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Summary: In the present paper the numerical results are shown in graphic images for three
dimensional boundary-layer flows. It is shown that the presentation of images especially in solid model
graphics allows us to utilize our widest band width sense in an effective manner to create physical or
geometrical models and to understand their behavior in simulated environments. As the results,
external streamlines and limiting streamlines obtained with finite difference calculations are given for
parboloid, and for the front half region of wing-ellipsoid combination.

§1. INTRODUCTION

Numerical study for three dimensional boundary layer has been appearing within last
nearly two decades [/,2]. However their illustrations are two dimensional images and
do not give 3-D images straightforwardly.

Recently, especially for commercial usage, solid modeler graphics have been
developed which allow the definition of complex three dimensional models in a form that
the resulting data base can be accessed for a variety of purposes. For example, it has
become possible to define very rapidly the geometric boundaries of an vehicle, and then
to call for computational grids in numerical computation. A line-printer output is
sometimes a heavy load on us in detecting uninvited or expected behaviors of solutions
and so on. The presentation of these image allows a person to utilize his widest band
width sense, vision, in an effective manner to create models and to understand their
behavior in simulated environments. The presentation of this pattern type information is
greatly facilitated by the use of computer graphics technique. The incorporation of
perspective and the optional removal of hidden lines improved the usefulness of graphic
displays. Thus, so called CASD [Computor Aided Software Design] should be
introduced in the Computational Fluid Mechanics, while at present a few academic
results [3] are known in our country.

For the presentation of graphic images or for the data base to the graphics we refer our
three dimensional boundary layer solutions [4,5]. The pictures by solid model graphics
are shown for the external flow field and limiting streamlines for both paraboloid and
wing-ellipsoid combination. In the finite difference calculation [4,5] the nose coordi-
nates originally devised for body of revolution [2] are applied. We show the following
examples: first, as for relatively simple case the flow over a paraboloid, and second the
flow field on the body of a wing-ellipsoid combination up to the region near the root
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location of wing. The finite difference solutions are obtained for 3-D boundary layer

with the Box schemes.

The descriptions about the data structure for the computer graphics are given briefly at
the end of the present report. The comparison with the images by wire-flame model and
the effect of shading on ‘solid model images’ is also shown. In the last chapter we
briefly discuss benefits of 3-D computer graphics.

§II. FORMULATION

2.1 Basic Equations

For a paraboloid at incidence and in an incompressible laminar flow the governing
boundary layer equations can be written in the curvilinear orthogonal coordinate x, 6, y
as follows
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Here u, w are the velocity component parallel to the body surface in the meridional and
azimuthal directions, respectively, while v is the component normal to the surface, and
where p, v are the density and kinematic viscosity, respectively.

Further, A, h, are metric coefficients and in this paper the shape of body is chosen
such that h, h, satisfy the following relations, denoting the nose radius of a body as R,
and a, b, are the major-axis-length and radius of equatorial-crosssection of ellipsoid.

h,=2R(x/R)'”*: for parabolid e

h,=b(1 —(x/a)*)"/*: for wing-ellipsoid combination &)

=1+ ()

and K, is the geodesic curvature of surface lines x =constant.
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2.2 Application of Nose Coordinate

To overcome the difficulty in solving the Eqs. (1)—(3) at the nose the following
transformation originally proposed by Stewartson [2] is applied to the paraboloid
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X=Scos§, Z=Ssin6, Y=y/R(Re)/ (8)

u=Ucos 0+ Wsind, w=Wcosf§—Usin, v="V/y, (Re)'~ ©®

where u is oncoming velocity, and Re=v, R/v.

Dy 1
s R (10)

The above X, Z coordinate system still has disadvantages in the actual calculation,
therefore the so called third transformation is introduced in the form of R, ¢ polar
coordinates on curved surface. The origin of the polar coordinate is the stagnation point
where X=Xo and the equations for the transformation are as follows.

X =X,+3X,R(R+cos g)A, Z=3X,RAsing; A=1/(14+2Rcos g+ R (1)

U = RODA— RT(1 — R) sin gA } (12)

W =RAssin g[(1—R)Q+DT]; D=cos ¢(1+ R?)+2R

The surface grid lines for y=0 given by Eqs. [/7,/2] or nose coordinate are shown in
Figs. 1, 2 respectively for the front view and perspective view. In these figures
¢ =constant lines emanate from the stagnation point and intersect R=constant lines,
orthogonally.

Thus for the range of 0=<R=0.5 the integration of equations for O, T and V was
proceeded from ¢= 0 to ¢=7 along each R-constant line. The value of T at the free
stream changes its sign in accordance with both the sign and magnitude of cos¢ for small
R. Therefore, the Zig-Zag box scheme was employed for all mesh points at 0=R=<0.5.

Fig. 1. Nose coordinate for paraboloid: Front view.
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Fig. 2. Horizontal perspective view.

$III. BOUNDARY CONDITIONS

3.1 Calculation at Aft Body

For the aft-body at x>x. where X.=2x,, at R=0.5 we introduce a two component
vector potential and boundary layer variable n=y/(u.s,)” together with the definition of
arclength s, along a generator.

The boundary conditions become

n=0, u=w=v=0, n=oo, ufu,=1, wiw,=1 (13)

3.2 External Flow Field: Paraboloid

An inviscid theory gives the velocity components at the boundary layer edge along the
paraboloid

u,=cos a cos —2 sin a sin B cos ¢ (14)
w,=2 sin « sin 4 (15)

where « is angle of attack chosen as 20 deg. and tan8=0dh,/dx and B is the inclination
angle of surface referred to the body axis.

3.3 External Flow: Wing-ellipsoid combination

The model treated [5] has the configuration whose front view illustrating the panel
elements is shown in the Fig. 3. Here, the configuration consists of the body and the
non-swept wing(NACA-65A010) whose central and horizontal camber plane tangential
to #=45° generator of the body at the equator. The body is an axisymmetric ellipsoid at
angle of attack 4 deg with axis length ratio 1/5. Thus, the span of the wing corresponds
to the region 0>x/a>-—0.4. For this wing-ellipsoid combination the inviscid flow was
calculated by Yanagizawa & Kikuchi [6] for the complete body by a Panel-BEM method.
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Fig. ?

On the generator of body started from the rear end of the wing, a vortex line was assumed
to exist. Nine circumferential division was chosen for the inviscid calculation.
Therefore for giving smooth boundary-layer-edge condition a third order interpolation
was applied to 50 division calculation with boundary layer equation, however a quadratic
interpolation was applied along x-direction.

As seen in the one of the earliest finite difference solution [6] for 3-D boundary layer,
a configuration often treated in our field is the flow over the flat plate with circular
cylinder normal to the plate. Their results clarified that the earliest separation point
appears at 2.5-(Rcyinger) ahead from the center of the cylinder. Recently, an integral
method was applied to a single fuselage-shape by Hirschel [7], and the separation near
the rear end of body was discussed. In our second example the wing and the curved body
surface are respectively corresponding to the cylinder and the flat plate.

§IV. NUMERICAL PROCEDURES

4.1 Numerical Schemes for 3-D Boundary Layer

The numerical program devised by us is the application of the Keller Box scheme.
Since principles of our scheme are similar to those by Cebeci er al [2] as far as in the
region without flow-reversal, the description about details of a scheme for a standard 3-D
box scheme is omitted here.

The 3-D calculation in this paper consist of the marching along x -direction only on the
symmetry lines and marching along 6 -direction. Finite difference equations expressed
in terms of variables on neighboring four grid lines are solved in the 3-D version of the
bos scheme.

Finite difference equations together with boundary conditions were linearized and
iteratively solved by Newton method. The resulting linear system was solved by the LU
decomposition. This procedure requires three or four times iteration when the conver-
gence criterion is less than 10", As stated in the above section the Zig-Zag box scheme
was applied to the region at x<<x. where the flow is described in terms of nose variables Q
and T. The Zig-Zag Box scheme was also applied to the region of reversed circumferen-
tial flow ahead or windward side of the estimated separation point. At a separation point
the iteration breaks down due to the negative small value of meridional velocity u near
the surface.

4.2  Procedures for Computer Graphics

We describe the process how the data of the finite difference results are extracted and
reordered to compatible to the data structure accessed by our facility for graphics

This document is provided by JAXA.



58 N. Nishikawa, A. Suzuki and S. Akiyama

[GRAPHICA M-1008]. For example the pattern for skinfriction-line or the ’Oil dot
pattern’ need the data of 380 KB for about 2000 surface elements among which the “Oil
Dot’ is expressed as triangle. The data transferred from host computer [HITAC M-1380]
to be accessed by M-1008 consist of the number of the unit of macroscopic solid, the
number of nodes of surface elements, the cartesian coordinates of nodes, the indices for
the relation of nodes and so on. In the assist of algebraic function for polygons in the
solid model software inconsistencies between coordinate values for nodes induce no
visible disorder in images. That is, small overlap as for surfaces due to inconsistency
between the location of wing-root and the body surface is recovered automatically and a
smooth image can be produced. This is one of large conveniences in the solid modeler
tool.

In our faciliy the total number of the commands are about twenty, and parameters for
each command are usually not necessary and 5 parameters is demanded exceptionally,
e.g. for the location of viewpoint or the colors. The total elapsed time is about one
minutes from first command to last one through the manual input from keyboard. After
this, repetition of 5 or 6 commands leads to the refining of colors or viewpoint for
images.

In this M-1008 we can change the angles of viewpoint referred to the object with input
parameters from keyboard, while the size of figures or shift of windows can be varied
continuously with the ‘roller ball’ or the multiplier key on the keyboard. The number of
vertices of surface element can be chosen as arbitrary integer less than 9.

§V. RESULTS and DISCUSSION

Usual curvilinear orthogonal coordinate applied for the surface of the paraboloid is
shown in Fig. 4. The defects of line drawings in our solid model software appears here
again. The ‘Numerical Taft Visualization’ or the external velocity vectors are shown in
Figs. 5, 6 respectively for side view and bottom view. The automatic shading
processing in our graphic facility has a negative contribution to the clearness of picture in
the edge region of the body. The monochromatic photograph taken from original color
image on the display does not well illustrate the impressive scene on the color display.

The skinfriction vectors obtained by finite difference calculation are shown in the form
of ’Oil Dot Pattern’ as Fig. 7 for side view. An intersting comparison can be made
between the calculated limiting streamline and the photograph of the visualization of

Fig. 4. Surface Grid Lines in usual Curvilinear
Coordinate.
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Fig. 5. External Stream line: Side View.

Fig. 6. External Stream velocity vector: bottom view.

X/R=5

Fig. 7. Skinfriction vectors: Side View, body
length .X/R nose= 20.
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—
X/R=5

Fig. 8a. Limiting Stream Line: Top View.

Fig. 8b. Flow visualization in Water towing
tank. electrolysis method.

streamlines very near the model surface in water towing tank, respectively in Figs. 8a
and 8b. The latter visualization was worked out with color up in the electrolysis of salt
water with phenolphthalein. The similar flow pattern can be observed in these figures,
although the Reynolds number referred to body length is about 5.2x103.

The comparaison of pictures by wire flame model in Fig. 9a and present ‘solid model’
is shown in the following figures. 9b, ¢, d. The incorporation of perspective and the
optional removal of hidden lines shown in Fig. 9b improved the usefulness of our
facilities. On the other hand the effect of shading can appear in Figs. 9¢, d which are the
solid model images.

The limiting streamline on the wing-body combination is shown in Fig. 10. The lower
four streamlines near the wing-root terminate with the encounter to the separation points.
In the present results we designate a separation point as a point at " =0.1 just before the
break down of calculation. The computation has been continued so far up to x= —0.38
as shown in [5]. The reason is that a rapid increase in the width of the separated region
upper the wing is not so plausible to show the validity of boundary layer computation in
this region.

In the present case the separation first appears at X=—0.584, 6=21.6 deg. The
circumferential deviation of start of separation from centerline is about 24 degree, and
corresponding distance ahead of the wing leading edge at the root station is 0.059. It is
interesting that in this case the circumferential reverse cannot be detected before the
break down of calculation or separation. The skinfriction line near the fairing has nearly
similar direction of upper surface of wing-root which means that the separation line is
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Fig. 9a. Wire flame figure for Wing Body Com-

Fig. 9d. Solid Model with Shading.
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Fig. 10. Limiting Stream Line around Root of
Wing.

B 4 E T
Fig. 11. Pressure distribution on delta wing in
incompressible flow.

geometrically similar to the shape of wing in this region.
The pressure distribution obtained with vortex-lattice method [9,/0] is shown in Fig.
11 for subsonic delta wing with 20 deg dihedral angle at zero incidence angle.

§VI. CONCLUSIONS

We can induce the following remarks from the above examples.
1. The vectors along the three dimensional surfaces are satisfactorily illustrated with
the solid model graphics.
2. If the 3-D graphics are easily accessed by a scientist, the process or understanding
may reach the deep meaning of the solution.
3. Productivity of development of the computer program or a scheme will be increased.
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