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Summary: The experimental data and results of prior investigations lead to defining the problem of
the transition from laminar to turbulent flow in a circular pipe. So far, the subject has been a major
problem for hydro- and aeromechanics, and yet it seems not to have been clearly defined. Therefore,
the flow field of a circular pipe is examined with particular emphasis on the entrance and transition
length, using the two-dimentional computational scheme presented at the Symposium on Mechanics
for Space Flight-1985 at ISAS. Symmetric disturbances were superimposed on points near the inlet
and wall of the pipe. It was, for the first time, found that the transition length is predicted fairly
satisfactorily by the computational simulation.

1. INTRODUCTION

1.1 Classification of Research

The prediction of instability in the Hagen-Poiseuille flow is one of the most
interesting, unsolved classical problems, although many researchers have studied it
since Hagen (1839) and Poiseuille (1841).

There are two types of flow in a circular pipe: laminar and turbulent as seen in Fig.
1. At lower Reynolds numbers the velocity profiles are stable against most of
disturbances, and a color-dye filament flows in a straight line (laminar). At higher
Reynolds numbers the straight line breaks down and the color-dye filament mixes
with the surrounding water (turbulent). For a laminar flow, the velocity profile grows
from uniform at the inlet to a fully- developed, parabolic form at the entrance length
(Fig. 2). The entrance length zep is usually expressed in a dimensionless form; that is,
the length divided by the diameter of a pipe and the Reynolds number: Lep=zep/
(D*Re) where Lep is the dimensionless entrance length, D is the diameter of a pipe
and Re is the Reynolds number based on the pipe diameter. A subscript “p” means
parabolic. A dimensionless axial length from the inlet is expressed in a form of
z*=z/(DRe). At the entrance length, z* is equal to Lep. Moreover, Lep is denoted as
Eq. (1), which shows that Lep is the entrance length per flow rate.
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Fig. 1. Laminar and turbulent flow.

where, U is the average axial velocity, v is the kinematic viscocity and Q denotes the
total flux across a section: Q=xUD?/4. It was calculated 0.1 for Reynolds numbers of
above 50 [10].

So far, however, the transition length zet, which is the distance from the inlet to the
point where the transition from laminar to turbulent flow occurs, is often presented in
a dimensionless length divided only by the diameter of a pipe. In order to compare the
entrance langth to the transition length, the same dimensionless unit is strongly
desirable: Let=zet/(DRe) where Let is the dimensionless transition length shown in
Fig. 1. A subscript “f’ means turbulent.

In general, investigations on the problem are categorized by four approaches:
experimetnal approach, stability analysis, theoretical analysis, and direct numerical
simulation (Table 1). Moreover, research efforts have been classified into two simple
groups according to whether they concentrated on the entrance region or on an area
farther into the pipe. In Table 1, symbols “0” and “ X indicate, respectively, whether
the transition took place or not.

In short, we can easily find that most of the symbols “O” belong to the “entrance
region” group of Table 1. Thus, the transition takes place very often in the entrance
region. Reynolds’ observations [23] have been, unfortunately, quite neglected until
recently:

“Under no circumstances would be disturbance occur nearer to the trumpet than
about 30 diameters in any of the pipes, and the flashes generally, but not always,
commenced at about this distance.”

1.2 Entrance Length

Through theoretical analysis and computational simulation, the entrance length,
velocity distributions, and pressure drops are numerically calculated for the flow in
the entrance region. In this region, a larger pressure drop per unit length than thatin a
fully developed region is required since velocities are accelerated from uniform at the
inlet to a parabolic profile. Moreover, boundary layers are formed in the entrance
region. Boussinesq [21] was the first to investigate theoretically the flow field in the
entrance region and obtained the dimensionless entrance length of 99% of the fully
developed value: Lep=0.065. Boussinesq’s value Lep=0.065 seems to be in
agreement with the Nikuradse’s experimental data taken at some distance away from
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Table 1. Research Categories

Approach Entrance region Fully devel. region

Experiment

Leite

Leite

Stettler, Hussain

Arakawa, Matsunobu
Hagen

Kirsten

Nikuradse

Oshima, Kanda
Poiseuille
Ramaprian, Tu
Reynolds

Schiller

OO x

OO0 O 000

Theoretical analysis
Boussinesq
Langhaar
Mohanty, Asthana
Schiller
Sparrow, Lin

X X X X X

Stability analysis
Huang, Chen
Kuwabara S.
Tatsumi

Davey, Drazin X

CXOXO)

Garg, Rouleau X
Gili X
Salwen, Grosch X

Numerical simulation

Dixon, Hellums O Kyrazis X
Kanda, Oshima X
Kanda, Oshima O
Kawamura @]
Koyari X
Vrentas X

the inlet. Schiller [25] calculated it by assuming that velocity profiles are constant near
the central core and parabolic near the wall: Lep=0.0288. The velocity profiles by
Schiller show good agreement with Nicuradse’s data for about a third of the initial
length from the inlet [26]. Langhaar [17] obtained Lep=0.0575 for 99% of the fully
developed value, by using the Bessel function. The analysis of Mohanty and Asthana
[20] presented Lep=0.075 for 99.9% of the fully developed value by dividing the
entrance region into two parts. Boundary-Layer approximation is applied to the first
part, and therefore the value is considered reasonable above Re 500.

Recently, computers can be used to numerically simulate time dependent flow
phenomena and to create detailed pictures of flow fields. By a computational
numerical approach, the solution of the complete Navier-Stokes equations can be
obtained for given initial and boundary conditions, although the three-dimensional
solution is limited. For the problem, it is simply assumed that a uniform velocity exists
at the inlet of a pipe. However, Vrentas, Duda, and Bargeron [30] assumed that the
developing velocity field in the entrance region will singnificantly influence the
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Table 2. Summary of Entrance Length

Authors Re Lep % of fully Notes
devel. val.

Boussinesq .65
Langhaar, 575 99 Bessel functions
Leite .052 experiment, Re=13,000
Mohanty, >500 .075 99.9 Boundary-Layer
Sciller 02875 100 parabolic profile
Kanda, Oshima >50 .045 98 Numerical simu.
Kanda, Oshima >50 .055 99 Numerical simu.
Kanda, Oshima >50 .1 100 Numerical simu.
Koyari 60 .136 98 downstream end
Koyari 60 .0325 —dpldr=0
Kyrazis .04 v=0
Vrentas 1 .33 99 Numerical simu.
Vrentas 50 .047 99 Numerical simu.
Vrentas 150 .048 99 Numerical simu.
Vrentas 250 .0535 99 Numerical simu.
Vrentas .0562 99 Boundary-Layer

velocity field in the upstream region. The upstream conditions have a strong influence
on the velocity field in the entrance region below a Reynolds number of 50, but no
influence above a Reynolds number of 150. The entrance length for 99% of the
fully-developed value is obtained by an iterative method: Lep=0.33, 0.047, 0.048,
0.0535, and 0.0562 at Reynolds numbers 1, 50, 150, 250, and under Boundary-Layer
approximation, respectively. Kyrazis [16] showed that the assumption of parallel flow
for the linear stability theory is invalied in the portion of the entrance region in which
stability calculations have been made. The radial velocity is as high as 19% of the
mean flow at z*=0.004 and, even as far downstream as z*=0.01, radial velocity
reaches a value of 12% of the mean flow. The entrance length was arbitrarily defined
as the length from the inlet to a point where the maximum radial velocity component
is less than one percent of the mean flow velocity. Then the numerical results show
that Lep is 0.04 at a Reynolds number of 50. Koyari [14] considered the entrance
length as a distance from the inlet to a point where a radial pressure gradient vanishes
(—dp/dr=0) and calculated Lep is 0.0325. The velocity grows to 98% at the
downstream and (z*=0.136). Kanda and Oshima [10] found the similarity of the
velocity distributions above Re 50: Lep=0.045. 0.055, and 0.1 for 98%, 99%, and
100%, respectively. In addition, Leite [18] observed, compared with the calculated
results of Boussinesq, that satisfactory agreement existed at the lower Reynolds
numbers; however, at higher Reynolds numbers, the formula gave values to be too
large for the entrance length. For instance, at Re=13,000, the required length for a
satisfactory profile was only 0.8 times the predicted length: Lep=0.052.

The brief results of investigations are summarized in Table 2, where p denotes the
pressure and v the radial velocisy.
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1.3 Transition Length

We define three types of Reynolds numbers: a transitional Reynolds number, a
critical Reynolds number, and the minimum critical Reynolds number. If the speed of
the flow along a circular pipe increases, transformation of some individual
disturbances into turbulence occurs. With a greater increase in the velocity, the
transition takes place more violently. A “transitional Reynolds number” is a Reynolds
number at which a transition takes place, and has a wide range of values under the
same inlet and experimental conditions. The minimum value of transitional Reynolds
numbers is defined as a “critical Reynolds number* under some condition. The
numerical value of a critical Reynolds number depends very strongly on the conditions
which prevail in the inlet of a pipe, such as the shape of a bellmouth, as well as in the
approach of it. As far as is known, there is no upper critical Reynolds number. Ekman
reached a value of up to 40,000 [26]. The minimum value of a critical Reynolds
number is defined as the “minimum critical Reynolds number”, which is approximate-
ly 2,000-2,300. Below this value, the flow remains laminar under infinitesimal
disturbances.

Experiments for determining the trnsition length have rarely been performed.
Instead, most experiments have been carried out in order to observe conditions under
which the transition occurs and to determine critical Reynolds numbers and the
minimum critical Reynolds number. Moreover, the experiments have often been
performed with brass pipes. The transition takes place in a pipe, so the tansition
length must be shorter than the pipe length or the distance from the inlet to the
measuring point. Of course, the transition does not occur just at the downstream end.
Accordingly, we regard a pipe length, or the distance above mentioned, as the
transition length when this is not measured.

Transition length<pipe length
or
Transition length<distance from inlet to measureing point

The first investigation was done by Hagen, and he observed that the transition
depends on the radius of a pipe, on the velocity, and on the temperature of the water
[21]. He used three brass tubes of 0.281, 0.405, 0.596 cm in diameter and 47.6, 108.7,
104.3 cm in length, respectively. We cannot precisely estimate the transition length
due to the pipes being of brass. However, the dimensionless transition length can be
roughly calculated as less than 0.0734 at Reynolds number 23,000 and less than 0.0241
at Reynolds number 7,000.

Reynolds showed, by dimensional analysis, that the transition depends on the
dimensionless expression, that is, the Reynolds number. He conducted experiments
29 times with color bands to obtain the critical velocities at which steady motion
breaks down. Reynolds numbers of the experiment vary within 11,500 and 14,400.
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The average value is 12,900. He observed that the transition would never occur in the
entrance region at less than 30 diameters in any of his pipes. The dimensionless
transition length (the minimum critical transition Re) by Reynolds is about 0.00233.

Schiller [25] performed his experiments by measuring the pressure drop of a flow of
water through smooth cylindrical brass pipes. He showed that the least necessary
transition length in order to create an abrupt breakdown of the laminar flow must be
not less than 100-130 pipe diameters. He observed the abrupt change in the pressure
drop at transition length of 0.039 by using a pipe with sharp edges. Moreover, Schiller
[7] conducted experiments by inserting a thin thread of dye into the fluid (see 3.2).

According to the measurements performed by Kirsten [26] the transition length is
50 to 100 diameters. Leite [18] conducted experiments in a Lucite pipe of 1.25 in. in
diameter and 73 ft. (700 diameters) long. High-pressure air (90 Ib in?) was used. The
peripheral distributions of amplitude of disturbances were measured at points after
the disturbance generator which was mainly placed in a fully-developed region. The
small disturbances were decayed after 12.4 diameters downstream of sleeve at
Re=13,000: z*=12.4/13,000=0.00095. He suggested the significant conclusions (see
3.4). Arakawa and Matsunobu [1], [2] found turbulence at a Reynolds number 2,000
with straight pipes of 1 cm diameter and 17.5 and 35 cm in length. The dimensionless
transition length is less than 0.00875. Ramaprian and Tu [22] used a copper tube of
5 cm internal diameter and 880 cm in length. The test section is followed by another
copper tube 30 cm long closed at the downstream end and distributions of turbulent
velocities were obtained at a Reynolds number of 2870. Let is less than 0.0613:
Let<880/(5*2870)=0.0613. They also observed fully turbulent flow at all times in the
case of Re=2,100 Let is below 0.0838. Moreover, no turbulent plug was observed for
Re below 2,000 by Stettler and Hussain [28], and random puff was recorded at
Re=2,100 and z/D=330, where z is a axial length and a pipe diameter D is 2.54 cm.
Let is below 0.157. Oshima and Kanda [11], [12] carried out color-dye experiments to
measure the transition length under two different inlet conditions: (a) without a
bellmouth, (b) with a bellmouth. The results are presented in detail in the following
section. The results above mentioned are summarized in Table 3.

1.4 Critical Reynolds Number by Stability Analysis

The critical Reynolds numbers according to theory and from observation often
widely disagree. The theoretical Reynolds number indicates the point on the wall at
which amplification of some disturbances begins. The disturbances flow downstream
and the observed point of transition will be downstream of theoretical value. in other
words, the experimental critical Reynolds number exceeds its theoretical value. In this
paper, however, for reasons of simplicity, neither critical Reynolds number is not
distinguished accurately.

Small-disturbance stability theory has been applied several times to Poiseuille flow.
Sexl began the theory of the instability of pipe flows for axisymmetric disturbances.
Analytical studies have shown that the pipe flow in the fully developed region is stable
to small axisymmetric disturbances and also to small non-axisymmetric disturbances
[31, [5], [6], [24]. However, Tatsumi [29], by using the boundary-layer approximation
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Table 3. Summary of Transition Length

Transi. Length Bell

Authors Re Let (cm) Mouth Notes
Arakawa 2000 .0175> (35) yes D=1
Arakawa 3500 .005> (17.5) yes D=1
Kirsten (50-100)*D
Leite 13000 large disturbance
Oshima, Kanda 2702 100234 19 no D=3
Oshima, Kanda 3766 .000619 7 no D=3
Oshima, Kanda 6690 .00847 170 8.7x4 D=3
Oshima, Kanda 13473 .00210 85 8.7x4 D=3
Pfenninger 50000
Ramaprian, 2100 .0838> 880 yes D=5
Ramaprian, 2870 .0613> 880 yes D=5
Reynolds 12900 .00233 30*D yes D=2.68, 1.527, 0.7886
Schiller .039 no
Stettler, 2000 0.165> 838 orifice D=2.54
Davy, Drazin axisymmetric
Dixon, Hellums disturbance profile
Garg, Rouleau 10000> axisym./non-axisym.
Huang, Chen 39800 axisymmetric
Huang, Chen 39560 .00123 non-axisymmetric
Kuwabara, S 1213 deformed profile
Salwen, 500000> axisymmetric
Tatsumi 19400 .000375

and linear stability, calculated numerically a minimum critical Reynolds number for
developing laminar flow in the entrance region of a circular pipe: 19,400 at the point
8.5 times the pipe diameter downstream from the inlet (Let=0.000438). Huang and
Chen, by linear stability due to axisymmetric [9] and non-axisymmetric disturbances
[8], also obtained minimum critical Reynolds numbers 39,800 at Ler=0.0008 and
39,560 at Let=0.00123, respectively. These values are much less than the dimension-
less entrance length of 0.1. Kuwabara [15] obtained a critical Reynolds number of
1,213 for the fully developed flow by the nonlinear hydrodynamical stability.
However, since a mean flow is strongly deformed, his velocity profile appears to
belong to that in the entrance region. The brief results of these investigations are
summarised in Table 3.

1.5 Numerical Analysis

The references on computational, numerical analyses of hydrodynamic stability are
fewer than expected. One of the difficulties of numerical simulation is obtaining the
correct, time-dependent solutions for flow at higher Reynolds number. The accuracy
of numerical results should always be confirmed. Moreover, it is only with
considerable difficulty oscillations of turbulent flow can be distinguished from those of
a numerical instability. Dixon and Hellums [4] changed the amplitude of disturbances
and estimated the relationship of critical Reynolds numbers and the magnitude of
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amplitude. The appearance of distortions in wave form of the vorticity fluctuation are
reproducible and give a reasonably well-defined Reynolds number/amplitude rela-
tionship. The results show both the strong amplitude dependence of stability and
minimum critical Reynolds number of about 2,000. The flow field length is 18.5 times
diameter of a pipe. The dimensionless transition length is less than 0.037, 0.00617,
0.00185, 0.000185 at Reynolds numbers of 500, 3,000, 10,000, and 100,000,
respectively. Kyrazis [16] constructed a numerical model of Leite’s experiment at a
Reynolds number of 13,000, utilizing the full, nonlinear, time-dependent Navier-
Stokes equations. The calculated disturbance magnitude varied over a 100,000:1
range. For fully developed Hagen-Poiseuille flow: 1) A large disturbance is stable and
propagate downstream as if it were an infinitesimal disturbance; 2) Undisturbed
Hagen-Poiseuille flow is stable for both small and large disturbances. The first result is
against the observation of Leite. Starting with the experimental data of Laufer,
Kawamura [13] simulated directly the flow field for a circular pipe by using a
three-dimensional explicit scheme. The results of the velocity distributions agree well
with the results of Laufer. However, the transition length is ignored.

2. EXPERIMENT

The experimental apparatus is shown in Figs. 3 and 4. At the downstream end of the
pipe there is a plate with several types of holes which control the amount of flow.
After water in a container appears to be steady, fluid enters a smooth circular pipe of
3 cm in diameter and 300 cm in length from a very large container. The bellmouth and
pipe are made of acrylic resin and the diameter of the inlet of the bellmouth is 8.8 cm
and its central length is 4 cm. The experiments were carried out in two cases: (a)
without the bellmouth, (b) with the bellmouth. The main objective of the experiments
are to measure the transition length by the color-dye method and to determine
conditions under which the transition occurs. The change of color-dye filament in the
pipe was observed by several persons. It was difficult to determine the precise
transition point because the starting point of oscillation moves a considerable-distance
upstream and downstream, and is therefore not clearly distinguishable. We assumed
that the transition length is a distance from the inlet to a point where the color-dye
filament begins oscillation perpendicular to the main flow.

Table 4 shows the experimental data of the transition length. The importance of
reproducibility was well ascertained for the experiment without the bellmouth, but
not the one for with the bellmouth. The measured data were for 858<Re<40,530. The
Reynolds number was calculated from the total flux.

In the case without the bellmouth, the transition length is about 19 cm for
Re=2,702 (Let=0.0023) and 7 cm for Re=3,766 (Let=0.00062). Below Re=1,930, no
transition appears even under manual vibration of the container. In the case with the
bellmouth, the transition length is about 170 cm for Re=7,000 (Let=0.0081), between
80 and 120 for Re=11,500 (Let=0.0023-0.0035) and 70 for Re=15,440 (Let=0.0015).
Below Re=5,404, no transition appears even under manual vibration of the container.
No special disturbances were used to make the transition occur. The results are
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Table 4. Experimental Transition Length

Transition

Re Length (cm) Let Notes
858 No No bellmouth

1245 No

1930 No

2702 19 0.00234

3766 7 0.00061

1061 No With bellmouth

1206 No

1351 No

1673 No

2027 No

2059 No

2895 No

3989 No

5404 No

5790 No

6690 170 0.00847

7591 170 0.00746

8685 117 0.00449
10315 110 0.00355
11028 80 0.00241
11773 120 0.00339
13473 85 0.00210
13510 86 0.00212
13581 70 0.00171
14036 110 0.00261
15440 70 0.00151
15440 105 0.00226
16192 122 0.00251
16405 62 0.00125
18013 91 0.00168
18142 105 0.00192
18335 100 0.00181
20265 85 0.00139
20864 57 0.00091
21054 115 0.00182
23588 68 0.00096
24347 60 0.00082
24496 85 0.00115
26055 82 0.00104
28073 65 0.00077
32166 70 0.00072
32167 55 0.00056
35090 70 0.00066
35512 50 0.00046
40530 43 0.00035

plotted in Fig. 5 of the following section.
Both zet and Let become smaller as the Reynolds number is increased.
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3. PROBLEMS OF TRANSITION

3.1 Stability Theorem of Lord Rayleigh

Here, the problem is clarified and reasonably defined. Lord Rayleigh derived
several important, general theorems concerning the stability of laminar velocity
profiles, and Tollmien verified these for more general conditions [26]. The validity of
these theorems has been confirmed for both inviscid and viscous flows.

1) Theorem 1: The existence of a point of inflection constitutes a necessary
condition for the occurrence of instability. Much later, Tollmien showed that it is also
a sufficient condition for the amplitude of disturbances.

2) Theorem 2: The velocity of propagation of neutral disturbances in a boundary
layer is smaller than the maximum velocity of the mean flow.

3.2 Schiller’s Observations on Transition

The problem was studied experimentally by Schiller [7] and the flow could be
visualized by inerting a thin thread of dye into the fluid with a small pipette. For
Reynolds numbers below 300, the stream line separating the deadwater region from
the main flow appears. For Reynolds numbers greater than 1,600-1,700 the inlet flow
takes on a new appearance and large, elongated vortices appear in the deadwater
region. Schiller and Kurzweg suggested that the onset of turbulence occurred when
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v

=1700
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where T is the circulation per unit length near the wall.

3.3 Problems Proposed by Lin

According to Lin [19], most of the research work on the stability of laminar motions
has the following final objectives:

1) The first aim is to determine whether a given flow (or a given class of flows) is
ultimately unstable for sufficiently large Reynolds numbers. For this purpose, it 1s
desirable to obtain some simple general criterion which will give a rapid classification
of velocity profiles according to their stability.

2) The second purpose is to determine the minimum critical Reynolds number at
which instability begins. It is often easier to find sufficient conditions for stability than
to find the condition for passage from stability to instability.

3) Finally, we want to understand the physical mechanism underlying the
phenomena by giving theoretical interpretations and experimental confirmation of the
results obtained from mathematical analysis.

3.4 Problems Observed by Leite

Leite’s experiments were mostly carried out in the fully-developed region. For that
region, some important results on the stability of a circular pipe are stated as follows:

1) Axially symmetric Poiseuile flow was found to damp the small disturbances
introduced, whether they be axially symmetric or not, up to a Reynolds number of
13,000.

2) Experimetnal values of rate of decay were found to agree satistactorily with
those given by a recent theoretical analysis, even though assumptions of axial
symmetry and longitudinal homogenity of the disturbance are assumed in the latter.

3) To a first approximation, the propagation velocity of the disturbance does not
depend upon radial position, hence upon local stream velocity, and is independent of
distance downstream.

4) It has been found that small disturbances decay at all Reynolds numbers
investigated and that large disturbances are unstable. Therefore, for fixed Reynolds
numbers some disturbance of intermediate amplitude must be marginally stable.

3.5 Problems of Transition

Several results of prior experimental and analytical research are summarized
graphically in Fig. 5 in such a way that immediate comparison can be easily made.
Both dimensionless entrance and transition length are on a log scale. The entrance
length is of Schiller, Langharr, Mohanty, Vrentas, and Kanda. Despite the fact that
results of Schiller are the smallest among them, the order of each value is nearly the
same and the largest dimensionless entrance length is calculated 0.1 by Kanda and
Oshima. The experimental data is of Reynolds and Oshima. The relation between two
experimental lines seems to depend on the shape and size of a bellmouth. If a smaller
bellmouth is used (case A), a graph of experimental data will be plotted between two
lines. If a larger bellmouth is used (case B), a graph will be above the line with the
bellmouth and shifted to the right. Different critical Reynolds numbers exist under
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different experimental apparatus. The transition length is strongly affected by the
shape and size of a bellmouth. Without a bellmouth, a critical Reynolds number
decreases to the minimum value, that is, the minimum critical Reynolds number.
Moreover, for the reproducibility of experimental data, it is very interesting that the
results of Reynolds agree well with those of Oshima where a bellmouth was used: Let
=0.00210 at Re=13,473. Reynolds experimented by using pipes with bellmouth, too.
“The experiments were made on three tubes. The diameters of these were nearly 1
inch, 1/2 inch and 1/4 inch. They were all fitted with trumpet mouthpieces, so that the
water might enter without disturbances.”

The Reynolds result is Ler=0.00233 at Re=12,900, which is very near the line with
the bellmouth. Moreover, it was found that all of the experimental transition lengths
are shorter than any of the entrance lengths in a dimensionless form in Fig. 5. In
addition, the results of stability analysis of Tatsumi and Huang are presented together
in Fig. 5. The patterns seen in the down half of their curves are similar to the graphs of
experimental data. As the Reynolds number increases, the dimensionless transition
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length becomes shorter. The results of Tatsumi and Huang correspond to case A and
B, respectively, and also smaller than the dimensionless entrance length.

As a result of the above discussion we must conclude the problem of the transition
as follows:

1) The transition occurs in the entrance region. The transition length becomes
shorter as the Reynolds number increases under the same experimental condition.

2) A critical Reynolds number depends on an experimental apparatus, especially
on the shape of a bellmouth, provided not external nor manual disturbances are given
to the upstream and inlet conditions.

3) The minimum critical Reynolds number exists for infinitesimal disturbances
(i.e., a case without a bellmouth).

4. NUMERICAL SIMULATION

4.1 Mesh System and Basic Equations

The rectangular mesh system used is schematically shown in Fig. 6. Subscripts /0
and JO are the number of axial and radial grid points, respectively. Axial indexes /=1
and /O mean the inlet and outlet of a pipe. Radial indexes J=1 and JO denote the
center line and wall of a pipe. The mesh spacing dz and dr are each constant and the
aspect ratio of dz to dr is 1 for cases of Re=10,000 or 2 for Re=2,700 in order to catch
mesh-size disturbances. We could not simulate the turbulent flow field when using a
larger aspect ratio of 500 for a case of Re=10,000 [10], and steady solutions are
obtained.

The two-dimensional, stream-function vorticity equation and the Poisson equation
are applied to simulation of appearance of turbulence in the entrance region of a
circular pipe. We consider an incompressible Newtonian fluid with constant viscosity
and density and neglect gravity and external forces.

Stream-function vorticity equation in the cylindrical coordinates:

90 103y 9w 13y 00, 0oy 1 { 0 (i%(,w)>+%}

r

ot r 0z or ror o9z r 0z Re lor
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Poisson equation:

o= D (L2r, B (4)

or \'r or 9z*\r

These equations are time-dependently solved by the iterative Gauss-Seidel method.

There is no fundamental reason why one should not be able to simulate a turbulent
flow in any desired detail. The Navier-Stokes equations are believed to be a sufficient
description, and discretization errors can in principle be made as small as one wishes.
However, it is difficult to simplify and summarize the enormous volume of results
produced. The convergence of iterative methods is affected by several parameters,
such as the Reynolds number, mesh spacing, time increment, and especially the
iteration convergence criteria.

One of the most interesting problems concerns the selection of appropriate
conditions for the inlet boundary. In this paper, simulations for large disturbances are
discussed. We can roughly estimate the characterictics of the flow field from the result
of vorticity and velocity profile. For smaller disturbances, the results will be presented
in detail in the subsequent chapter. The initial and boundary disturbances are given as
follows:

1) First, the stream function is given as all the fluid particles start moving
downstream with uniform velocity (Eq. (5)).

2) Values of the stream-function are multiplied by an amplitude constant for
points of 2dr, 3dr, and 4dr apart from the wall. These points are at r=0.45, 0.425, and
0.4. (Eq. (6)). Thus, the velocities of fluids near the wall are larger than those in the
central core.

3) After starting (time=dr), the same disturbances at the inlet remain constant,
but the initial disturbances of other points are freed. Stream-function for these points
are calculated according to a scheme (Eq. (7)).

; 2
«!r(i,j)=(j0_11) for i=1, 10 and j=1, JO

Wi, )=+, j)xf for i=1, 10 and j=JO—2,J0—3,JO—4
v(1, =+, j)xf for j=JO-2,J0-3, JO—A

where f is an amplitude constant.

For smaller disturbances, the amplitude constant and number of stressed grid points
will be decreased accordingly. We do not know precisely the magnitude of
infinitesimal disturbances of real flows. For example, Leite measured the mean
amplitude of axial component of small residual disturbances and found that it had a
maximum value of approximately 10™*. These disturbances were believed to be
largely caused by radial sound, because their amplitudes varied little across the pipe.

The simulation of disturbed flow fields is performed for three cases, as seen in Table
5.
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Table 5. Simulation Case

Disturbance
Reynolds :
Number Time dz/dr
Name Point (i, j) factor
2700 2A*1.005 (1,19),(1,18) 1.005  2200d: 2
10000 3A*1.1 (1,19),(1,18),(1,17) 1.1 370dt 1
10000 2A*1.01  (1,19),(1,18) 1.01 5004t 1

Time increment is 0.01 for cases of Reynolds numbers of 2,700 and 10,000. It is made
dimensionless by dividing by (R/UO), where R is the radius of a pipe. 2A*1.005
denotes that 1.005 times stream function are assigned to two points.

4.2 Effect of Disturbances at Re=2,700 (2A*1.005)

The flow field in the entrance region is simulated at a Reynolds number of 2,700. A
small disturbance of 0.5% of a stream function is added to two points: r=0.045, 0.425
and z*=0.

Iteration convergence did not attain an acceptable solution to the discretised
difference equations after time=2,473dr. The differences of the vorticity between
iteration k and k+1 do not fall within tolerance despite many iterations at
time=2,474dt. The results at time=2,200dt are mainly discussed.

4.2.1 Effect of Disturbances upon Velocity Development

The velocity developments along a pipe are shown in Figs. 7 (a)—(d) for r=0.475,
0.45, 0.35, and 0. The wall and center line are at r=0.5 and 0, respectively. The
velocity distributions in the central core (r=0.35 and 0) oscillate cosiderably, although
those near the wall (r=0.475 and 0.45) appear to still remain laminar. Fig. 7 (c) shows
that the fluctuation of the velocity at r=0.35 begins at about z*=0.0005 (27dz). That
at the center line is a little delayed in the beginning (z*=0.0007 (38dz)) from Fig. 7
(d). The amount of amplification decays rapidly after z*=0.003 (162dz). This does not
mean that the flow changes from turbulent to laminar after that point. Rather, this is
because the inlet disturbances are carried approximately 162dz downstream for 2,200
time-steps of computation, and not transferred after 163dz down stream point.
Unfortunately, the computation cannot develop further under the given iteration
convergence criteria.

Supposing the velocity of propagation of neutral disturbances are defined as,

Velocity of perturbation of neutral disturbances
_ time
~ axially disturbed length of flow field

its value is calculated from Figs. 7 (c¢) and (d).

162dz _ ) 53¢
2200 dt
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Fig. 7. Velocity development, Re=2700, time=2200dt, Dist=2A*1.005

where space and time increments, and aspect ratio are 1/20, 0.01,and 2, respectively,
and a maximum velocity is about 1 in a dimenionless form. This result seems to be
reasonable for Rayleigh’s Theorem 2 (see 3.1).

Figs. 8 (a)-(b) also display the veocity development at time=2,469dt. The
separation point on the wall can be clearly seen at z*=0.00185 (100dz) in Fig. 8 (a)
and sharp back flow is observed at the same longitudinal distance in Fig. 8 (b). These
values are only a little smaller than the experimental value of 0.00234 from Table 3.
The order of both values, however, are nearly the same. The error is —20.9%.

Compared to a case without any disurbance, the velocity developments at r=0.475
and 0.35 are displayed in Fig. 9. These lines develop smoothly without oscillating. the
average value of Fig. 7 (c) is, of course, equal to that in Fig. 9 (r=0.35).

4.2.2 Effect of Disturbances upon Velocity Distribution

Figs. 10 (a)-(g) display how the velocity distribution is influenced by the inlet
disturbances over cross sections perpendicular to a longitudinal direction: z*=0,
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Fig. 8. Velocity development, Re=2700, time=2469dt, Dist=1A*1.005
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z
Fig. 9. Velocity development, Re=2700, time=2200d:,
Dist=No

0.000259 (14dz), 0.000759 (41dz), 0.0015 (81dz), 0.00185 (100dz), 0.002 (108dz), and
0.003 (162dz), respectively. The separation point on the wall exists near z*=0.00185
from Fig. 8 (a). The velocity fluctuations given as initial and boundary conditions are
shown in Fig. 10 (a), and are not too much larger than expected. Larger fluctuation is
given in 4.3.2. The velocity distribution starts waving up and down after z*=0.000759
in Fig. 10 (c), although it develops in a laminar state until about 0.0007 from Fig. 7 (c).
Further downstream in Fig. 10 (g), the velocity distribution regains a laminar flow.
The highest value of a periodically varying velocity is seen at about z*=0.00185 in Fig.
10 (e). The trend of a varying, axial velocity is well understood, even though its value
is considerably higher than that of a real flow. The inflection point, which is a
necessary condition for the occurrence of instability (Rayleigh’s Theorem 1), is not
still perceived clearly near the wall. On the contrary, it exists in the central core, as
shown in Fig. 10 (e).
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4.2.3 Effect of Disturbances upon Vorticity

Vorticity is made dimensionless by dividing by (UO/R).

Figs. 11 (a)-(g) display the distribution of vorticity in the entrance region of a
circular pipe through time, for time=10dt, 100dt, 200dt, 300dt, 350dt, and 370dt,
respectively. In general, the vorticities near the wall are stronger than those in the
central core before time=2,200dt and their value lies between —9 and 37. The reverse
vorticity appears only after time=2,200ds. The inlet disturbances produce stronger
vorticities in the central core than near the wall in Fig. 11 (g). The residual errors for
the vorticity become larger with time until convergent solutions cannot be obtained.
They are much amplified around the small region after time=2,300dt, where the
dimensionless axial length z* is about 0.0018 in Fig. 11 (g). The disturbances used
have a strong influence on the vorticity of this region. Figs. 11 (c)-(e) shows explicitly
how the vorticities are carried to the central part. A vorticity line with equal strength
separates from the wall to the central core, then it turns round and round, and finally
it breaks into many pieces of vorticity.

4.3 Effect of Larger Disturbances at Re=10,000 (3A*1.1)

The flow field is simulated at a high Reynolds number of 10,000. The 10% increased
values of a stream function are supposed at three points: r=0.045, 0.425, 0.4 and
z*=0. These disturbances are considerably larger than in 4.2. Iteration convergence
did not attain an acceptable solution after time=370d! and results are saved on a
disk-file every 10dt. Accordingly, the velocity distributions at time=350dt are
presented. We can roughly extrapolate, from Fig. 5, that a dimensionless transition
length is about 0.00006 to 0.0001 at Re=10,000. Its value corresponds to 1.8 to 3 cm in
the case of a pipe of 3 cm in diameter and without a bellmouth. A flow changes from

laminar to turbulent very near the inlet of a pipe at Reynolds numbers of above
10,000.

4.3.1 Effect of Disturbances upon Velocity Development

The development of the axial velocity fields are illustrated in Figs. 12 (a)-(d) for
several radii: r=0.475, 0.45, 0.35, and 0.25, respectively. In general, the amount of
amplification decays rapidly after z*=0.00015 (60dz).

60 dz

Velocity of propagation of neutral disturbances= y =0.857
t

This result seems to be reasonable for Rayleigh’s Theorem 2. Fig. 12 (a) shows the
velocity development at one dr away from the wall (r=0.475). There are three
separation points on the wall, z*=0.0000225 (9dz), 0.0000325 (13dz), and 0.000045
(18dz). The value for z*=0.0000325 is the largest among them. Similarly, a big
backflow also can be seen at z*=0.000025 (10dz) in Fig. 12 (b). These values are
about one third of the extrapolated value of the experimental data in Fig. 5 (about
0.00006 to 0.0001). The order of both values, however, is nearly the same. The error is
—62.5%. These disturbances affect considerably the velocity at r=0.35 in Fig. 12 (c),
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but do not yet influence the velocity at =0.25 in the more central core in Fig. 12 (d).
The velocity fluctuation is the largest at 0.35 among them.

4.3.2  Effect of Disturbances upon Velocity Distribution

Figs. 13 (a)-(g) display how the velocity distribution grows under the inlet
disturbances over cross sections perpendicular to a longitudinal direction: z*=0, 5dz,
9dz, 10dz, 11dz, 50dz and 98dz, respectively. The velocity fluctuation, given as initial
and boundary conditions, is shown in Fig 13 (a), and are similar to that at z* =984z in
Fig. 13 (g) since the disturbances do not grow after z*=60dz. The amount of
fluctuation still remains larger at z*=50dz in Fig. 13 (f) than at the inlet in Fig. 13 (a).
On the other hand, the velocity distributions without any disturbances are displayed
for z*=0 and 0.0000025 (10dz) in Fig. 14, and both lines show that a flow is in a
laminar state. Backflows are also shown at z*=0.0000225 (9dz) and 0.000025 (10dz)

This document is provided by JAXA.



68

ge

T=3504t, Z =0, Re=10000, Dist= 3 AX1.1

H. Kanda and K. Oshima

T=3504t,Z*=542, Re=10000, Dist=3 AX1.1
0

0]

28 25

20 20}

1.5 151 A

,0 NEP ZVIVA

. \

. A

08 ok

e s om0 o 0% 0% oo o005 o 005 020 025 om 03 04 045 050

(a) z*:ro.o (0dz) (b) z*=0.0(r)00125 (5dz)

Ti3504t,2'=9dz, Re= 19000, Dist= 3 AX1.1 " T=3504t, Z*=104Z, Re=10000, Dist=3 AX1.1

s /]

, /1)

1.5 ya / 1.5 / \

10 / \/ \ N\ % 10 \

W \

“ Y - n

os s

e oW e owt® em e o ew om % e o o6 0w
(c) z*=0.0600225 (9dz) (d) z*=0.006025 (10dz)

T“=r3504t,2'=HAZ, Re=10000, Dist=3 AX1.1 ”T=3504t,z*=5oaz, Re=10000, Dist= 3 AX1.1

23 28

20 20

, NN e JAN

| VI _

WA

VAL

os os

4 T om0 o5 om0 oM 0.4 ono B s v T T T N IR T

:
(e) 2*=0.0000275 (11dz)
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in Fig. 13 (c) and (d), respectively, even though the amount of fluctuation is
considerable in Fig. 13 (d). The velocity profile near the wall shows the existence of an
inflexion point at z*=5dz (0.0000125) in Fig. 13 (b), which is a necessary condition for
the occurence of instability (Rayleigh’s Theorem 1).
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4.3.3 Effect of Disturbances upon Vorticity

Figs. 15 (a)-(f) display the transfer of vorticity for time=10dr, 100dt, 200dt, 300dt,
350dt, and 370dt, respectively. The value of vorticities is between —11 and 36 before
time=200dt, then its absolute value increases and reaches between —976 and 1,454 at
time=370dr in Fig. 15 (f). However, the value at time=350dt (—184 to 304) does not
greatly exceed the average value before time=200dt. The residual errors for the
vorticity are amplified around the small region at z*=0.00003 and time=370dr. The
disturbances used have a strong influence on the vorticity at about z*=0.00003. Fig.
16 displays the vorticity in the case of no disturbance at 370dt, which shows a steady

69

The initial fluctuation in Fig. 13 (a) appears to be considerably larger than that in a
real flow, since it is about 1.4 times as large as in Fig. 14.
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Fig. 18. Velocity distribution, Re=10000, time=500d:, Dist=2A*1.01

and laminar development of the flow field.

4.4 Effect of Smaller Disturbances at Re=10,000 (2A*1.01)

When the convergence criteria are better selected, doubtlessly the calculation step
of the simulation will become longer. A smaller disturbance also makes a computation
step longer. Initial and boundary disturbances can be easily controlled by an
amplitude constant. Here, as a disturbance smaller than 10% in 4.3, the 1% increased
stream function is given at the same two points as in 4.2: r=0.045, 0.0425 and z*=0.

Iteration convergence did not continue after time=>500dt, but it is longer than 370dr

in 4.3.

4.4.1 Effect of Disturbances upon Velocity Development

Figs. 17 (a)-(d) display the velocity development along a pipe for r=0.475, 0.45,
0.35, and 0.25 at time=500dt. The velocity distribution oscillates violently near the
wall at ¥=0.475 to 0.35. On the contrary, however, it does not swing up and down with
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Fig. 19. Vorticity, Re=10000, Dist=2A*1.01
a regular motion near the central core at r=0.25 in Fig. 17 (d). This shows that

iteration convergence does not arrive at a solution of finite-difference equations
before the disturbances are transported to the central core. Fig. 17 (a) express clearly
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the separation points at z*=0.000085 (34dz), 0.0001 (49dz), and 0.0001125 to
0.000115 (45-46dz). The dimensionless transition length agrees fairly well with the
experimental value of 0.00006 to 0.0001 and is about four times as large as in 4.3. Figs.
17 (b)-(c) also show big back-flows near the wall. The amount of fluctuation decays
after z*=0.0002 (80dz).

Velocity of propagation of neutral disturbances= 5880(1; =0.8

This result satisfies Rayleigh’s Theorem 2.

4.4.2 Effect of Disturbances upon Velocity Distribution

Figs. 18 (a)-(d) display velocity distribution over cross sections for z*=0, 9dz, 10dz,
and 11dz, respectively. The velocity fluctuation, given as initial and boundary
conditions, is shown in Fig. 18 (a). Its value is nearly equal to that in Fig. 10 (a),
although the amplitude constant is 1.005 for the latter. Figs. 18 (b)-(d) are compared
with Figs. 13 (c)-(d), respectively. The separation points already exist at z*=0.000025
in Figs. 13 (c). However, in the case of smaller disturbances, those appear more

downstream first at z*=0.000085. We can see an inflection point near the wall in Fig.
18 (d).

4.4.3 Effect of Disturbances upon Vorticity

Figs. 19 (a)-(f) display the vorticity distribution in response to smaller amplitude
disturbances. Vorticities are carried more downstream than in Fig. 15 (f). The
vorticity starts flowing downstream at about z*=0.00002 in Fig. 19 (f) and its value
increases with this downstream flow; this result meets more natural conditions than
that of Fig. 15 (f). The highest value lies at about z*=0.001.

5. CONCLUSIONS

The flow field of a circular pipe was studied especially within the entrance and
transition region. The results of this study show that a numerical, finite-difference
method can simulate development of the Hagen-Poiseuille flow and transition to
turbulent flow. The conclutions are:

1) The turbulence transition occurs only within the entrance region.

2) The transition length decreases as the Reynolds number increases under the
same inlet conditions.

3) A good bellmouth lessens disturbances at the inlet and the critical Reynolds
number becomes larger.

4) The transition was numerically simulated on the condition: a) The aspect ratios
of the rectangular mesh system used are 2 for Re=2,700 and 1 for Re= 10,000 and b)
The disturbance is given at the point very near the wall of the inlet.

5) The result of simulation satisfies two theorems of Lord Rayleigh: dependence
of the flow stability on laminar velocity profiles.
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6) The transition length depends on the magnitude of the disturbance assumed.

The transition length obtained numerically is a little shorter than the experimental
data, but considered fairly reasonable since the order of the values are the same, and
the disturbance for calculation is supposed to be larger than actual ones. In the case of
smaller disturbances, the transition starts at about the same point and its vorticity
flows downstream.
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