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Abstract: Entrance flows to a circular pipe which has an axisymmetric sudden expansion were
numerically simulated for a wide range of Reynolds numbers. Particularly shear layer instabilities
observed behind the sudden expansion were studied. Experimental observation of the flow fields at the
corresponding flow conditions were also carried out. Taylor-Helmholtz type instability was observed
along the shear layer behind the sudden expansion, and its breakdown into turbulent blobs were
observed. Numerical results successfully simulated this vortex breakdown process. The process that
flows grow into chaos were also successfully simulated.

1. INTRODUCTION

With recent high performance computers and advanced numerical methods, it has
become possible to solve the detailed dynamical behaviors of the time-dependent
Navier-Stokes equations. This becomes a new, important way to study the transition
and other complicate physical phenomena. In this study, We use numerical simulation
method to study stability problems of circular pipe flow. The flow inside a pipe of
circular cross-section is one of the most classic, yet important problems because it
includes fundamental mechanism of flow instability and turbulence transition. On the
numerical simulation aspect, H. Kanda and K. Oshima [6] have completed the
numerical simulation of impulsively started axisymmetric circular pipe flow. Their
simulation results show that, regardless of the flow Reynolds number based on the mean
velocity and the pipe diameter, the velocity distribution tends to the Poiseuille type, after
start from rest condition. That is, this type of flow is stable, which agree with the
prediction derived from the linear stability analysis [8]. When axisymmetric disturb-
ance is superposed to the uniform entrance flow, the disturbance grows and eventually
yields reverse flow regions. This suggests turbulence transition, which agree with
nonlinear stability analysis [11]. In present work, We study the detailed vortex
breakdown process and investigate the evolution and the structure of vortical flow at
unsteady flow regime. Replacing the artificial disturbance at the inlet, axisymmetric
sudden expansion geometries of various size are set. It is assumed that fluid flow
impulsively started from rest condition. At low Reynolds numbers, flows are steady
one, with a finite lengh reverse zone. Many experimental and numerical research have
been carried out in this regime [4]. Numerical simulation was successful. However, as
the Reynolds number increasing, flow become unsteady and the reattachment point
disappear. Evolution of the shear layer behind the sudden expansion, together with
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its interaction with the boundary layer on the wall of the pipe, causes complicated
transition-breakdown of vortical flow. Flows in this regime are not elucidated yet. In
order to simulate complicated flows under various conditions, we developed an efficient
calculation code. Experimental observation of flow field at corresponding flow condi-
tions are also carried out. In the following section, We will describe the numerical
method briefly and discuss the numerical and experimental results.

2. NUMERICAL METHOD

In this simulation, fluid flow is assumed to be incompressible, axisymmetric. Inde-
pendent variables are Stokes stream-function ¢, vorticity w and swirling velocity W.
The Stokes stream function defined as:
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Here the U, V, Wis the axial, radial velocity or swirling velocity in (z, r, 6) plane.
The circumferential component of vorticity is:
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Driven from mass conversation equation, the relation between stream function and
vorticity is
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The vorticity transport equation in non-conservative form is:
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The momentum equation at @ direction in non-conservative form is:
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Here the Re is the Reynolds number, which based on the mean velocity and the diameter
of the pipe.

The finite difference method are applied to obtain numerical solution of above
equations. In order to simulate flow at high Reynolds number, numerical scheme is
require to have good stability. Therefore, two-second order upwind scheme is applied
in convection terms, alternative direction implicit difference is applied in time derivative,
diffusion terms are two-order central difference. Detail description of the numerical
scheme are summarized in the report [7].

Non-slip and continuum conditions are fulfilled on the wall of the pipe. Entrance flow
is uniform in this simulation. Axisymmetric conditions are given on the axis. The
values of the stream function, the vorticity and the swirling velocity on the exit are
extrapolated.
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Stability of the scheme is based on a empirical consideration. That is, in each time
step, the moved distance of fluid particle is shorter than one grid space. The grid space
is given by geometry and number of grid, then the time step is given in above way.

Two mesh system are used in the simulation. Fine mesh system is 601*31, coarse one
is the 301*16. Length of the pipe is twenty time of the diameter of the pipe. Simulation
of unsteady flow requires large calculation length and small time step. Considering that
fluid particle on the axis passes through whole length of pipe in about 15 (non-
dimensionalized time), total calculation length is set as 75 (nondimensionalized time).
The number of time step is 7500. This length is thought to be enough to catch the
change of flow field after starting vortex passed.

Numerical simulations were carried out over from 100 to 100000 of the Reynolds
numbers. The CPU time and the memory for typical case in numerical simulation are
listed in Tab. 1. In the pipe flow, geometry characteristics is that dimension in the axial
direction is very long. Therefore the large numbers of grids are require in this direction.
Rectangular grid, 4z=nA4r, may reduce the grid number in axial direction. But at a
large n, the stability of scheme becomes bad. In above simulation, the n is select as 2.
Comparing with related experiment, in which the pipe diameter is 3 cm and the fluid is
water, the minimum vortex blob and the maximum wave number that can be recognized
in grid system B are about 2mm, 1kHz, respectively. To simulate smaller size vortex
which has the order of real turbulence flow, ideal one is grid system C. it is predicted
that about 30 hours CPU time is require in grid system C. If to simulation three-dimen-
sional flow, several ten time of CPU time and memory will be necessary. For example,
Calculation of three-dimensional flow at level of grid system B may take as much CPU
time as about 40 hours.

CPU time of M780 CPU time of VP200 Memory

Grid system A 301x 16 95 min. 11 min. 1.8 Mbyte
Grid system B 601 < 31 *600 min. 65 min. 2.6 Mbyte
Grid system C 2001 X 101 — *1800 min. *15 Mbyte

Table 1. The CPU time and memory of the simulation. The calculation length is 75
nondimensional time. FACOM M-780 are the main frame computer of ISAS. FACOM
VP-200 is the supercomputer of ISAS, its calculation capacity is 500 MFLOPS. The *
is predicted values.

3.  RESULTS AND DISCUSSIONS

3.1 Taylor-Helmholtz type instability and vortex breakdown

Numerical results show that After impulsively started from rest, flow tends to steady
state at low Reynolds numbers. Laminar, recirculation vortex region forms and velocity
distribution is Poiseuille type in downstream. Flow pattern in such case are shown in
Fig. 1. As Reynolds number increase, reattachment point disappears and flow is
unsteady. Vortex rings shed along the shear layer, as shown in Fig. 2. The flow pattern

This document is provided by JAXA.



76

H. L. chen and K. Oshima

Fig. 1. Flow patterns after impulsively started from the rest condition,
the Reynolds number is 100.
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T=14.5

Fig. 1 (Continued)
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T= 8.5

Fig. 2. Flow patterns after impulsively started from the rest condition,
the Reynolds number is 2000.
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T=1/.5

Fig. 2 (Continued)
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Fig. 2 (Continued)
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T=14.5

Fig. 3. Flow patterns at Re = 500.

T=20.5

1=20.5

Fig. 5. Flow patterns at Re= 10000.

This document is provided by JAXA.



82 H. L. chen and K. Oshima

at various Reynolds number are shown in Fig. 3, Fig. 4 and Fig. 5.

The shedding process of a street of vortices are successfully simulated. Vorticity
distribution of around the shedding point at the Reynolds number 3000 are plotted it
Fig. 6 In order to show the detailed vorticity distribution, the size at radial direction are
enlarged. It can be seen that, before the shedding point, the equi-vorticity lines are
parallel to the symmetric axis and the vorticity concentrates inside band region, which
has a same mean radius as sudden expansion. It is a typical shear layer. Around the
shedding point, the parallel vorticity distribution change sharply and shear layer
suddenly burst into a number of vortex blobs of various size, the maximum vortcity
appears in this point. The vorticity on the wall corresponding this point has a large

[es)
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0.0

Fig. 7. The processes of vortex shedding and paring at Re=3000.
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Fig. 7 (Continued)
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Fig. 7 (Continued)
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Fig. 8. Histry of vortices position by numerical simulation at Re = 3000.

negative value. It is noted that the viscous effect and the boundary layer on the wall is
also important in this stedding process. After the shedding point, the region of vorticity
distribution extend. Complicated interaction of vortices are dominant in downstream,
and chaotic behavior of flow appears. The corresponding stream lines at Reynolds
number 3000 are plotted in Fig. 7.

Experimental results also confirm the Taylor-Helmholtz type instability and vortex
breakdown process in circular-pipe flow which has an axisymmetric sudden expansion.
The results of experimental observation are shown in Fig. 9 to Fig. 13. The same
processes appear at lower Reynolds number in experimental observation. The absence
of disturbance at inlet in numerical simulation may be the reason. The flow patterns in
experimental observation at rarious Reynolds number are shown in Fig. 9. The position
history of vortex rings are shown in Fig. 10. Transition distance at various sudden
expansion ratio are plotted in Fig. 11. The Reynolds number dependence of Strouhal
number from experimental observation as well as the numerical simulation are shown in
Fig. 12 and Fig. 13.

The ratio of sudden expansion diameter and pipe diameter is 1/3 in above numerical
results. The calculation and the experiment at different ratios were also carried out. At
a large ratio, the same processes take place at higher Reynolds numbers. When the ratio
is 1, that means the sudden expansion is removed, numerical results are completely agree
with H. kanda and K. Oshima [6]. That is, regardless of the Reynolds number, velocity
distribution tends to the Poiseuille type steady solution.

In above simulation, the swirling velocity was not considered. When swirling velocity
is introduced at the inlet of pipe, the flow pattern is essentially different. Exceeding a
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Fig. 9.

Re=2500

d/0 = 021

Flow patterns by experimental observation.
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Fig. 10. History of vortices position by experimental observation.
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Fig. 11 (Continued)
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certain Reynolds number and/or a swirling velocity, stagnation point appears on the
symmetric axis and bubble-like breakdown of vortex takes place. The typical flow
pattern are shown in Fig. 19. From numerical results, it is found that the presence
vortex rings will early provoke the vortex breakdown, because the extension of stream
tube between the two vortex rings causes the pressure increasing, then reverse flow
appears on the axis, as shown Fig. 19. When sudden expansion gemetry is removed, flow
instability is also different to that the swirling velocity is absent. Even under the
axisymmetric assumption, when swirling velocity present and the Reynolds number
excceds a certain value, the velocity dlistribution does not tend to Poiseuille type and
reverse flow appears on the axis, after start from rest. That is, this type of flow is
unstable.

3.2 Interaction of vortex rings and evolution into chaos

After Taylor-Helmholtz type instability cause the bursting of a street of vortex ring
along the shear layer behind the sudden expansion, interaction of vortex rings plays
dominant role in downstream. Typical case is shown in Fig. 7. Vortex rings a, b, c, d,
e and f shed for a certain position continuously. Eventually, the a and the b, the e and
the f merge into a large vortex ring, respectively. But no pairing take place between the
c and the d. The position history of each vortex ring are plotted in Fig. 8. Timing and
position of the vortex pairing is undefined. Caused by such complicated interaction of
vortex rings, chaotic behavior appears in downstream. This is important because it

Q.

z/0

Fig. 19. Flow patterns after impulsively started from the rest condition with swiling velocity, the
Reynolds number is 50000.
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suggests the turbulence transition process.

Frequency characteristics of velocity at various Reynolds number were also in-
vestigated. At a low value 100 of the Reynolds number, no velocity oscillation appear
behind the sudden expansion. As the Reynolds number increasing to 500, oscillation
appears behind the sudden expansion but it dissipate immediately and flow tends to
steady state. The numerical results reveals that the oscillation behind the sudden
expansion is a simple periodic motion as long as over a certain Reynolds number,as
shown in Fig. 14 (a), (b) and Fig. 15 (a), (b). As the Reynolds number increasing
more, at 1000, the oscillation dissipate but not tend to steady flow. Intermittence wave
appears in downstream, as shown in Fig. 14 (c), (d) and (e). At 2000 or higher value
of Reynolds number, large variation take places in frequency characteristics at axis
direction. Before the shedding point, the wave number do not change and simple
periodic oscillation is kept. In the downstream, the merging of the vortex rings cause
dissipation of high wave number oscillation, and the complicated interaction of vortex
rings cause bifurcation from the simple periodic solution to chaotic one, as shown in Fig.
15 and Fig. 17. .

Also important characteristics of the velocity, particularly the bifurcation of solution
are obtained from phase-space diagrams. In the phase-space diagram, the horizontal
axis is the velocity and the vertical axis is the derivative of the velocity. The phase-space
diagrams of the velocity histories in Fig. 15 and Fig. 17 are plotted in Fig. 16 and Fig.
18, respectively. Chaotic behaviors and bifurcation processes of flow are recognized in
these diagrams. Noted that the scaling is different at each diagram. In the downstream.
Decreasing of the velocity amplitude by viscous dissipation can be seen.

4. CONCLUSION

It was experimental found that, for a certain range of the Reynolds numbers, a
Taylor-Helmholtz type instability causes the shedding of a street of vortex rings along
the shear layer bounding the stagnant region behind the step. This vortex street grows
gradually and eventually occupies the whole pipe section. Bursting into a street of
turbulent blobs occurs at this point. Numerical results successfully simulated detailed
dynamical processes of vortex breakdown and growing into chaotic solutions. Numer-
ical simulation reveals that vortical interaction of the vortex rings plays dominant role
in this transition to turbulent blobs, which also confirmed by the physical observation.
The Reynolds dependence of the Strouhal number of this turbulent blobs street was
determined.

A CKNOWLEDGMENT

In this research, experimental work shown from Fig. 9 to Fig. 13 was carried out by
Mr. Y. Ishii. The authors with to acknowledge his help.

This document is provided by JAXA.



104 H. L. chen and K. Oshima

REFERENCE

[1] A. Fortin; A Numerical Simulation of the Transition to the Turbulence in a Two-Dimensional Flow,
Journal of Computational Physics 70, 1987, pp311-329.

[2] J. Formm; A Numerical Study of Ekmen Boundary Layer Instability on Rotating Disk, Numerical
Methods in Fluid Mechanics, edited by K. Oshima, 1986, vol.2, ppl106-115.

[3] D.J.Latornell and A. Pollard; Some observations on the evolution of shear layer instabilities in laminar
flow through axisymmetric sudden expansions, Phys. Fluid 29(9), 1986 pp2828-2835.

[4] K. Oshima, H.Kanda, Y.Ishii and H.L.Chen; Numerical Simulations of Unsteady Pipe Flows,
Presented at the International Symposium on Computational Fluid Dynamics-Nagoya, August 28-31,
1989.

[5] H.Kanda, K.Oshima; Numerical Study of the Entrance Flows of a Circular Pipe, Proc. 10th
ICNMFD, Lecture Note in Physics 264, ed. F.G.Zhuang, et al. pp363-368(1986).

[6] H.L.CHEN; Numerical Simulation of the Interaction of Vortex Rings in Viscous Fluid, Proceedings
of the Symposium on Mechanics for Space Flight-1986. The Institute of Space and Astronautical
Science, Report S.P.5, pp 15-22.

[7] H. Salwen and C.E.Grosch; The stability of Poiseuille Flow in a Pipe of Circular Cross-section, J.Fluid
Mech. (1988), vol.190, pp375-392.

[8] John. Guckenheimer; Strange Attractor in Fluid: Another View, Ann. Rew. Fluid Mech. 1986. vol. 18.
pp15-30.

[9] Marcel Escudier; Confined Vortices in Flow Machinery, Ann. Rew. Fluid Mech. 1987. vol. 19. pp 27-
52.

[10] J.T.Stuart; Instability of flows and their transition to turbulence, ZFW Bd. 10 pp 379-392 (1986)

This document is provided by JAXA.





