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Summary: Two-dimensional Karman type vortex street, which consists of two infinite parallel rows of
finite area vortices, is numerically investigated using discrete vortex approximation, in which each
vortex is represented by a bundle of a number of point vortices. The numerical experiment was
performed for wide range of the initial conditions of the vortex street in order to make clear such
characteristic features as the deformation of each vortex, the merging within each row and the formation
of secondary vortex street. Also, the result showed that the initial ratio of the transverse-to-longitudinal
separations of the vortices must be within 0.3 to 0.5 for stable formation of the secondary vortex street.

§1. INTRODUCTION

In nature, regular flow patterns consisting of two parallel staggered rows of vortices
are frequently observed in wake of a two-dimensional bluff body when it is placed in a
uniform flow. This kind of pattern is well-known as Karman vortex street after the name
of the first researcher who studied this phenomenon by replacing each vortex by a point
vortex [/]. Complete understanding of the property of Karman vortex street, however,
has not been achieved even for the present moment [2]. One of the reasons of this
difficulty originates in the interaction of vortices, where each vortex influences itself as
well as the others. In other words, it is necessary to account for the spatial extent of
vortex, particularly, for the flow field such as Karman vortex street in which a number of
vortices are closely located. This situation leads to difficulty of mathematical treatment.
Method of contour dynamics has been used in order to analyze the spatial extent effect
for the two-dimensional vortical flow [3]. This method is indeed effective for the system
of few vortices, but the treatment becomes more difficult as increasing the number of
vortices. In fact, the application of it to the two-dimensional vortex street has not
succeeded yet.

On the other hand, the discrete vortex approximation is suitable to treat the separated
vortices [4]-[5]. This approach was already carried out by Christiansen & Zabusky for
the two-dimensional vortex street [6]. They presented the conjecture that the finite-area
vortex stabilizes the system of vortices, which was confirmed by the linear stability
analysis later [7]. Their numerical experiment, however, was performed only for six
cases of geometric conditions of the vortex street. Therefore, investigation for wider
range of the initial conditions is necessary.

In this paper, the interaction of the vortex street is treated using discrete vortex
method, in which the continuously distributed vortical region is represented by a number
of discrete vortex filaments. Therefore, the distributed vorticity is approximated as a
bundle of vortex blobs. Concerning the structure of an element vortex, several models

This document is provided by JAXA.



18 Report SP No. 3

have been proposed [8]-[9], but the simplest one that has no core and induces infinite
velocity at itself is employed here. This model has, therefore, no viscous effect.

Computational scheme used is formulated in §2 based on discrete vortex method.
Interaction of a single vortex row, which is an infinite row of equal-strength vortex
blobs, is treated in §3. Karman type vortex street, in which two opposite-signed single
vortex rows are staggered, is investigated in §4. Particularly in §5, our attention
concentrates on the transition of the vortex street, namely, the rearrangement of Karman
type vortex street.

§2. COMPUTATIONAL SCHEME

Consider the periodic flow field in the x-direction. For an infinite fow of equal-
strength vortices distributed along the x-axis with the interval /, the complex potential is
given by the formula [/0],

f)=E-tog (72, M)

z=x-+1iy. )

Each vortex blob, as shown in Fig. 1, is represented by bundling a number of point
vortex streets given in eq. (1). Then, the potential for this system is given as follows;
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Fig. 1. Arrangement of the vortex street.
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where z; is the position of the j-th point vortex, «; is its strength and # is the total number
of the elementary point vortices included within the interval /.

As the velocity field is given by differentiating eq. (3), the motion equations for each
point vortex are;

d‘k & K
%7=Z cot (E_(Z"li)h) (k:1,2, © e -,n), (4)
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where z: indicates the complex conjugate of z.

On the other hand, for the strength of a point vortex k;, we assume that all the point
vortices within a vortex bundle have equal strengths and that they do not vary with time.
Taking the total strength of the vortices consisting the vortex bundle as unity, one has,

'xj[:*]]\-—’ (1:1’2’ Tt n), (5)

where N indicates the total number of the point vortices contained in a vortex bundle.
To solve eq. (4), the Euler’s integral scheme to the second accuracy with a time step of
0.05 is employed.

§3. A SINGLE VORTEX Row

A single vortex row is considered, in which each vortex blob is arranged with the
equi-distance d and has the equal circulation. In this case, there are two parameters; the
distance between the neighboring vortex blobs d and the initial radius of the vortex blob
R. Therefore, only one non-dimensional parameter a=d/R is enough to be considered
here. It is taken as /=2a, so that two vortex blobs are included in the computed region /.

T = 0.0 T = 1.000 T = 2.000 T = 3.000
(a)

T = 0.0 T = 1.000 T = 2.000 T = 3.000
(b)

T = 0.0 T = 1.000 T = 2.000 T = 3.000

(©
Fig. 2. Interactions of a single vortex row. This figure shows the distribution of the point vortices. (a)
a=3.6, the complete merging occurs. (b) a=4.0, the critical exchange occurs. (c) a=4.4, no merging
occurs.
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Each vortex blob consists of 50 point vortices, namely N=50. Then the total number of
point vortices in the computed region is n=100.

Figure 2 shows the point vortex distributions obtained for three different values of a.
Complete merging of the neighboring vortex blobs occurs for a=3.6 (Fig. 2 (a)). Time
development of this case will be discussed in detail later. In the case of a=4.0, each
vortex blob stretches in the direction of the vortex row and a few point vortices are
exchanged between the neighboring vortex blobs, as seen at T=3.0 (Fig. 2 (b)).
Afterwards, each vortex blob changes its shape again to the initial round one. This
interaction process repeats periodically. No merging of the neighbors occurs for a=4.4
(Fig. 2 (c)). In this case, the stretching and shrinking processes in the direction of the
row repeat while each blob rotates around its own axis. Therefore, the value of a of 4.0
is regarded as the critical value for merging of the single vortex row.

§4. KARMAN TYPE VORTEX STREET

Karman type vortex street consists of two single vortex rows with the opposite-signed
circulation and staggered with the separation h, as shown in Fig. 1. For this problem,
there are two dimensionless parameters a=d/R and b=h/R, which determine the
geometry of the street. In the present case we also used /=24, N=50. Therefore, the
total number of point vortices within the interval /, is n=200. Some results are
presented in Fig. 3 and Fig. 4.

In Fig. 3, the distributions of the point vortices for a=4.4 are shown for various values
of b. In the case of b=2.8, each vortex blob changes its shape in the direction of the row
without merging, similarly to the corresponding single vortex row (Fig. 3 (a)). In the
case of smaller than 2.8, the triangular vortex blobs are formed typically seen at T=0.5
and 2.0 (Fig. 3 (b)). Such triangular vortices were experimentally observed for the
Karman vortex street behind a flat plate [//]. The initial transverse-to-longitudinal
separation ratio b/a of this case, which henceforth is called the characteristic ratio, is
found to be 0.32, which is close to that of Karman vortex street. In the case with still
smaller value of b, where the two rows are located very closely, each vortex blob
stretches in the vertical direction of the row (Fig. 3 (c)). Such vertically stretched
vortices were also found in the wake of the trailing edge of a flat plate [//].

Results for a=3.6 are shown in Fig. 4. As seen in Fig. 2 (a), for a single vortex row
with this value of g, the merging of the neighboring vortex blobs occurs. Similar
behaviour is found in the case with b=2.0 (Fig. 4 (a)). In the case of b=1.2 where the
characteristic value of b/a=0.33 takes place, the triangular vortex blobs are formed
again (Fig. 4 (b)), but merging of the vortex blobs does not occur. This suggests that
close existence of the vortices with the opposite circulation prevents merging.

The computation is carried out for the various values of a and b. These results are
summarized in Fig. 5, based on the viewpoint whether the merging within each row
occurs or not. In this figure, the x-axis represents the value of b and the y-axis that of a.
The symbol M means that the merging occurs at this condition. Similarly, C and N mean
the critical and the non-merging conditions, respectively. The lower broken line out of
two denotes the limiting values of @ and b, which can be given as the initial conditions.
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(a) a=4.4, b=2.8 (b) a=4.4, b=1.4 (b/a=0.32) (c) a=4.4, b=0.8.
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Interactions of Karman type vortex street (I). Each dot denotes the position of the point vortex.
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Fig. 4. Interactions of Karman type vortex street (II). (a) a=3.6, b=2.0 (b) a=3.6, b=1.2
(b/la=0.33). :
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Fig. 5. The b—a diagram for Karman type vortex street. In
this figure, the symbols M, C and N mean the conditions at
which the merging, the critical exchange and no merging
occur respectively. The open circle indecates the condition
where the triangular vortex is found.

Thus, the initial condition corresponding to the lower part of this line cannot be given
because of overlapping of the vortex blobs. The other broken line denotes the critical
value of g for a single vortex row, as shown in §3.

Firstly, the figure shows that the critical conditions for merging of the vortex streets
are almost independent of b and that they agree with the one for a single vortex row, that
is, a=4.0. The stream lines not far from the row are almost parallel to it. Another
words, the effect of the vortices is restricted within neighboring field of the row, and
so-called ‘‘cat’s eye’’ stream lines are formed. The two stream lines interfere and form
the Karman type vortex street, and each vortex row influences the other only when they
are close to each other. In fact, Fig. 5 shows that the non-merging region comes down
when b<3.0, which means that the opposite-signed vortex row prevents vortex merging,
as already discussed in Fig. 4.

Nextly, let us consider the deformation of each vortex. In this figure, the open circle
indicates the condition at which the triangular vortex blob is formed. These are in the
range of b/a of 0.3 to 0.4. In the right side of this range where b/a<<0.3, each vortex
stretches in the vertical direction of the row; and in the left side where b/a>>0.4, each one
does so in the direction of the row. An isolated vortex region in unbounded field has a
stable state with rotation which is known as ‘‘rotating V-states’’ [/2]. It is suggested
that the elliptic or the triangular vortex blobs found in the present simulation correspond
to the stabilized state in fields with periodicity. The characters of the vortex street
clarified here supports the conjecture that the spatial extent of the vortex stabilizes the
vortex street.

§5. THE REARRANGEMENT OF KARMAN TYPE VORTEX STREET

The computations described in the previous sections make clear the condition of the
merging occurrence in the Karman type vortex street. In those computations, however,
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the computed region / is taken as twice of a, so that they have only least mode for
merging. In other words, such computations treat the merging of only two neighboring
vortices. Though these computations with the two periodicities are effective to similate
the occurrence of merging, one with the more periodic cycles is necessary for the later
stage.

Figure 6 shows the time development of a single vortex row which corresponds to the
succeeding stage of Fig. 2 (a), where the computed region is 8a and the geometric
parameter a is 3.6. At T=8.0, the periodic structure of the vortex row breaks down and
at T=10.0 the roll-up begins in the central position of the row. Complete formation of
seven vortex blobs out of original ten vortex blobs occurs at T7=12.0. They have no
longer the same size nor the same shape. Thereafter, these vortices merge with each
other and the structure of the vortex blobs grows larger and larger. As seen in this
figure, eventually two large vortices are formed within the computational region.

Figure 7 shows the corresponding Karman type vortex street, where the computational
region is 8a and the geometric parameters a=3.6, b=4.0. The evolution of each row is
similar to that in Fig. 6. Also, two larger vortices in each row are formed within the
computed region. However, the arrangement of these vortices is not stable.

Figure 8 shows the same case as Fig. 7 except the value of b, where b=2.0. The
larger-scale roll-up than in Fig. 7 occurs at T=12.0, because the two rows are located
closer. The roll-up process forms the vortex pairs which oscillate transversely with large
velocity, so that the vortex street diffuses strongly with time and eventually breaks down
completely. Therefore, the stable vortex street does never exist. This process is called
the dissolution mechanism [/3] and it plays an essential role in turbulent diffusion.
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Fig. 6. Time development of a single vortex row. The conditions in this case are following:
a=3.6, [=8a.
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Fig. 7. Time development of Karman type vortex street (for large b). The conditions in this case
are following: a=3.6, b=4.0, [=8a. The resulting vortex street is not stable.
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Fig. 8.

Time development of Karman type vortex street (for small b). The conditions in this case

are following: a=3.6, b=2.0, /=84. The dissolution mechanism is found, so that the stable

secondary vortex street is not formed.
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These results suggest that the formation of the secondary vortex street through the
merging, namely the rearrangement, does not take place for the Karman type vortex
street with the periodic boundary condition.

As the final step, the artificial disturbance is introduced into the initial condition, the
wave length of which is . Figure 9 (a)-(c) show the results, where the computational
region is 8a and the wave length of the disturbance A is 2a. Figure 9 (a) is the case of
a=3.6, b=1.4, so that the ratio »/A=0.25. Similarly seen in Fig. 8, the dissolution
mechanism is found and the width of the vortex street increases rapidly. Figure 9 (b) is
the case of a=3.6, b=2.5, so that the ratio b/A=0.35, where the stable secondary vortex
street is observed. The resulting vortex street arranges four larger vortices within each
row in the computing region. Figure 9 (c) is the case of a=3.6, b=4.4, so that
b/A=0.61. The vortex street grows the symmetric arrangement from the asymmetric
Kéarman type one. Therefore, the resulting vortex street is not stable.

Figure 10 shows the result where the computational region is 9a and the wave length A
is 3a. The geometric parameters are a=2.4, b=3.2, so that b/A=0.44. In this case, the
stable secondary vortex street forms, in which three emerging vortices appear within the
computing region.

Therefore, the artificial disturbance leads to the rearrangement of the vortex street
only when the characteristic ratio of the resulting vortex street is b/A=0.3~0.5, which is
in good agreement with the result by Aref & Siggia [/3]. The structure of the vortex
street fully depends on the wave length of the initial disturbance.
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Fig. 9. Rearrangement of Kdrman type vortex street (I). An artificial disturbance is introduced,
the wave length of which is A=2a. The computational region is /{=8a. The results in three
different geometric conditions are shown. (a) a=3.6, b=1.4 (b) a=3.6, b=2.5 (¢c) a=3.6,

b=4.4. The stable secondary vortex street is formed only in the case (b).
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Fig. 10. Rearrangement of Karman type vortex street (II). The wave length of the disturbance is
A=3a, and the computational region is /=9a. The geometric conditions are a=2.4, b=3.2. The
stable vortex street is formed.

§6. CONCLUSION

The two-dimensional vortex streets with the finite area vortex core, in particular the
Karman type vortex streets, were investigated numerically. The finite vortex core is
approximated by bundling a number of point vortices. The parameters considered are
the distance between the neighboring vortices in each row a and the separation of two
rows b. The following reasults are obtained.

(1) For a single vortex row which corresponds to b— in the Karman type vortex

street:

No merging of vortices within each row occurs when a>4.0.
The exchange of the point vortices occurs when a~4.0.
The complete merging of the vortices within each row takes place when a<4.0.

(2) For the Karman type vortex street:

When b>3.0, the critical value for the merging agrees with the case (1), that is,
a~4.0.

When b<3.0, the critical value for the merging of a decreases, as the value of b
decreases.

(3) For the deformation of the vortices in the Karman type vortex street (the case of

non-merging):

When b/a>0.4, the vortices stretch elliptically in the direction of the row.
When b/a=0.3~0.4, the triangular vortices are formed.
When b/a<0.3, the vortices stretch elliptically in the vertical direction of the row.
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(4) For the rearrangement of the Karman type vortex street:
For rearrangement of the Karman type vortex street under the periodic boundary
condition, the artificial disturbance is necessary and it determines the structure of
the resulting secondary vortex street.

The secondary vortex street is formed only when its transverse-to-longitudinal ratio
b/A=0.3~0.5, where X is the wave length of the artificial disturbance.
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