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Summary: Two-dimensional, time-dependent computational scheme has been devised for determining
the flow development and the corresponding pressure drop in the entrance region of a circular pipe at the
Reynolds numbers based on the pipe diameter of 10, 100, 2000, and 10000. An iterative, stream
function-vorticity formulation was applied, utilizing a mesh system in which the axial grid size is nearly
proportional to the Reynolds number. The velocity field, the pressure drop, and the convective and the
viscous terms are compared with the experimental results and also with the previous analysis.
Moreover, the effects of the Reynolds number and the superposed disturbances on the transition from
laminar to turbulent flow were numerically simulated.

§1. INTRODUCTION

Since G. Hagen (1839) and J. Poiseuille (1841), the case of laminar and turbulent flow
through circular pipes has been investigated very thoroughly in the past because of its
great practical importance. Moreover, the results are important not only for pipe flow,
but also for the contribution to the extension of our fundamental knowledge of turbulent
flow in general. The origin of turbulence and the accompanying transition from laminar
to turbulent flow has never been still unsolved.

When fluid particles enter into a circular pipe from a large container, the velocity
distribution in the cross-section varies with the distance from the initial inlet. In sections
close to the inlet the velocity distribution is nearly uniform. Further downstream the
velocity distribution changes, owing to the influence of friction, until a fully developed
velocity profile is attained at a given distance, which is called the entrance length. The
dimensionless entrance length, which is denoted as Lep, is defined as the entrance length
divided by the diameter of a pipe and the Reynolds number: Lep=zep/(D*Re), where
zep is the entrance length, D is the diameter of a pipe and subscript p means ‘parabolic’.
The dimensionless entrance length Lep=zep/(D*Re) is supposed to be within the range
of 0.02875 [/], 0.058 [2], 0.072 [3], and 0.1 at most. Moreover, it has been
experimentally known to be proportional to the Reynolds number [4].

The laminar entrance region in turbulent flow is considerably shorter than that in
laminar flow. According to the measurement performed by 0. Reynolds its length is
about 20 to 30 diameters [5], 50 to 100 by H. Kirsten [6], below 17.5 to 35 by M.
Arakawa [7], and is observed below 100 by K. Oshima [8]. This entrance length is
denoted as Let in the dimensionless form: Let=zet/(D*Re), where t means ‘transition’.
When the entrance length of 100 diameters is divided by the minimum critical Reynolds
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number 2300, Lep is 0.0435.

It can be stated that the laminar flow which is formed close to the entrance of the pipe
is unstable and becomes turulent owing to very small unavoidable disturbances. The
numerical value of the critical Reynolds number at which the transition starts can be
stated to depend very strongly on the conditinons which prevail in the entrance region as
well as in the approach to it.

To sum up, the transition from laminar to turbulent flow is supposed to occur only in
the entrance region, before Lep.

In this paper, the development of the time-dependent flow of an incompressible
Newtonian fluid in the entrance region of a circular pipe is analyzed by the numerical
solution of the complete two-dimensional equations of motion.

§II. COMPUTATIONAL SCHEME

2.1 Mesh system and basic equations

Fig. 1 shows the z and r coordinates and the mesh system formed by the orthogonal
lines separated by a constant space increment Az on the z-axis and Ar on the r-axis. The
basic equations are written by the finite-discrete formulation on the discrete points
formed by the mesh system.

Because of the azimuthal symmetry of a circular pipe, it is utilized the rectangular grid
system composed of the region 0=z=z0 and 0=r=0.5, where z and r are the axial and
radial coordinates, respectively, and are made dimensionless by being divided by the
diameter of a circular pipe. The axial point i takes an integer value between 1 and 10 and
the radial point j is between 1 and JO.

The number of the mesh points becomes 10*¥J0. In order to obtain the accurate
numerical solutions, it is necessary to make the number of mesh points, 10 and JO, larger.
On the other hand, there are some severe limitations on a computer main storage size and
computational power.
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Fig. 1. Mesh System.

For the entrance region described above we consider the 2-dimensional, unsteady flow
of an incompressible Newtonian fluid with constant viscosity and density. We neglect
gravity and external forces. Consequently, the dimensionless forms of the stream
function-vorticity equation and the Poisson equation are written in the cylindrical
coordinates, Stream function-Vorticity equation:
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Poisson equation:

com D (LO), () (2)
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Table 1 gives the initial and boundary conditions, where I1=10-1 and 12=10-2. The
whole fluid particles start moving downstream with uniform velocity in a pipe at the
initial time. The no-slip boundary condition is on the wall and any vorticity does not
exist at the inlet and on the center line of a circular pipe. Moreover, the outlet condition
is given by extrapolation.

The axial and radial velocity, u and v, are calculated from the derivatives of stream
function in the general method:
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The pressure drop within the region is writtin in the Poisson form.
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And the derivative of the pressure on the wall is as follows in the normal direction by C.
E. Pearson [9],

os Re on

where S and n are the tangential and normal directions, respectvely.

Table 1. Initial and Boundary Conditions

Conditions Stream Function Vorticity

. T (9—1)\¢
Initial 5 (do—-l) 0
Boundary

P(d—1)?
Inlet '2— (Jo*]) 0
1 Y(i.do) — ¥ (1. J1)

Wall 7 R
Center 0 0
Outlet 29 (I1.J) — $(12.J) 2w(11.J) — w(12.J)
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2.2  Values of mesh system and time increment

As the Reynolds number increases, the entrance length becomes longer and we need
more axial grid points if the aspect ratio of Az to Ar is same for all Reynolds numbers.

We suppose the value of Lep is nearly constant regardless of the Reynolds number and
divide the range zep by the same axial grid number, so that the dimensionless axial grid
length is same for all Reynolds numbers. Consequently, the ratio of Az to Ar, which is
denoted as DZR, becomes proportional to the Reynolds number.

It depends very strongly on the time increment whether time-dependent computational
schemes may converge or not. When the flow field is computed time-dependently, at
least 2000 time steps are needed for each case.

The smaller the time increment is, the better the convergence of computational
numerical calculation is obtained. The time increment was derived from Equation [7].

A

1 1 1 1
4f 4+ = Y o4 2 7
(A22+Ar2>+ Az + Ar D

At =

where A is a mere coefficient for the convergence. If the results of the numerical
computation becomes divergent, A must be made smaller than the current value for the
convergence of the computation. If the scheme is in a convergent state until the steady
state is reached, A can be made larger than the current value for the computational
performance.

Table 2 gives the values of the time increment and the number of time step at which the
steady state is obtained, with respect to the Reynolds number.

As the ratio DZR increases largely with the Reynolds number, the derivatives with
respect to z decreases and become ineffective in the basic equations. However, in the
DZR range of 1 and 500, the derivatives with respect to z were meaningfully effective
owing to double precision variables of IBM VS FORTRAN of 14 hexadecimal digits.

2.3 Calculation steps

Both of the stream function and the pressure are calculated by the Gauss-Seidel
iterative method. The variable at (m+ 1) iteration is calculated by using the values of the
present iteration (m+1) which have just been computed. The number of time step n

Table 2.
Re 10 JO |Az/Ar At N (xAt)
10 100 21 1 0.00278| 2000
100 100 21 10 |0.02621| 8000
2000 150 21 100 |0.04762| 8000
10000 150 21 500 [0.09901| 20000
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takes an integer between 1 (initial time) and N (steady state) in Table 2.
The iterative method of the numerical solution is summarized as follows:

o= f(4") @®)
o"'=0"+At f,(P", 0") €)
V=00 Tt oY) (10)
"= fi(Ih (11)
o™+ —a" | <e (12)

1. Assume initial values for s throughout the interior of the region and calculate
initial values of w by using Equation (8).

2. Calculate new real values of w at (n+1) time step by using Equation. (9).

3. Calculate provisional values of ¥ at (n+1) time step by using the Gauss-Seidel
method and Equation (10).

4. Calculate provisional values of & from provisional values of { by using Equation
(11).

5. Compare provisional values of & with real values of w at (n+1) time step for the
whole interior of the region and confirm provisional @ to see if the convergent criteria are
satisfied, by using Equation (12).

6. Repeat steps 3, 4, and 5 until the convergent criteria are satisfied.

7. Calculate velocities from the stream function at (n+1) time step by Egs. (3) and
(4).

8. Calculate pressure drop at (n+ 1) time step by using the Gauss-Seidel method and
Equation (5), within the interior of the region.

9. Calculate pressure drop on the wall by using Equation (6).

10. Repeat for next time step.

§III. NUMERICAL SIMULATION

3.1 Aspect ratio of space increments Az/Ar (DZR)

In this study, the values of the space increments in Table 2 are used. According to the
Reynolds number the ratios are selected from 1 to 500. In order to confirm the accuracy
of the computational results, the velocity distributions at Reynolds number of 2000 are
calculated and compared with one another in three cases of DZR=10, 50, and 100. As
the axial grid number 10 remains same, the computed region, which the computational
mesh system covers, decreases with smaller DZR. Therefore, the maximum dimension-
less computed length is 0.018 in the case of DZR=10. In Figs. 2-4 @ and a show the
results at z*=0.01 and 0.05, respectively, where z* is the dimensionless distance
(z*=2z/(D*Re)) from the inlet.

They agree very well with one another.
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3.2 Velocity profile and pressure drop

The results are presented for the numerical solution of the comlete, time-dependent
equations of motion for four different Reynolds numbers 10, 100, 2000, and 10000. If
the number of time step reaches to the value N in Table 2, the flow field can be assumed
to be in a steady state because variables at N time step are almost precisely the same as
those at (N+1) time step. Figs. 5-8 show the results for the velocity distribution in a
steady state. At Reynolds number of 10, in the central 0<r<0.4 and z*<0.05 region,
the axial dimensionless velocities are fairly smaller than those of Reynolds numbers 100,
2000, and 10000. In other words the flow field at Reynolds number 10 develops more
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Fig. 5. Velocity Distribution, Re=10, steady state.

slowly than at Reynolds numbers above 100 in the entrance region. For instance, in the
case of z¥=0.01 and r=0, the axial dimensionless velocity u/u0 is 1.3032 at Re=10;
1.6289 at Re=100, 1.6191 at Re=2000 and 1.6191 at Re=10000. In the case of z*=
0.05 and r=0, u/u0 is 1.9302 at Re=10; 1.9735 at Re=100, 1.9732 at Re=2000 and
1.9733 at Re=10000. However, the flow field in the entrance region develolps
completely fully near z*=0.1 and far downstream, that is, the velocity distribution after
z*=0.1 is same for all the Reynolds numbers. At the center line r=0, u/u0 is 1.9977
(99.89% of fully developed value) at Re=10; 1.9988 (99.94%) at Re=100, 1.9929

This document is provided by JAXA.



78 H. Kanda

m%ﬂ.——k“ r=0
ﬁg 0t r=0.1
50 /‘/ ® Vrentras

1.8
Re 250 X Koyari
S0 | —1 r=0.2

%50

/”‘:/‘W\:

r=0.45

0.00 0.0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 ﬂ.[H 0.12
Z*
Fig. 6. Velocity Distribution, Re=100, steady state.
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Fig. 7. Velocity Distribution, Re=2000, steady state.

(99.65%) at Re=2000 and 1.9846 (99.23%) at Re=10000. Figs. 9-12 represent the
results for the numerical simulation of the pressure drop on the wall in the entrance
region. At Reynolds number 10 there are strong vorticities on the wall just after the
inlet, and fairly large reverse pressure drop appears. At Reynolds numbers above 100,
the pressure drop is uniform in cross section and increases in the almost same degree
regardless of the Reynolds number. At Reynolds numbers of 10 and 100, the flow field
develops almost fully over 100*A¢ time step since the trends of the computational results
of the pressure drop are nearly same in Figs. 9—10.
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Fig. 9. Pressure Drop, Re=10, on wall.

3.3 Comparison with experimental data and prior analyses

So far various approximate analytical solutions have been devised in order to provide
information relating to the flow development and the pressure drop in a circular pipe and
a lot of experiments have been made too. Without experimental analyses there have
been few analyses for higher Reynolds numbers more than 1000. Therefore, we
compare with the results at Reynolds number of 100.

Comparison of velocity: In Fig. 6 @ and X are the results of the numerical solution on
the center line by J. S. Vrentas [/0] and Y. Koyari [//], respectively. J. S. Vrentas
calculated in the range of Reynolds numbers based on the pipe diameter of 0, 1, 50, 150,
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and 250. Y. Koyari calculated at Reynolds number of 60. The results show that the axial
velocity distributions and the velocity development are nearly same for Reynolds
numbers more than 50. Table 3 shows the some results of the numerical solution.
According to Table 3 we can say in general that the dimensionless entrance length of
98% of fully developed value is about 0.045 and that of 99% is nearly 0.055 for
Reynolds numbers above 50. Moreover, that of 100% may well be determined to be 0.1.

Comparison of pressure drop: In the entrance region of a pipe, it is necessary to have
a larger pressure drop per unit length than is required in te fully developed flow, since a
part of this drop is utilized for accelerating the central core and consequently for
increasing the kinetic energy of the flow. The excess pressure drop is the function of
both of the entrance distance from the inlet and the Reynolds number.

Fig. 10 shows the comparison of the experimental data by F. Kreith [/2] and the
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Table 3. Entrance length

percent of fully
Re developed value Bibliography
98% 99%
1 0.33 Vrentas
10 0.0583 0.0681 *Kanda
50 0.047 Vrentas
60 0.045 Koyari
100 0.0437 0.0544 *Kanda
150 0.048 Vrentas
250 0.0535 Vrentas
2000 0.0440 0.0546 *Kanda
10000 0.0438 0.0555 *Kanda
0.058 Langhaar

results of the numerical simulation at Reynolds number of 100. They agree well with
one another in a steady state, time=8000*A¢. The numbers in Fig. 10 are Reynolds
numbers of the experimental data.

3.4 Axial convective and viscous terms

The axial convective and viscous terms of two-dimensional Navier-Stokes equations
are expressed in the cylindrical coordinates as follows,
Axial convective term:

LI (13)

Axial viscous term:
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The flow characteristics in the entrance region can be seen clearly through the Figs.
13—15, which are the results of the numerical simulation at Reynolds number of 10000.
The same pattern of Fig. 13 is seen for Reynolds numbers above 10. The axial
convective term near the inlet is fairly larger than that of downstream, specially in
central core 0<r<<0.3. Subscripts (1)-(6) are given in Figs. 14 and 15.

(1) The axial convective terms near the wall are nearly zero after z*>0.01. The flow
field near the wall develops fully within short distance from the inlet. This means that
the pressure drop is the same as the value of the viscous term.

(2) and (3) The axial viscous term near the wall at z*=0.01 is about —0.004 and the
absolute value of it is almost the same as that of the convective term in the central core.

(4) The axial viscous terms near the edge, z*<0.01, are about zero in the central core
stream. In other words, since the radial pressure drop is uniform in the cross section, the
acceleration force of fluid particles in the central core is the same as the value of the
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viscous term near the wall. The condition for the boundary-layer equations is satisfied
only in this short entrance region, z*<0.01.

(5) The value of the axial convective term decreases with the distance from the inlet
and becomes equal to zero in every cross-section after z*=0.1. Zero means that the flow
field is in a fuly developed state.

(6) The absolute value of the axial viscous term in the central core increases with the
distance from the inlet and becomes equal to a constant, whic is the same as the value of
the pressure drop.

Table 4 is the summary mentioned above.

3.5 Effect of disturbances upon velocty distribution

There can be assumed many kinds of disturbances which exercise a marked effect
upon the transion from laminar to turbulent flow. Here, we simulated numerically a
flow field in a case of 1.2 times singular stream function given only at z=(0*Az, 1*Az)
and r=0.25. We follow it whether the singularity of the velocity distribution will be
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Fig. 15. Axial Viscous Term, Re=10000.

Table 4. Results (3) Values of Axial Convective and
Viscous Terms

before Lep after Lep

near Wall | Central Core| near Wall |Central Core
Axial uniform
Convective 0 Ap 0
Term @ Az @ @
Axial uniform uniform
Viscous excepAtmeet 0 Ap
Term Az ® @ Az ®
Velocity

uniform parabolic

Profile
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amplified or will be damped as the time step develops. Figs. 16-18 are the results of the
numerical simulation at Re=2000; Figs. 19-21 are the results at Re=10000. The
singularity of the velocity distribution seems to be damped smoothly at Re=2000. The
singularity at Re=10000 seems to be damped but a strong deformation of the velocity
distribution at z=2*Az still remains.

3.6 Comparison with the N-S equations in a steady state

For steady two-dimensional flow, the velocity components in the tangential and radial
directions are zero; the pressure is constant in every cross-section. The Navier-Stokes
equations simplify to only one equation in the general dimensionless form:

G2 (du, 2 du) 15
dz**  Re dr2+r dr (13)
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Fig. 16. Velocity Distribution with Disturbances,
Re=2000, T=10*At.
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where dz**=dz/D.
When the axial coordinate is made dimensionless by being divided by the Reynolds
number, the equation is written as follows:

dp (dzu 1 du)
dz* dr2+ r dr (16)

where dz* =dz/(D-Re)=dz**/Re.

The velocity profile is the function of both of the radius and pressure drop, regardless
of the Reynolds number.

Figs. 6-8 agree very well with one another and verify numerically that the develop-
ment of the flow field of a circular pipe is same in the dimensionless coordinate
z*=z/(D*Re) for Reynolds number more than 100.

§IV. CoNCLUSION

An entrance model was presented in order to simulate numerically the flow character-
istics such as velocity distribution, pressure drop, convective and viscous terms for four
different Reynolds number of 10, 100, 2000, and 10000. The following results are
obtained.

1) The aspect ratio of axial to radial space increments Az/Ar, DZR, can be provided
proportional to the Reynolds number below 10000 when variables have double precision
in FORTRAN. For instance, the ratio is 1 at Re= 10; 10 at Re=100, 100 at Re=2000
and 500 at 10000.

The results of the numerical computation in three cases of DZR = 10, 50 and 100 are
same one another for Reynolds number 2000.

2) Two-dimensional, time-dependent numerical solutions of the full Navier-Stokes
equations exist smoothly even at more than the minimum critical Reynolds number under
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the following conditions; (a) No disturbance is given. (b) Two 1.2 singular points of
stream function exist constantly at z=(0*Az, 1*Az) and r=0.25.

3) The dimensionless velocity distributions and pressure drops in the entrance region
are nearly same for Reynolds numbers more than 100.

4) The dimensionless entrance length where the velocity distribution develops fully
parabolic is 0.1 for Reynolds numbers more than 10.

The dimensionless entrance length for 98% and 99% velocity development are 0.045
and 0.055, respectively, for Reunolds number above 50.

5) The pressure drop is nearly same for Reynolds numbers above 100.

6) The condition which is satisfied for the boundary-layer theory is confirmed in the
entrance region of z*<0.01 from the results of the calculation of the axial convective and
viscous terms.
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