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Summary: Two existing techniques of the Monte Carlo simulation in the molecular gas
dynamics, namely, the test-particle method and the direct-simulation method, are somewhat
critically reviewed.

1. Introduction

The “Monte Carlo method” [1] is generally accepted as the procedure of any use
of random sampling in treatment of either deterministic or probabilistic problems
[2]. The “Monte Carlo simulation” is the Monte Carlo method involving the “simu-
lation” or ‘““analogue idea” introduced by von Neumann and Ulam [2], where nature
is directly modeled in its probabilistic aspects.

In the Monte Carlo simulation in the molecular gas dynamics, the behaviors of
molecules (atoms, molecules, electrons, and ions) are probabilistically simulated
using the assumptions on which the Boltzmann equation [3] is based, i.e., binary
molecular collisions, molecular chaos, and vanishingly short time and small physical
space for molecular collisions; the simulated molecules are probabilistically followed
using random numbers on a computer through the molecular motions (under the
influence of external forces), the molecular collisions, and the boundary interac-
tions; the statistical properties of molecules such as the velocity distribution func-
tion, the number density, and the temperature are obtained from the simulated mole-
cules. The existing simulation techniques are distinctly divided into the test-particle
method and the direct-simulation method. Both the methods are somewhat critically
reviewed in the subsequent sections. General reviews of the Monte Carlo method
and simulation and their applications in the molecular flow problems have been
made by Sherman (1969) [4] and Bird (1978) [5].

2. Test-Particle Method

Some (one) simulated molecules or test particles without direct mutual interac-
tions are followed through the molecular motions, the boundary interactions, and
the molecular collisions with the field molecules whose statistical properties are
known. The cumulative history of the test particles yields their statistical proper-
ties. This test-particle method was originated by Yarnold (1945) [6] for the elec-
tron swarm and by Wannier (1953) [7] for the ion swarm, where the test particles
are electrons (ions) and the field molecules are neutral atoms or molecules and the
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test particles are followed through the electron (ion) motions under the influence of
the electric field and the electron (ion)-molecule elastic collisions. Itoh and Musha
(1960) [8] developed the test-particle method in the simulation of the electrical
discharge in a gas. In the electron-swarm simulation, Thomas and Thomas (1969)
[9] and many Japanese researchers Sakai, Tagashira, and Sakamoto (1972) [10];
Makabe, Goto, and Mori (1973) [11]; Hayashi (1976) [12] significantly contributed.
In the ion swarm, the simulation method was developed by Skullerud (1968)
[13] and Lin and Bardsley (1975) [14]. It is noted that, in the electron (ion)
swarm, the electrons (ions) are so diluted in the neutral molecules that the neutral
molecules are not disturbed [and the electron-electron (ion-ion) collisions are ignor-
ed]; consequently the test particles and the field molecules are in principle separated;
this is a linear problem.

In the case of neutral molecules, there also exist linear problems to which the test-
particle method is well applicable. Davis (1960)[15] first applied the test-particle
method to the free-molecule flow, where the molecular collisions are ignored and the
test particles are followed through the molecular motions and the boundary inter-
actions. Perlmutter (1965) [16] applied the test-particle method to the collision-
less ion flow in the magnetic field. In the nearly free-molecule flow, the field
molecules are taken as the free-stream molecules and the test particles are fol-
lowed through the molecular motions, the boundary interactions, and the molecular
collisions with the free-stream molecules. This is the “first collision” Monte Carlo
technique used by Kogan and Degtyarev (1965) [17] and Robertson (1969) [18].
In gas mixtures containing a trace species and predominant species with known sta-
istical properties, the test particles of the trace species are followed through the
molecular collisions with the field molecules of the predominant species. This is the
“tracer Monte Carlo method” first used by Sinclair and deLeecuw (1969) [19] and
recently applied to the isotope-separation problem by Fox and Eaton (1977) [20]
and Anderson and Burman (1977) [21], where the statistical properties of the pre-
dominant species are obtained by the direct-simulation method.

In the case of the nonlinear molecular flow problems where the test particles and
the field molecules can not in principle be separated, Haviland and Lavin (1962)
[22] originated the iterative procedure: The test-particles are followed through the
molecular motions, the boundary interactions, and the molecular collisions with the
field molecules whose velocity distribution function is given by the previous iteration;
the cumulative history of the test particles constructs a new field-molecule distri-
bution function for the next iteration; this process is repeated until the test-particle
distribution function reproduces the field-molecule distribution function to an ac-
ceptable accuracy. A full description of this method is found in a monograph of
Haviland (1965) [23]. Perlmutter (1967) [24] reduced the iterative process to
that of the macroscopic quantities by assuming the form of the velocity distri-
bution function. This method was employed by Tuer and Springer (1973) [25].
Yoshizawa extended the test-particle method to the analysis of unsteady problems
such as a recombination reaction (1967) [26] and a rarefied flow (1969) [27].
Gorelov and Kogan (1968) [28] showed that the test-particle method is effectively
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applicable to the small-disturbance (linear) molecular flow problems.

It should be pointed out that the test-particle method of Haviland and Lavin suf-
fers from a significant amount of computer storage due to a cell network in velo-
city space and the convergence question due to the iterative process. These defects
have been overcome by the direct-simulation method.

3. Direct-Simulation Method

The time-dependent velocity distribution function at time ¢+ J¢ is obtained from
that at time ¢ by following simultaneously a large number of simulated molecules
over the time step 4t through the molecular motions, the molecular collisions, and the
boundary interactions. This direct-simulation method was originated by Bird (1963)
[29] with the assumption of uncoupling of the molecular motions and collisions (1965)
[30], where the molecular motions and collisions are separately followed provided
A4t is much less than the mean collision time z,; the molecular collision number n,
during 4t is regulated through the time counter (TC), in which the TC is advanced
by a time increment calculated from a collision pair until the TC concurrents with
At [30]; this procedure is designated as the TC-procedure. It should be pointed
out that the TC-procedure tends to yield an unrealistically low n, [31]. During the
development of the simulation technique, Bird (1967) [32] made a significant modi-
fication by introducing a cell network in physical space. (A cell network in velo-
city space is not required.) A full description of the direct-simulation method with
the TC-procedure is found in a book by Bird (1976) [31].

The cell network in physical space was independently devised by Koura [33, 34] in
1967, where it was indicated that the introduction of the cell network leads to the
additional time-step condition 4t z, in order that the assumption of uncoupling is
valid, in which z,,=2/v is the characteristic molecular motion time, 2 is the charac-
teristic cell dimension, and v is the characteristic molecular velocity; when there
exists an external force, 4t should satisfy the additional condition 4t z,, where z,
=wv/a is the characteristic force time and a is the characteristic acceleration of force
[34]. The fact that a molecular collision occurs almost independently and uniformly
during 4t owing to the small change in the velocity distribution function during At
due to the condition 4t min(z,, z,,, ) leads to the collision-frequency (CF) procedure
[33, 34], which is essentially different from the TC-procedure of Bird: The collision
frequency v in each cell is calculated at time ¢ and taken to be constant during 4¢;
the collision number n, during 4t in each cell is taken deterministically as n,=v4t or

probabilistically as % (dt.).,=4t, where Jt, is the collision-time interval between
k=1

successive molecular collisions assigned by the probability p(dt,) =v exp(—vdt,).

The CF-procedure originated by Koura for gas mixtures (1969) [33-38] has been
extended by Koura to gas mixtures with internal degrees of freedom such as vibra-
tion (1974) [39, 40] and rotation (1976) [41-44], chemical reactions (1973) [40,
45-49] involving electrons (1975) [42, 43, 50] and ions (1975) [50, 51], and inter-
actions with radiation (1980) [52], using the semi-classical mo’ecular model with
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the discrete internal energy described by the semi-classical Boltzmann equation [52,
53]. It is noted that the CF-procedure makes it possible to simulate the behavior
of trace molecules in heat-bath molecules (1975) [50] and the model collision terms
such as the BGK model [54, 55] owing to the use of the collision frequency v.

The CF-procedure was employed by Takagi (1971) [56], Murakami and Oshima
(1974) [57], Anderson and Burman (1977) [21], Deshpande, Subba Raju, and
Ramani (1979) [58], Nanbu (1980) [59] in little different appearance with no
improvement [60], and Ogawa (1982) [61]. Yoshikawa (1979) [62] used an un-
reliable method with a phenomenologically adjustable parameter in the semi-classical
treatment of molecular rotation.

The range of application of the TC direct-simulation method has been extended
especially by Bird to gas mixtures (1968) [63], gases in the gravitational field (1971)
[64], near continuum flows (1974) [65], small-disturbance (linear) flows (1977)
[66], and three-dimensional flows (1979) [67]. Sugimura and Vogenitz (1975) [68]
applied the TC method to weakly ionized flows using a finite-difference solution
of the Poisson equation for the electric field.

The TC method has also been extended to polyatomic gases with internal de-
grees of freedom using the classical and phenomenological molecular models. Bird
(1970 [69] used the classical rough-sphere model. Macpherson (1971) [70] solved
the classical equations of motion for each molecular collision in the simulation
procedure. Melville (1972) [71] used the classical loaded-sphere model. Bird
(1971) [72] put forward the phenomenological energy-sink model, which, however,
reveals an unrealistic distortion of the velocity distribution function. This defect has
been overcome by the phenomenological model of Larsen and Borgnakke (1974)
[73], which was used by Bird (1977) [74] in the simulation of a dissociation and
recombination reaction. Similar phenomenological models were proposed by Pullin
(1978) [75] and Ogawa (1982) [61].

It should be noted that both the classical and phenomenological models deal with
the continuous internal energy and have some macroscopically adjustable parame-
ters such as the relaxation time. On the other hand, in Koura’s semi-classical treat-
ment, the internal energy is taken to be discrete and no macroscopically adjust-
able parameters are included owing to the use of the differential cross section for
the transition of the discrete internal quantum state, which is provided by quantum
or classical calculations and experiments.

4. Future Prospects

Although the future prospects of the numerical method in the molecular gas dy-
namics are strongly influenced by the developments in the computer technology,
the following remarks are made on the future prospects:

1. The test-particle method may continue a most effective simulation method for
the behavior of particles without direct mutual interactions in dilute or dense mat-
ters. This method has been successfully applied to (linear) problems such as the
electron or ion swarm and the photon [76] or neutron [77] transport, although the
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test-particle method in the dilute-gas simulation has some disadvantages as com-
pared with the direct-simulation method.

2. The direct-simulation method may continue a most effective simulation
method for the (nonlinear) Boltzmann equation.

3. The Monte Carlo sampling technique developed by Nordsieck, Hicks, and Yen
(1967) [78, 79] for the evaluation of the collision integral in the Boltzmann
equation appears to become an effective numerical method for the Boltzmann
equation, although it requires a cell network in velocity space and an iterative process
and, consequently, suffers from essentially the same disadvantages of a large amount
of computer storage and the convergence question as the test-particle method of
Haviland and Lavin. The effective ordinary numerical quadrature for the collision
integral may still be desired in order to solve the Boltzmann equation by the
ordinary numerical method free from the statistical error.

4. Dilute or dense gases (liquids) can in principle be simulated by the molecular-
dynamics method originated by Alder and Wainwright (1957) [80], where the tra-
jectories of a large number of simulated molecules are followed by solving the sim-
ultaneous equations of motion. Since this method may require no special assump-
tions, it appears to become an effective simulation method in the molecular gas
dynamics [81] especially for dense gases and in the plasmas, although the magni-
tude of computational task is required.
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