢ denotes the transpose
of a vector or a tensor. (In details, see reference 7). A general solution of Eq. (8)
is then obtained as

(l)_Z piu; exp(—2 x)+Z pru? exp(A,.x) +XP 3
XP=@P—g"x)X,+0"X,.

(9)

Here, X, is the fluid dynamic solution corresponding to the macroscopic equation,
e., Navier-Stokes equation. The vectors X; and X, are, respectively, the vectorial
forms of 1 and c,.
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In the vectorial forms, the boundary conditions (5) at x=a are reduced to X*(a)
=0, where the superscript + implies the upper half of the vector X. The restriction
that the value of X must be finite at x—oco requires p?=0. Then, we have

3

1
it +XP(a)=0,
1

-,
"

from which the parameters p}’s and v® are determined. Thus, the general
solution is expressed as

XO=U0QpP+xP; U=y, uy, -+, Uy_y, X,, X,),
pO=(p}, P, -+ 5 Pa-0)'s
and the matrix Q={Q} is given by
Q. =exp(—21x)96,(15i<n—1), Q.,,=exp(Ax)d,,(n<iL2n—1),
Q-1 5=02n1 5+ X020 5 Q2r j= 02 ;-
The slip velocity v® is given by
vV =c,0". (10)

Equation (6) for i=2 is an inhomogeneous equation including +" obtained
above;

dx®

+;1_A1(X<‘>)=FX‘2>. an
0

A general solution of Eq. (11) is given as

X®— UQp<2)+l uQ J QU 4(XMdx+XP (12)
r
XP= {v‘2)+iv(‘)+(—1—>(i)2a‘l)—ia‘”}X]
T 2/\r, 7
_l_( (2)__2;’5_ (1)>X _§_ ©) ¢
+ A g e g .+ 7~ g 83
VO =0+ (—3A4,/r)o®+ (PP [r)a®, (13)

where X; is the vectorial form of (¢?—1/2). The parameters in p® and »® are
obtained from the boundary conditions (5) and the condition p?=0. The third
order solution for i=3 is obtained in a similar manner as the case for i=2 and
yields

v(a)ch0(3)+( —34, )a(2)+( —12B, )0.(1)+< roPR+ P )0.(1). (15)
r r; r

The coefficients in v® were obtained as follows:

Cf=Q1= —1.0162, A,=-—-Q,— 1/2=0.7763, B,= "‘Qs—(3/2)Q1=0'2964’
P®»=0.7488, P{Y=0.5430, P3=0.9054,
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where Q,’s are the notation given by Cercignani [8] and P{?’s are the contribu-
tions of the inhomogeneous terms to the slip velocity. Other higher order solutions
may be obtained in the similar manner mentioned here.
B. Fluid Dynamic Solution in the Scale of r

A fluid dynamic solution to the Boltzmann equation can be obtained by substitut-
ing approximated expressions for the pressure tensors and heat fluxes, i.e., Equili-
brium, Chapman-Enskog, Burnett, and the third order approximate solutions and so
on. For the linearized model equation, these solutions can be easily found one by
one by substituting the expansion form,

'\l"k = i wii)ﬁna
=0

into Eq. (4) where V(" is the ith order approximate solution of the distribution
function. These are given as

0) 0 1 __ 1 1
w](-)__V()’ Wi)—V()—CTUS),

w'(z) . 4¢) —c o + (c2 - 1/2)ri(ﬂ)u;)+ _]'__a__ (r20.(1))
1 [ad) r or r 2r? or 0/ (16)

(
TO=VO _cg®4(2—1 /z)ri(ﬁ) —e(E—3 /2)ri2("°” )
or \r ort\ r

Since, for the shear flow problem, the conservation equations of mass and energy
are automatically satisfied, i.e., the radial velocity v,=0 and T=const., we only
need to consider the momentum equation of the circular velocity v,

fi—[r“’ Iw c,¥ exp(— ci)dc,] =0. an
dr -
Substituting the asymptotic solution (16) into Eq. (17), it gives

Vy=v(0) (r/ry) — (0o/2r) (r/ry—r,/1), (18)

where v(0) is the macroscopic flow velocity outside of the Knudsen layer at r=a.
If Eq. (18) is consistent with the solution in the Knudsen layer, we have

v(0) =i V“)Knizi] vOKnt, 00=f: oM Kn'. (19)
=0 =0 i=0

C. Asymptotic Solution in the Power Series of Kn

The solution near the outer cylinder is obtained, changing a, x, c¢,, and ¢, by b,
—x, —c,, and (a/b)’a,, respectively. Combining the solution in the Knudson layer
adjacent to the inner cylinder and that of outer cylinder through the solution (18)
with Eq. (19), we obtain '

vO(b)=v(a)(b/a)— (¢”[2r,) (b/a—a/b) (i=1,2,3, --.). (20)
Equation (20) with Egs. (10), (13) and (15) yields
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60 =v,RA, §®=AB5®, 6°=A[B3®+CsV+C(—PP[34,)5"], e
G0 =A[B5®+C¢® +Dg® +C(—p[3A4)6" +D(—PZ/12B )],

where
G =09/r3, A=QR/r)/(R*—1), B=(c,/R»/(R*+1),
C=(—3A4,/r)(R*+1)/R}®, D=(—12B,/r))(R°*+1)/R*, R=b]a,

The nth order approxixmation for the shear force at the inner cylinder and the flow

velocity are given by

=3 Rn®aor, v, (0=X,- (Z I?n’X‘”) , 22)
=0 =0

x—r

where * implies the inner product of the vectors.

3. Interpolation Formula

Equation (21) shows that the shear force in the power of Kn can be obtained one
by one from ¢®. The nth approximation, however, diverges to+ oo or —oo as Kn
tend to infinity according to the sign of the highest order. Summing up Eq. (21)
formally from i=1 to oo, we have

t/ri=>. ¢ Kn'
i=1

6‘1>Kn[1+AC S (—P@3AYRni+AD 37 (—PW/12B)Rni+ - - ]
=1 i=3
= 1— A(BKn+CEKn*+DEn*+ - - )

(23)

If the righthand-side of Eq. (23) converges for any values of the Knudsen number,
Eq. (23) gives the exact value of the shear force. If the approximation is truncated
at n, the numerator has the order of O(Kn"), while the denominator has the order
of O(Kn~-Y). Equation (23), then, diverges as Kn approaches to infinity.

Here, we transform Eq. (23) as follows:

T _( s"Kn )[1+ a,Kn?
1+a,Kn 1+ a,Kn+oKn?

n

+0(1€n4)], 24)

where

a,=AB, a,=(1—P®/34)AC,
a,=(D/C)[1— (PR +PR)/12B,— ABC/D]/(1—-P>[24,).

If we choose the value of w so that z(Kn—oo) may give ,=v,/v =, Eq. (24)
yields an interpolation foumula which gives a solution for Kn« 1 including correct
terms up to the order of O(Kn®) and gives the exact value for the free molecular
flow limit.

In general, Eq. (23) can be expressed as
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7O Kn a,Kn* a.Kn’
zr2=(_?__._)[1+ : + ; ]
Irs 14+a,Kn 1+ a,Kn+a,Kn* 1+aKn+ .- +a,)Kn® +

(25)
If we obtain asymptotic solutions in the power series of Kn one by one, the values
of a,’s can be determined accordingly; the highest coefficient should be determined
as in Eq. (24). The interpolation formula is then corresponding to the accuracy of
the asymptotic solution. The interpolation formula obtained from the nth order ap-
proximation [Eq. (22)] coincides with the one that is obtained from Eq. (25) with
nth order approximation.

4. Results and Discussion

The results for n=3 are shown in Table I and Figs. 1-3 where the numerical
soluations by Cercignani and the results by Sherman’s formula are also presented.
For the case, r,<1, the obtained formula gives fairly good results and indicates the
degree of improvement of the present formula to the Sherman’s one. For the case,
ro=2, present formular shows a better agreement than the Sherman’s with the nu-
merical results but the agreement is not so good. This is, obviously, atributed to
the insufficiency of the approximation of the asymptotic solution.

Table I. Stress constant z/zy

R=1.235 R=2.0 R=3.0
1/Kn
Eq. (24) Ref. 1 Eq. (24) Ref. 1 Eq. (24) Ref. 1
0.001 0.9998 0.9997 0.9998 0.9999
0.4 0.8939 0.8878 0.9372 0.9445
1.0 0.7442 0.7441 0.8618 0.8863 0.8813 0.9380
2.0 0.5739 0.5768 0.7588 0.7790 0.8071 0.8727
3.0 0.4653 0.4679 0.6727 0.6876 0.7517 0.8101
4.0 0.3909 0. 3926 0. 6004 0.6118 0.7048 0.7526
5.0 0.3369 0.3377 0.5398 0. 5490 0. 6622 0.7005
7.0 0.2638 0.2631 0.4461 0.4527 0. 5865 0.6116
9.0 0.2167 0.2149 0.3784 0. 3830 0.5225 0.5399
10 10
\ \ b/a= 1.235 | A\ \ \ b/az20 |
3 \3 rd \\\ \ —-— Asymptotic
08F \  —— Asymptotic solution 081 N\ “; rd \ solution -
| \\ \ —— Cercignani i i N \ )
- "\ \ — Eq(24) AN 1\st
& 06 N B « 06F s N N N 1
5 N\ g 09 Shermans 3 .
- \\ _ o . \\\\ \
04 Shferma?'s S \\ 0L —— Cercignani Ry
L formula—"" - AR R T 4
\\\ —Eql2s) paS——
- b . - 2nd .
O % 10 0= "7 "% & 0
17Kn 1/Kn
Fig. 1. Stress constant vs inverse Knudsen Fig. 2. Stress constant vs inverse Knudsen
number; b/a=1.235. number; b/a=2.0.
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10 ) < 18 —
b/a=30 Jst Knudsen'’s
r \\ \ 3rd \ 1 r formula—\//
08F N \ N sf = J
L Sherman’s “soes 4 > +
formu[a_./ \\ \ N\___.,——"‘ / / Q= 1+4.064Kn )
s 06 3 R — : ]
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02 1 11 1 1 I - s 10 1 1 1 1 1 1 1 1 1 e
"0 2 4 6 8 10 0 02 04 06 08 10 12 14 16 18 20 22 24
1/Kn 1/Kn
Fig. 3. Stress constant vs invers Knudsen Fig. 4. Mass ffow rate vs inverse Kundsen
number; b/a=3.0. number.

In Fig. 4 is shown the results of Eq. (24) applied to the Poiseuille flow problem,
where the coefficients of the formula were obtained from the asymptotic solution
obtained by Loyalka [3]. The derivative of Eq. (24) with respect 1/Kn gives a
finite value at Kn—oco, while the asymptotic solution for 1 /IEn<<1 [2] gives

{02/80(1/Kn)} g0, = O(—log Kn).

Thus, the interpolation formula (24) may have a poor convergence for the problems
which include singularities at Kn—co.

5. Conclusions

The cylindrical Couette flow problem was solved using the half-range Hermite
polynomials and the asymptotic solutions in the power series of the Knudsen num-
ber were obtained. The nth order interpolation formula was obtained from the
nth order asymptotic solution for ffn<<1. The results improved the Sherman’s for-
mula to the extent of the accuracy of the asymptotic solution.
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