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Summary: Supersonic jet flow-fields from a two-dimensional sonic nozzle are computed using the
piecewise linear method. The sonic radius for a two-dimensional source flow is estimated using the
numerical results. It is shown that the flow properties on the jet axis can be approximated by the
two-dimensional source flow at large distances from the nozzle. The distance of the normal shock from
the nozzle increases with the stagnation to ambient pressure ratio, but is somewhat larger than
experiments.

§1. INTRODUCTION

Supersonic jets from two-dimensional sonic nozzles are applicable in many engineer-
ing purposes, such as mass separation and producing high energy neutral beams. In the
present paper numerical simulations are made for two-dimensional freejets of an
inviscid, non-heatconducting, compressible gas using the piecewise linear method
(PLM) [/], which has been shown to be an appropriate scheme for flows accompanying
with shocks [2]. The results are compared with a two-dimensional source flow
expansion and with the existing experimental data [3-5].

§II. MEeTHOD OF CALCULATION

The basic equations of continuity, momentum and energy for two-dimensional,
non-heatconducting, non-stationary, inviscid, compressible gas flows, written in the
vector form, are given as

T ®
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and x, y, ¢, p, p, e, u and v denote the two spatial coordinates (x=0 at the nozzle exit and
y=0 at the center of the nozzle), time, static pressure, density, total energy per unit
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mass, x- and y-components of flow velocity, respectively. The total energy ,e, is the
sum of both the internal and the kinetic energies, and is expressed for a perfect gas as
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where 7y is the ratio of specific heats.

In the present study, the governing equations, eq. (1), are solved by using the
time-splitting method. Namely, the basic equations are approximated by the following
two sets of equations and the solutions at each time step are obtained by solving them
successively.
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The three equations of the first (second) set of equations in eq. (4) form the basic
equations of one-dimensional flow in the x (y) direction. The remaining equation of each
set is the transport equation of the momentum in the transverse direction. A one-dimen-
sional Eulerian version of the PLM is used to solve the former, and then the latter is
solved with a time-forward space-centered finite difference scheme. The time step is
forwarded until a steady solution is obtained under appropriate boundary conditions. The
details of the scheme for the PLM are given in the literatures [/, 2, 6- 8].

Figure 1 shows the grid points used in the present calculations. NX and NY equally
spaced grid points are used in the both directions. Up to 240 for NX and 180 for NY,
were taken depending on the value of the stagnation to the ambient pressure ratio, po/p-
and four grid points were assigned to the width of the nozzle exit. Sonic conditions were
applied to the nozzle exit while mirror reflections were assumed on the solid wall of the
left boundary. At the circumference, namely at the top of Fig. 1, the ambient conditions
(p=p=, p=p=, u=v=0) were used as the boundary conditions. The conditions of
zero-gradients of flow parameters, flow-out conditions, were used at the right-hand side
of the calculation region. Sonic conditions were distributed initially to the shaded area
in Fig. 1. The ambient conditions were given to the rest of the grid points as the initial
conditions. The value of time increment was determined at each time step considering
the CFL stability condition.
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Fig. 1. Calculation region and initial and
boundary conditions.
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§III. NUMERICAL RESULTS

Calculation was made for a gas with y=1.4 and for the pressure ratios, 10, 20, 30, 40
and 50. The stagnation temperature, To, and the ambient gas temperature, T-, were
assumed to be the same. Steady solutions were obtained for the flow-fields upstream of
the normal shock within time steps of 800 to 2000 depending on the values of the
pressure ratio.

Isobars, velocity vectors in the flow fields and profiles of the density and velocity
along the jet axis are shown in Fig. 2 for po/p==50. The location of the normal shock is
seen as a sharp jump in the figure and neither undershoot nor overshoot is observed
across it.

§IV. CoOMPARISON WITH A Two-DIMENSIONAL SOURCE FLoW
AND WITH EXPERIMENTS

For a two-dimensional source flow, the continuity equation can be written as
our = p*u*r* &)

where r is the radial distance from the source and the asterisk denotes the sonic
condition. Using the isentropic relations, density reduced by its source value, po, can be

written as
1/(r-1 1/2 -172 -1
Do r+1 r+1 T, D
15.0 ra) 0.7 e A
0.6 1
7.5 0.5
0.4 )
0.0 o
& 0-3 i
7.5 0.2 t i
5 OE=3 0.1 F b
TLo0E-3
_15'0 O_O A S S S S T S S T T W)
0.0 10.0 20.0 390 40.0 50.0 60.C 0.0 10.0 20.0 30,0 40.0 50.0 60.0

PRESSURE

15.0

7.5

Ra.0

N

-7.5

-15, Qe ' : 0.0 Lo v v v e
0.0 10.0 20.0 30.0 40.0 50.0 60.0 0.0 10.0 20.0 30,0 40.0 S0.0 60.0
VELGCITY VECTOR X/0

Fig. 2. Numerical results for po/p==50: (a) Isobars, (b) Velocity vectors, (c) Density profile on
jet axis, (d) Velocity profile on jet axis.
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Here, in order to express the density as a function of the distance x measured by the
width, D, of the nozzle, we have made that r=x and r*=BD. Using the calculated
values of density and temperature on the jet axis one can calculate the value of 8, which
is shown in Fig. 3 as a function of x/D. It can be seen for large values of x/D (>7.5) it
converges to a value, which is close to 0.5. Therefore, for such large x/D the flow
properties of the two-dimensional freejet on axis can be approximated well by a
two-dimensional source flow with a sonic radius of about a half of the nozzle width.

The value of 8 can be deduced also from the density distribution in y direction [9]. The
radial density distribution in an axisymmetric freejet can be approximated well by the
Boynton’s formula [/0],

M:cosz/<r~l>(_”_ j—) 6’m=£(«/E— ) @
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where p (r, 0) is the density at r and angle # measured from the jet axis. This has been
confirmed using the numerical results of the axisymmetric freejet using the same
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Fig. 3. Value of B as a function of x/D.
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Fig. 4. Comparison of calculated density distributions in y
direction with empirical formula, eq. [8].
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numerical method as the present one.
From a simple consideration the exponent of cosine in eq. [7] will be 1 /(y-1) for the
two-dimensional case. Then the density distribution in y direction can be written as

oY) _ cosd cosw-n(i L) ®)
P(xs 0) 2 0"‘

Eq. [8] is compared with the numerical results in Fig. 4. Again for large values of x/D
they agree very well. The integrated flow rate with respect to 6 from 0 to 6 must be
equal to that for a nozzle of width D. Then using eq. [5], B can be written as

oo e Y]

For y=1.4 the value of B becomes 0.481, which is close to the value previously
obtained.

The Mach number, M, on the jet axis can be approximated from eq. [6] using the
relation, T/To=[1+(y—1)M?/2]7", as
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which is similar to the expression for the axisymmetric jet [//], in which the dependence
of x/D is (x/D)’"'. Using the value 8=0.5 the Mach number distribution can be
approximated well with eq. [/0] as shown in Fig. 5.

The location of the normal shock on the axis measured with D, xu/D’ can be estimated
from eq. [/0] using the normal shock relation as

MACH NUMBER

"0.0 10.0 20.0 30.0 40.0
X/D

Fig. 5. Mach number change along jet axis.
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Fig. 6. Reduced normal shock location as a function of

pressure ratio: Comparison of calculation with ex-
periments.
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where C is a constant including the values of 8 and y. For 8=0.5, C=0.75, while the
numerical results give C=0.59.

Some experiments have been made for freejets from slit nozzles with finite aspect
ratios, L/D, (L being the length of the slit). Beylich [3] measured the normal shock
position for slits with small aspect ratios and have shown that for large pressure ratios, it
increases with the square root of the pressure ratio, same as for the axisymmetric jet, but
expected that for smaller values of the pressure ratio it increases linearly. He expected
C=A?, where A is the proportionality constant in the expression of the Mach disk
location for the axisymmetric jet [//]. Dupeyrat [4] used large aspect-ratio slits at much
larger pressure ratios, and showed that almost linear dependence of xi on the pressure
ratio, but gave a smaller value of C. We recently measured xi for slits with several
different aspect ratios at smaller pressure ratios, where the Beylich’s experiment has not
covered [5], using the laser induced fluorescence method [/2]. As is shown in Fig. 6, xu
increases linearly with the pressure ratio until a certain value, depending on the aspect
ratio and then seems to follow the same pressure dependence as for the axisymmetric jet.
This experimental result gives C=0.45. Since A=0.67 [11], then this value of C agrees
well with the value expected by Beylich. But the present numerical result gives about
1.3 times larger than these values. Two possible reasons for this are 1) the number of
grid points for the nozzle exit was four in the present calculation and this may not be
enough to express the width of the nozzle correctly, and 2) three dimensionality in the
shapes of the jets issuing from a slit with a finite aspect ratio may shorten the distance at
which the normal shock occurs. Further numerical and experimental studies are now in
progress.

This document is provided by JAXA.



Numerical Simulation of Two-Dimensional Freejet Flow-Fields 95

§V. CONCLUSIONS

Supersonic jet flow-fields from a two-dimensional sonic nozzle are computed using
the piecewise linear method. The sonic radius for the two-dimensional source flow was
estimated using the numerical results. The flow properties on the jet axis are
approximated well by the two-dimensional source flow with a sonic orifice of about a
half of the nozzle width at large distances from the nozzle (x/D>7.5). Dependence of
the location of the normal shock on the pressure ratio is linear but somewhat larger than
experiments.
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