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1. INTRODUCTION

Owing to startling progress of recent computers and numerical analysis methods,
three-dimensional flows about bodies have been solved without difficulty. Until the
present, various difference schemes have been developed for solving the Euler
equations, and the recent remarkable progress in numerical technique is the
development of TVD schemes proposed by Yee & Harten [1] and by Chakravarthy &
Osher [2]. Numerical experiments in one dimensional flow problems show these
schemes have the high resolution capabilities for shock waves and give satisfactory
solutions in even rough grids. However, their numerical experiments of two-
dimensional flows have been successfully carried out in only fine grids for a few cases.
The availabilities of schemes for multi-dimensional problems in general coordinates,
where number of grid points is not still enough and the change of metrics in coordinate
direction is large, can be estimated only through practical calculations.

In the present study, first we three-dimensionalize both the TVD schemes and
modify the Yee-Harten TVD scheme with regard to treatment of metrics and the
Chakravarthy-Osher TVD scheme according to their similar suggestion. Next we
solve the Euler equations for three-dimensional flows about the ONERA-M6 wing by
using these TVD schemes and the conventional Beam-Warming scheme [3], and
compare the solutions by the three schemes with the experimental data. As a result,
our modification are proved to be reasonable and it is indicated that the solutions by
both the original TVD schemes are smeared with the unconsidered differentials of
metrics. Moreover it is made sure through practical calculations that the smear due to
disagreement of accuracy between metrics and fluxes is removed by maintaining
freestream [11]. Further the characteristic feature of the TVD schemes in general
three-dimensional coordinate systems becomes clearly evident through computations
for two typical patterns of flowfield.

2. GOVERNING EQUATIONS

The three-dimensional Euler equations in Cartesian coordinates
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0,Q+0.E+0,F+3,G=0,

are transformed into the conservation law in general curvilinear coordinates
0.0 +3.E+3,F+5,6=0,

with a transformation of variables

t=t, §=E&(x,y,2,1), p=n5(x, z1), E=Cl(x,y,2,1),

o/,

=&/ NQ+ E/E+(§,/N)F+(£,/))G,
=0/ )@+ (ol NE+(9,/)F+(./1)G,
=€/ NQ+C/NE+(C,/IF+(C./T)G,

where

Q T M 1

and J is the Jacobian of transformation.

Here we assert that E, F, G are not the function of only O but the function of Q and
metrics, although E=E(Q), F=F(Q), G=G(Q); for example, the conventional
notation E=E(Q) is wrong, and the notation by Chakravarthy et al. [2]

E: E(Qa n,n,;n, n,)ZE(Q, N)’
where nzzet/[’ ”x=$z/-], ny=Ey/J’ 7)z=$z/Ja

is right. This will be refered to in the later discussion.
Details needed to apply the above mentioned schemes are fully described in [4] by
Pulliam et al.; for example, the Jacobian matrices

A=3EaQ, B=aFla0, C=06/a0,
and the similarity transformation for the diagnonalization,
A=R.diag(@"R;', B=R,diag(@™R;', C=R, diag(a™R;"

and so on.

3. DIFFERENCE SCHEMES

a) The Beam-Warming Scheme
Here, the Beam-Warming scheme diagonalized by Pulliam & Steger [5] in ADI
algorithm is used. This algorithm has the form

RI+h3 AN +ho,A,)P[I+hé AR 40" = —h[o. E+3,F 43,6,

where N=R5—1Rﬂ, P—-:R;XR(, and A5=diag(a?), etc..
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Numerical dissipation terms are added implicitly to the left hand side of this form as
D,,=edtJ'WMHJ, Dy=------ , Dy=----- ,
and explicitly to the right hand side as
D, =e. At 7V A); + 7 4y, + T Ay

On the space, the flux of right hand side is approximated by the difference of either
second- or fourth-order accuracy and the left hand side by the second-order one.

b) The Yee-Harten TVD Scheme and its modified form

As the TVD schemes applied to three-dimensional problems would spend too much
computational time to be solved with original nonlinear form, two linearized forms
(LCI, LNI) were presented for computational efficiency and the LCI method had
better convergence rate in two-dimensional case according to Yee & Harten [6]. Thus
the LCI is adopted here.

An ADI form of the three-dimensionalized TVD-LCI scheme, which is the
straightforward extention of the two-dimensional Yee-Harten scheme, can be
expressed as

[I+4+20H:, ), —A0H:_ )., )D”
= —{AE o — Bty sl HAEE o= F2 o]
SR (CHUIRPE LA )
[[+26H ;,\pp—A0H? ,_,, JD'=D",
[I+2‘0H§,j,k+,,2——2‘0H§'j,k_,/2]D=D’.

The numerical flux functions, which are important on this scheme, are given as
follows. For example, E, is

Eivipra=(E, i+ Eior it (ReD), 12, ),
where the elements of the ®.denoted by ¢™ are
G, =2 (@? M@ T + 8T ) — (@l e+ 1T )l 1o
with the adjustment quantity for high accuracy g defined by
gr=minmod [a} s, al ]
Further, Roe’s average [7] and artificial compression term [1] are used in order to

make solutions clearer. The left hand side operator, which is the same as that of the
Beam-Warming scheme except for the numerical viscosity, is also diagonalized for the
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computational cost of steady state applications.

In Yee-Harten scheme o+, is defined by R"(Q,,,— 0,), and it was known that this
numerical flux didn’t give reasonable solutions in our numerical experiment (see the
latter section of this paper). Hence we have modified the numerical flux as

8= (T2 (ar)gr + &7 ) —vlar +1Mar),  (k=i+1/2),

where «af,, is defined by R(Q,.,—Q,). This modification comes from the
consideration that (5E/5Q)aQ/a¢ is the better approximation of §E/a& than (FE/
00)aQ/a¢ as the flux £ is the contravariant vector density of +1 wight [8].

¢) The Chakravarthy-Osher TVD Scheme and its modified form

We straightforwardly extend the highly accurate one-dimensional TVD scheme [2]
proposed by Chakravarthy & Osher for three-dimentional flow problems. The left
hand side operator used for solving this scheme implicitly is the same as that of the
Yee-Harten scheme. The numerical flux of the scheme in the right hand side is written
as

femhe— (L= )4{dF 7, ) — (1 + A )+ (L + DT 2+ (L — @yaldf 21},

(e=i+172).
where h is the first-order accurate flux;
hivip=Q2)(fr o1+ ) —=Q2Ndf 11— df 71010)-
The definition of df* is
where dfii+1/2=Ri+1/20zft+l/2a
aﬁilﬂ:aﬁtl/zaﬁl/zs
with ai+l/2:Ri‘+11/2(in+l_éi)’ amiz(amilaml)/Z,
and flux-limited values of df are defined by
dfi—+3/2 = Ri+3/20i_+3/23 0;+3/2= miand [Gi—+3/2, [901;_+ 1/2],
df;+l/2: Ri+1/20i—+1/2, 0{+1/z=minmod [G[H/Z, ﬂa;+3/2],
dfi++1/2:: Ri+l/2oi++l/2’ 0i++1/2:minm0d [0':; 1/25 ,80':_1/2],
df =R, _107 ), oi_yz=minmod [}, Ba;, ],

with “compression” parameter . Note that ¢=1/3 corresponds to the third-order
accurate flux, and we use it in this paper.
The above are the straightforward extension of the first approach in [2], where the
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Three-Dimensional Euler Solutions 35

metrics with the same subscript as the term under consideration are used. Their
second approach descrived as the possibility is that all terms in the numerical flux fivin
are evaluated by using the metrics N, >, but this would be quite time consuming as
they state.

As the first approach did not give good solutions, we first modified this scheme so
that a;,, ,, is redefined by R™'(¢;4,—¢;) and instead the terms of df, df and df are
multiplied by (1/J); 1,2, in the same way as the modification of Yee & Harten's TVD
scheme. But this didn’t still achieve improvement of solutions, so we further modified
it as follows, in consideration of their second possibility; @”*, R and R, as well as
metrics, should be evaluated at the point where the numerical flux is calculated,
whatever be the value of the subscript for the term under consideration. This modified
approach is rather economical than their first version.

4. RESULTS AND DISCUSSIONS

1) Conditions of Numerical Experiments

Treatments of the boundary condition are similar to those of Pulliam & Steger [5].
To improve the convergence rate we also use the local time stepping 4t = 4t,,,/(1 +J'7?)
which is proposed in [5]. The numerical computation is carried out for the
ONERA-M6 wing [9]. The computational conditions are as follows. Grid used in our
numerical experiment is the C-H type grid generated by the conbination of conformal
mappings and shearing transformations [10]. Coarse (89X17X 16) and fine
(191x33x24) grids are used. Figure 1 shows the grid distribution around the wing.
Notive that even the fine grid is still rough comparing with the figure of grid that was
used by Yee & Harten in two-dimensional case [6]. Two typical flow problems are
solved; Case 1 (M., =0.923, «=0°) where a strong shock wave appears remarkably
and Case 2 (M. =0.84, «=3.06°) where a triple shock wave (weak and strong shock
waves and their union) exists.
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Fig. 1. Grid view around ONERA-M6 wing.
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g;c;;:zy second-order second-order fourth-order fourth-order

accuracy second-order fourth-order second-order fourth-order
of metric

Fig. 2. Numerical experiments on accuracy of metrics (Beam-Warming scheme, M. =0.84,
a=3.06°). Isobaric contours on wing surface.

2) Numerical Experiments on the Accuracy of Metrics

With metrics of both the second- and fourth-order accuracy on the coarse grid, Case
1 is calculated by each scheme.
a) The Beam-Warming Scheme

The two kinds of difference approximations, the second- and fourth-order accuracy,
are used for the divergence of flux. Therefore there are four cases made by the
combination of approximate accuracy for the metrics and divergence of flux;

Case A: second-order divergence of flux and second-order metrics

Case B: second-order divergence of flux and fourth-order metrics

Case C: fourth-order divergence of flux and second-order metrics

Case D: fourth-order divergence of flux and fourth-order metrics
The isobaric contours on the upper and lower wing surfaces are displayed in Fig. 2.
Case A and D (with the same accuracy on the metrics and divergence of flux) have
solutions in agreement with each other, except for small discrepancy on the behavior
of numerical oscillations in the just upstream portion of remarkable strong shock
waves. In the solution for Case B, the weak shock wave becomes weaker and the
strong one stronger and the latter moves downstream. On the contrary, in the solution
for Case C the weak shock wave grows much stronger and the strong one vanishes.
The results for Case A and D of these four are most similar to the experimental data.

Now, modification for the difference of metrics is introduced by using the governing
equations, where the freestream fluxes are subtracted from the original one [11]

3,0 +0.(E —E)+a,(F —F.)+3G—G.)=0,
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These modified solutions corresponding to Case A~D are denoted by Case A'~D’
respectively. They almost agree. Especially when the oscillations by the strong shock
waves are focused, one can find that Case A’ and B’ are closely similar to Case A, and
Case C’ and D' to Case D; that is, the behavior of oscillations depends on the order of
the accuracy of difference approximations for the divergence of flux.

b) The Modified Yee-Harten TVD Scheme

The accuracy of the flux in this scheme corresponds to the second-order. It presents
the same behavior as the Beam-Warming scheme with the second-order divergence of
flux with regard to the accuracy of metrics and the improvement of solutions is also
achieved by maintaining freestream.

c) The Modified Chakravarthy-Osher TVD Scheme

The accuracy of the flux in this scheme is the third-order. The behavior with regard
to the accuracy of metrics and the maintenance of freestream is also same as that of
the Beam-Warming scheme with the second-order divergence of flux.

From the above, it is known that there is little difference between the solutions of
the second-order and fourth-order accurate divergence of the Beam-Warming
scheme, and here rises the requirement that the accuracy of divergence and metrics
should agree with each other. So in the following, for the Beam-Warming scheme the
fourth-order accuate divergence and the same order accurate metrics are used and for
the TVD schemes by Yee & Harten and Chakravarthy & Osher the second-order
metrics are used, together with the maintenance of freestream.

3) Difference between Original and Modified TVD Schemes

As both the original TVD schemes by Yee & Harten and Chakravarthy & Osher
did not give good solutions in Case 2, we have modified these schemes as was
descrived in the previous section. The differences of solutions in Case 2 on the fine
grid between the original and modified Yee-Harten schemes and between the original
and modified Chakravarthy-Osher schemes are clearly shown in Fig. 3 and Fig. 4
respectively. In the solutions by both the original TVD schemes the triple shock waves
observed in experiments do not appear, but instead only the strong shock waves
emerge, while the modified TVD schemes capture the triple shock waves clearly. In
addition, in Case 1 where a remarkable shock wave is observed in the experiments,
the original and modified schemes give corresponding solutions with each other.

The reason of the fact that both the original TVD schemes capture the strong shock
waves but miss the weak shock waves, we consider, comes from that the relation
oEJoe = (0E/30)aQ/a¢ etc. is wrong. This relation does not contain the differences of
metrics in £, and more precise expression must be

aEjoe = (3E/6Q)0Q/0¢ +(3E/IN)ON/oE,

where N denotes certain metric, since E=E(Q, N) as was previously mentioned.
Probably the second term not estimated in the schemes causes the numerical error
where the variations of metrics are large, and this is amplified because of some
interpolations—usual Roe’s average—when eigenvalues at midpoints are calculated.
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Comparison between original and modified Yee-Harten schemes

(M.=0.84, @=3.06°, fine grid). Isobaric contours on upper wing surface and Cp

distributions.
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Fig. 4. Comparison between original and modified Chakravarthy-Osher schemes
(M,=0.84, @=3.06°, fine grid). Isobaric contours on upper wing surface and Cp
distributions.

4) Comparison of Schemes

Here three kinds of schemes, the Beam-Warming scheme, the modified Yee-
Harten TVD scheme and the modified Chakravarthy-Osher TVD scheme, are chosen
as objects of comparison.
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Fig. 5. Comparison among schemes (M.=0.923, a=0.0°, coarse grid).
(a) Isobaric contours on wing surface.
(b) Cp distributions on wing surface.

Case 1. In this case it is known a strong shock wave appears remarkably. Figure 5
and Fig. 6 show the Cp distributions by each scheme on the coarse and fine grids
respectively. It is remarkable the solutions by both the TVD schemes coincide very
well with each other. It is clearly observed that the solution by the Beam-Warming
scheme has the numerical oscillations in the upstream and downstream of the shock
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Fig. 6. Comparison among schemes (M.=0.923, a=0.0°, fine grid).
(a) Isobaric contours on wing surface.
(b) Cp distributions on wing surface.

wave and those by the TVD schemes, on the other hand, have very few oscillations.
On the coarse grid, the shock wave by the Beam-Warming scheme is located more
upstream than those by the TVD schemes. On the fine grid, the shock wave by each
scheme becomes stronger and clearer than that on the coarse grid, it moves
downstream, the location of shock waves all agree with each other, and also the
expansion around the leading edge becomes clearer. As to the leading edge expansion
the modified Yee-Harten TVD scheme captures it most clearly, the modified
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Fig. 7. Comparison among schemes (M,=0.84, @=3.06°, coarse grid).
(a) Isobaric contours on wing surface.
(b) Cp distributions on wing surface.

Chakravarthy—Osher TVD scheme secondly. Although solutions on the coarser grid
show better agreement with experimental data [10] which contain viscous effect,
solutions on the finer grid must be closer to the true inviscid solution of Euler
equations.

We may say that the solutions by TVD schemes are better than that by
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Fig. 8. Comparison among schemes (M. =0.84, &=3.06°, fine grid).
(a) Isobaric contours on wing surface.
(b) Cp distributions on wing surface.

Beam-Warming scheme in this case.

Case 2.. In this case it is well known that a triple shock wave exists, and the
characteristic features of the schemes become more clearly evident than in Case 1.
Figure 7 and Fig. 8 show the Cp distributions by each scheme on the coarse and fine
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grids respectively. As was expected, the weak and strong shock waves and leading
edge expansion by each scheme become clearer on the finer grid. The solutions by
both TVD schemes almost agree, except for the strength of leading edge expansion
and weak shock waves and the location of united shock waves of weak and strong
shocks.

As to the strong shock wave (see results on semi-span locations of 20%, 44%, and
65%), its behavior is almost same as in Case 1, except that its location is not so much
affectd by the fineness of grid. The Beam-Warming scheme produces oscillations near
the strong shock wave but the modified TVD schemes very few ones. About the
fineness of grid, the strong shock wave by the Beam-Warming scheme on the coarse
grid is a little front of that on the fine grid, while the locations of those by the TVD
schemes are almost same on both the coarse and fine grids.

As to the leading edge expansion and weak shock wave (see results on semi-span
locations of 44% and 65%), the modified TVD schemes capture its tendency in
experiments [9] much better than the Beam-Warming scheme. Both the TVD
schemes capture the leading edge expansion more excessively than the experiments
and the weak shock wave just at the same position as experiments, while the
Beam-Warming scheme captures the former less sufficiently and the latter more
downstream than the experiments. The ability of capturing the former by each scheme
is the same order as in Case 1.

As to the united shock waves (see results on semi-span location of 96%), on the fine
grid their locations lie more upstream and are nearer to the experiments than on the
coarse grid, contrary to strong shock waves in Case 1. The reason would be that on the
finer grid the forward weak shock waves become stronger and clearer, and this cause
the united location of weak and strong shock waves to move ahead. The nearest shock
wave to the experiments is that by the modified Yee-Harten TVD scheme, the next
nearest is that by the modified Chakravarthy-Ocher TVD scheme. Further, the Cp
distributions on 80% semi-span location (at a little distance to the root direction from
the position where the weak and strong shock waves are united) by both the TVD
schemes are more similar to the experiments than that by the Beam-Warming scheme.

In this case, the solutions on the fine grid show the better agreement with the
experiments than those on the coarse grid, and especially the modified TVD schemes
give an excellent agreement. We may say that the solutions by the modified TVD
schemes are much better than that by the Beam-warming scheme, but it cannot be
decided which of the two is closer to the true Euler solution.

5) Convergence History and Computing Time

Convergence history of L, norm of residual for every scheme in Case 2 on the
coarse grid is presented in Fig. 9. The computing time required to reach a steady state
is shown in Table 1. Here “steady state” is defined as the state when the L, norm of
residual decreases by order 10~ from the starting one. The Yee-Harten TVD scheme
requires more in both the computing time for an interation and number of iterations
than the Beam-Warming scheme, so the total CPU time required for the steady state
is 2.4 times as much as the latter. The Chakravarthy-Ocher TVD scheme has the
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Fig. 9. Convergence history.

Table 1. Comparison of Computing Time

time for number of total
scheme . . . . .

an iteration iterations CPU time
Yee-Harten 1.75 1.38 2.4
Chakravarthy-Osher 2.23 1.05 2.3
Beam-Warming (2nd order) 1.0 1.0 1.0
(4th order) 1.03 0.95 1.0

almost same convergence history as the Beam-Warming scheme but consumes much
computing time, so the total CPU time is 2.3 times. These computing data were
obtained on FACOM M-380.

CONCLUSIONS

The modification of the recent TVD schemes with regard to treatment of metrics
has been presented, and further, the estimation for the TVD schemes and the
conventional Beam-Warming scheme has been performed by comparing the
computational results for the three-dimensional flows about the ONERA-M6 wing
together with the experimental data. Consequently our modified TVD schemes have
been proved to be reasonable when applied to the three-dimensional Euler equation
in general curvilinear coordinates and moreover the characteristics of each scheme
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have been captured. On the accuracy of metric, it was verified for each scheme that it
should be made agree with accuracy of fluxes, otherwise modification of maintaining
freestream should be used.

The Beam-Warming scheme yields a moderate solution with comparatively short
computing time. On the other hand, our modified TVD schemes yield excellent
solutions with very few numerical oscillations for even remarkable strong shock waves
and high ability of capturing the leading edge expansion and weak shock waves. In
general, the TVD schemes have the defects of much computing cost, and further we
must take care of computing the numerical flux in curvilinear coordinate system, i.e.,
the original TVD schemes are not applicable to three-dimensional problems because
they capture strong shock waves clearly but miss the weak shock waves. It may be said
that the numerical simulation by using the TVD schemes has just started and many
interesting subjects will be left in the future.

In addition this study has been done as a part of the software package development
in National Aerospace Laboratory.
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Fig. 7. Comparison among schemes (M,=0.84, @=3.06°, coarse grid).
(a) Isobaric contours on wing surface.
(b) Cp distributions on wing surface.

Chakravarthy—Osher TVD scheme secondly. Although solutions on the coarser grid
show better agreement with experimental data [10] which contain viscous effect,
solutions on the finer grid must be closer to the true inviscid solution of Euler
equations.

We may say that the solutions by TVD schemes are better than that by
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