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Summary: A brief report is made on the recent analysis on the recombination of two vortex filaments
in a viscous incompressible fluid. The analysis is confined to a local flow field where this interaction
occurs, and is based on the vorticity equation with the viscous term along with several assumptions,
including fluid impulse conservation and spatial symmetry of the flow field. The flow field is expanded
into polynomials of coordinates and the coefficient, which are functions of time, are obtained by
substituting the expansions into the vorticity equation. It is proved that this process is completed within
a short time t*=0(c?/I"), where o and I' are the size and the circulation of the vortex filaments
respectively, and that the viscous effect is necessary for occurrence of the process.

§I. INTRODUCTION

Vortex dynamics is a powerful tool for theoretical investigation of flows in which the
vorticity is confined within a narrow region and the viscosity plays no essential role. The
attractiveness of the vortex approach lies in the fact that vortex motions are governed by
simple equations derived from the Navier-Stokes equation. Two cases have been
investigated extensively; one is an ensemble of two-dimensional point vortices whose
motions are governed by the Hamiltonian dynamics [/], and another is a single or several
vortex filaments in three-dimensional motion which is determined uniquely by Biot-
Savart’s law. The motion of a single vortex filament is analysed by Hama [2], Betchov
[3], Hasimoto [4] and Takaki [5], and interactions of two filaments are treated by Crow
[6], Moffatt [7], Hopfinger er al. [8] and Takaki & Hussain [9]. The short wave
instability, investigated by Widnall e al. [/0] and Saffman [//], is also a phenomenon
caused by the interaction between vortex filaments.

In all these cases, the distance between neighboring vortices is assumed larger than the
vortex core size, and the potential flow theory is applied. On the other hand, there are
certain types of interactions in which vortices approach each other and undergo strong
interactions. A typical example of the strong interaction in the two-dimensional flow is
the vortex merger, which has been investigated experimentally (Winant & Browand
[/2], Brown & Roshko [/3], Hussain & Zaman [/4]) and theoretically (Acton [/5],
Corcos & Sherman [/7], Ashurst [18], Takaki & Kovasznay [/9], Aref & Siggia [20];
Takaki & Tanaka [2/]). Theoretical study of vortex merger in the two-dimensional case
can be made by the use of the inviscid equation, because the vorticity fields is
approximated well by a cloud of point vortices and the viscous effect is not strong
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4 R. Takaki and A.K.M.F. Hussain

compared with the mutual velocity induction.

The strong interaction in the three-dimentional case is the recombination of two
filaments observed by several authors (Hama [22]; Crow [6], Kambe & Takao [23],
Oshima & Asaka [24], Fohl & Turner [25]), where local elements of two filaments
approach each other, are cut and then connected after being switched. Except for the
MHD flow (Yeh & Axford [26]) this mechanism has not been studied theoretically so far
and remains a big challenge for theoretists as Saffman & Baker [26] points out. This
phenomenon is quite complicated, because the fluid motion varies rapidly in essentially
three-dimentional manner. What is unknown even qualitatively is the behaviour of flow
field in the localized region where two vortex filaments get contact to each other and the
vorticity lines are cut and reconnected.

The purpose of the present analysis is to cope with this phenomenon by a simple model
of time-dependent flow field which simulates the real flow within this region. Proposed
model flow must satisfy the Navier-Stokes equation or the vorticity equation with the
viscous term, because the viscosity plays an essential role in the mechanism. The full
paper is now being prepared for a regular journal, and an outline is given here.

The present analysis is motivated not only by the interest in vortex dynamics but also
by our claims that this process is one of the main aspects of development of
three-dimensional turbulence from two-dimensional, less chaotic flows and that the
mixing and noise production in the near field of a jet are considered to come primarily
from the breakdown process of the initial toroidal structures through the recombination
process (Hussain [27]).

§II. BaSIC ASSUMPTIONS

Consider that two vortex filaments with opposite sense of rotation approach each
other. Then, parts of the filaments close to each other will deform strongly and are
pushed upwards as shown in Figure 1(a). After a recombination process the new
filaments are arranged as shown in Figure 1(b), and the adjacent parts move downwards.
It is reasonable to assume that this motion is confined to a local part of the filaments and
that the distant parts remain unaffected for a short time during the interaction. This local
fluid region is called an interaction region.

Now, we consider a change of the fluid impulse between the initial and the final states.
The impulse is defined by

Pz%erXa)dV, (1)

where p is the fluid density, ris the position vector, w is the vorticity, and the volume
integral is taken over whole fluid region (Batchelor [28]). From the above assumption
the change in P comes only from the integral in the interaction region. Contributions
from the interaction regions give an upward- and a downward-directed impulses for the
initial and the final states, respectively, hence violating impulse conservation. To
compensate this difference, we need to superpose another fluid motion, i.e. a recoil
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A

(a) (b)

Fig. 1. Vortex configurations before (a) and after (b) the recombi-
nation process.

~

Fig. 2. Assumed mechanism of the process.

motion of a small-size fluid element ejected upwards.

This complicated process can be looked upon as superposing a pair of colinear, small
ring vortices on the initial vortex filaments as shown in Fig. 2. These rings have equal
size and opposite sense of rotation and of equal circulations, which are also equal to that
of either of the initial filaments. Their center is at a position above that of the interaction
region, so that the lower ring overlaps with the interaction region and produces a new
vortex configuration, while the upper ring plays a role of recoil (see Fig. 2(b)).

This process is expressed quantitatively by asymptotic conditions of the velocity (v)
and the vorticity (w) fields. Let these fields in the initial and the final state and the ring
pair be denoted by v;, w;, vs, wy, v,, w,, respectively. The origin of ¢ is chosen so that the
process occurs at =0. Since the process is a very rapid one, instants before and after the
process, to which the asymptotic conditions of the intermediate flow functions should
refer, correspond to r=0— and 0+ on the time scales of the initial and the final states,
respectively. Then, the asymptotic conditions are

u,(—o0)=0 and u(0—)+u(t)>u,0+) for t—oo0, (2a)
@,(—0)=0 and @,(0—)+w,(t)>w,0+) for t—co. (2b)

The coordinate axes are introduced as shown in Fig. 2. It is assumed that the two
filaments have a configuration with two planes of inversion symmetry: the xz- and
yz-planes. The initial and final states differ in dependence on x and y, because the vortex
filaments are aligned nearly with the y- and the x-axis and the velocity vectors are nearly
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6 R. Takaki and A.K.M.F. Hussain

confined in the xz- and yz-plane in these states, respectively. Next, the velocity and the
vorticity fields are expanded by polynomials of coordinates up to O(r?) and O(r'),
respectively, where O(r™) denotes the m-th order polynomial.

Now, since the x-component of the velocity « is an odd function of x and an even
function of y and is independent on y in the initial state (see Fig. 2), only polynimials up
to O(r?) allowed for u in the initial state are x and xz. The y-component v vanishes in the
initial state. The z-component w is an even function of both x and y, and allowed
polynomials are 1, z, x2, y2. Polynomials for the vorticity and also the flow fields in the
final state are obtained in the same way. The quantities Aw, and Aw, are expanded
independently.

Since the center (denoted by z=z¢) of the interaction region moves in the z-direction,
say with a velocity wo(z), during the process, the variable z in the polynomial expansion
should be replaced by z—z0, where

20)= [ wi(n)a. 3)

The origin of the z-axis is chosen so that zo(0)=0. The velocity wo(z) constitutes the
O(r°) terms for w; and wy.
Now, the flow fields with polynomial expansion are obtained as follows:

U= —mx+k,x(z—z,),

vi———O, iy l (Sa)

W= W)+ mz—z)— S (=2 =

wix=0’

wivz(kt+li)x+nix(z'~zo)a (Sa)

wiz =0.

Awix:gia:ya Awiy:giyx' (Sb)
In the same way for the final state we have

uf=0,

v, =m;y—k,y(z—2), ©

Wf=Wo(t)—mf(Z—Zo)+l€2’—(z——zo)2+_lzf_y2,

wp=k,+1)y+n,)(z—2z),

07, =0, (7a)

w,,=0.

Aw;,=8;.), Aw,,=g,,x. (7b)
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In these expansions the coefficients m;, my, ki, k;, 1, Iy, ni, ny, gir 85, 85 85, are functions
of time.

The term -mux or my is a flow pressing or separating the two filaments before or after
the interaction. They are relatively weak, because these flow fields are contributed by
far parts of filaments. Terms with coefficients ki, ky, [, I, n;, ns;, come from vorticity
located close-by, and are relatively strong.

Order estimations of these coefficients are made in terms of the core size, o, the
circulation [' and a curvature L of the filament, as follows:
ki, k1, 1,=0(/a%); ny n,=0(Tc*); ®)
wy(1)= 0 /o), my,, m,=O(I'/L?. }

The equation which governs variations of these coefficients is derived from the
vorticity equation.

9+ @-Po—(@ Pu—sba=0, ©)

where v is the kinematic viscosity. Substitution of (4), (5a, b) into this equation yields
equations for k;+/; and kr+1;, which prove to suggest slow variation of these quantities.

The pair of vortex rings superposed on the initial state has the same symmetry as the
initial and final states with respect to the x and y axes. It is assumed also to have an
axisymmetry around the z-axis and an inversion symmetry with respect to the z
coordinate, the center of the symmetry being at z=0(o)>0. Therefore, the polynomial
expansion beings with a term of O(z°).

In the same way as in the initial and final states polynomial expansions up to 0(r2) are
written as

u,=(c,— c,2)x,

v, =(6—¢;2)y, (10)

W,= —C,—20,24 c,2* +cy(x*+ y*)

w,.z:(c2+c§—csz)y, wryz —(Cz—i-cgwcsz)x, (lla)

Awrz:grzy’ Awry:_gryxs (llb)
where the coefficients in these expressions are functions of time. Since the vortex rings
appear at the beginning of the process and yield the final state, these coefficients must
vanish for r=—o and asymptote to some finite values for t=cc.

It is assumed here that the above coefficients are expressed in terms of a single
function of time 7(¢) as follows:

c(t)=06T, c(t)y=mT, c,(t)=kT, ci(t)=IT, } (12)

Cs(t)znT; grz(t)::g.rT) gry(t)=gyT,
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where T(r) satisfies
T(—0)=0, T(c0)=1. (13)

Expansion coefficients in the initial, the intermediate and the final states are related to
each other because of the asymptotic conditions (2a, b). After reducing number of
independent coefficients by the use of these conditions, the flow field during the whole
process of recombination is written up to O(r?) as

u=—m(l—T)x+k(1—T)xz,
v=mTy—kTyz, (14)

we=w(0—)— T+ m(l —2T)z—é(l _ T)xH—éTyz—_I;_(l _2T)2

w,=k+1DTy—nTyz,

w,=k+1)(1—T)x—n(l—T)xz, (15a)
w,=0.
szzngy’ Awy:gy(l —T)’ sz=0~ (ISb)

The parameters m, k, I, & and wo(0—) are treated as given. Parameters g. and g, are
related to the other parameters, while solving the vorticity equation (9) to obtain T(¢), as
shown below.

By substituting the final expressions (14) and (15) into the x- and y- components of the
vorticity equation (9), we have, up to O(r),

x:  (k+DdT)dt+m(k+1)T?—(w—0)—3TInT+(k+1)Tm(1 —T)=vg,T,  (16a)

y:  —(k+DdT/dt—m(l — T)k+ (1 — T)— (w(0—) —6T)n(1—T)
—(k+D)(1=T)mT =vg,(1—T).  (16b)

From these equations and condition (13), values of g, and g, are determined as follows:
vg,=u(k+1)—(w(0—)—d)n, vg,= —mk+1)—wy(0—)n. )
Then, two equations (16a, b) are reduced to a same simple form
dT|dt —t*'T +t*'T*=0, (18)
where
t*=on/(k+1)=O(L/d®. (19)

This equation does not contain the viscosity explicitly, but, since the parameters in
(18) are related to the viscosity through (17), the viscous effect is essential. The two
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Theoretical Study of Strong Interaction of Vortex Filaments 9

components of the vorticity equation (16a, b) contradict to each other even in the lowest
order, i.e. O(r), if the viscous terms are neglected.
Solution of the differential equation (18) satisfying (13) is

T=e/(14+€), c=tt*. (20)

This solution has an expected behavior, because it varies from 0 to 1 during a time of
o(r*).

§III. DISCUSSION

The approximate solution obtained here for the recombination process explains well
this rapid fluid motion observed by flow visualization. From the process of solution it is
shown that the viscous term in the governing equation is playing an esential role. Recent
visualization experiment by Oshima[28] seems to suggest a presence of the recoil motion
assumed in the above analysis. More experimental investigation of the detailed flow
structure at the interacting region is awaited.

Here, some comments are given on the obtained solution. The superposition of the
ring pair to the initial state may give us an impression that the kinetic energy is not
conserved because the ejected recoil vortex ring carries a definite energy. But, this
problem is solved by assuming a growth of the core size after the interaction, which
should certainly be expected to occur since the viscosity is essential during the process.
Moreover, this quick core growth leads us to a new concept for entrainment of the
potential fluid into the vortical region, especially in turbulence. Viscous dissipation in
turbulence will occur not only through vortex stretching but also through recombination
processes which are expeced to occur continually in the turbulent flows.

The only solution obtained in the past for a recombination process is given by Yeh &
Axford [27] for a MHD flow, where the magnetic field lines are recombined at the center
of a stagnation flow. The fluid is assumed inviscid, but the effect of finite conductivity
yields this process. This mechanism is similar to our mechanism in a sense that the
dissipative effect is occurring in a relatively narrow region, i.e. the interaction region in
our analysis, while the mechanism differs in several points. Their MHD flow is steady
and two-dimensional, and the three forces on the fluid, the inertia, the pressure and the
Lorentz forces balance with each other. On the other hand, in the recombination of the
vorticity lines the inertia, the pressure and the viscous forces balance.

The rapid process of recombination is also considered as an efficient source of the
aerodynamic noise. It is suggested here that the jet noise can be predicted in terms of the
recombination processes within the turbulent jet shear flow.
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