Numerical Analysis of Marangoni Convection
in Bridgman Method

By

Hiroyuki UcHIDA*, Keiichi KUWAHARA* and Shintaro ENYA*

(February 5, 1987)

1. INTRODUCTION

It is expected to obtain high quality crystal in the material processing in space,
because the buoyancy driven natural convection diminishes under microgravity
condition. Under such condition, free convection driven by the surface tension,
so-called Marangoni convection, becomes usually dominant. In order to estimate the
quality of products and to design the material processing facility, investigation on the
Marangoni convection is essential.

In these years, Kuwahara, Maekawa, et al. [1-4] have been studying Marangoni
convection both experimentally and numerically related to crystal growth techniques
in space. Bergman, er al. [5], Srinivasan, et al. [6] and Bauer, et al. [7] also analyzed
Marangoni convection under various situations. In the present study, Marangoni
convection in Bridgman method is analyzed, which is one of crystal growth methods.
After brief description for mathematical formulation, discussion will be made for flow
field and heat transfer.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

We consider two-dimensional steady incompressible laminar flow and heat transfer
in the present study. Governing equations are given as
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Equations (1) through (3) express the conservation of momentum, mass and energy.
These equations are described by using the Einstein convention of summing over a
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repeated subscript. In these equations, x,, u; are the Cartesian coordinates and the
velocity components in the ith coordinates, and p the pressure, T the temperature, p
the density, u the viscosity, g the gravitational acceleration, 8 the coefficient of
volume expansion, a the thermal diffusivity, T,, the mean temperature. In the
transport equations (1) and (3), ¢ denotes the fictitious time introduced in order to
obtain steady solution by using the time-marching method. The first term of right
hand side of Eq. (1) is neglected since pressure will not be dominant in the present
flow problem.
Nondimensional forms of Egs. (1) through (3) are obtained as
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where the nondimensional variables are defined by

X,=x,]/L, r=ty/L?
U,=u,[u,, u,=v/L @)
0=(T—-TH)T,—T.)

in which L is the characteristic length, u, is the reference velocity, v=pg/p is the
kinematic viscosity, and the subscripts 4 and ¢ express the values at hot and cold wall.
Equations (4) and (6) are characterized by two nondimensional numbers:

Gr=gp(T,— T )L} (Grashof number) 8
and
Pr=vy/a (Prandtl number) )

In the present study, boundary conditions are specified on a hot wall, a cold wall, a
stationary thermally insulated boundary, a symmetry boundary and a free surface. On
the hot wall and the cold wall, the normalized temperature is fixed to unity and zero,
respectively, and the velocity components are set to zero there. On the other
boundaries, the temperature gradient normal to the boundaries are set to zero. On the
stationary boundary, the velocity components are set to zero. On the symmetry
boundary, normal component of the velocity is set to zero, and gradient of tangential
component of the velocity is set to zero.

Since the surface tension balances with the shear stress on the free surface,
following equation is coupled with a momentum transport equation.
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is which o, is the temperature coefficient of surface tension o:
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Nondimensional form of Eq. (10) can be obtained as
oU Ma 36
9~ - N 1
Y Pr oX (12)
in which Ma is the Marangoni number defined by
Ma=0 I(T,—T,)/pa (13)

This Marangoni number plays a main role in the surface tension driven natural
convection.

In order to solve those nondimensional transport equations (4) and (6),
time-marching method is employed. These equations are discretized in space and time
by using the finite difference method. Centered space difference formulae for uniform
mesh and leap-frog scheme [8] are employed. Velocity correction method [9],
so-called SMAC method, is adopted to combine the equation of continuity with the
equations of motion.

3. NUMERICAL RESULTS AND DISCUSSION

At first, a preparative computation was carried out in order to test the applicability
of the present numerical method to the analysis of the Marangoni convection.

Figure 1 shows the present results of the temperature and velocity distribution.
They are compared with Ochiai’s experimental and numerical result [2]. Boundary
conditions of this problem is as follows: the right and the left boundary are hot and
cold wall. The lower and the upper boundary are adiabatic wall and free surface. The
gravity force is considered in this analysis in order to compare with Ochiai’s
experimental result obtained on earth. Marangoni number and Rayleigh number are
35 and 120, respectively, where the distance between cold and hot wall is used as the
reference length. Silicone oil, of which Prandtl number is 9,200, is considered.

The temperature distribution is shown in Fig. 1 (a) by means of isothermal lines.
The present result shows very good agreements with Ochiai’s numerical result [2]. The
velocity distribution is shown in Fig. 1 (b) by means of streamlines. The present result
shows a good agreement with Ochiai’s result about the location of vortex center and
overall flow pattern. But the streamlines themselves does not seem to agree well,
probably because the plotting interval of stream function used for the present result is
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Fig.1(c) Velocity distributions on center vertical plane.

Fig. 1. Marangoni convection solution of preparative
analysis.
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Fig. 2. Concept of Bridgman crystal growth method.

different from Ochiai’s one. Furthermore, the velocity distributions on the center
vertical plane are shown in Fig. 1 (c). The present result shows good agreements with
both numerical and experimental results [2]. It can be concluded for this preparative
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Fig. 3. Boundary conditions for analysis of Marangoni
convection in Bridgman method.

analysis that the present numerical method is valid to predict the Marangoni
convection.

Next to the preparative analysis, Marangoni convection in Bridgman method was
analyzed. The concept of crystal growth by the Bridgman method is schematically
shown in Fig. 2. The molten material which fills the ampoule is chilled from one side,
then the material is solidified gradually. A vacant space will be formed in the ampoule
due to the contraction of the material. Consequently, a free surface of liquid is
formed, and a free convection as shown in Fig. 2 will appear. A purpose of this
analysis is to investigate the influences of the length of free surface and the
temperature difference between two heat transfer walls upon the fluid flow and the
heat transfer. A shaded part in this figure shows the computation domain which was
approximately treated by using the Cartesian coordinates.

A rectangular computation domain is considered as shown in Fig. 3. A left half and
a right half of the upper boundary are the hot wall and the free surface, respectively,
and the right boundary is the cold wall. The height H of the cold wall was fixed to be
5 mm. The length L of the free surface was given to be 2, 5 or 10 mm. The
temperature difference T),-T, was given to be 2, 5 or 10 K. Thermal properties of
PbSnTe at 1,178 K were used. The left and the lower boundary are stationary and
symmetry boundary.

Figure 4 shows the streamlines for L=2, 5 and 10 mm. Marangoni numbers based
on L are 212, 530 and 1,060 for each case. These flow patterns are characterized by
the location of the vortex center. In the case of small L, vortex center is located near
free surface. Influence of the convection is limited near the free surface. In the case of
large L, the vortex center approaches to middle plane between free surface and
symmetry boundary. In the near region of the hot wall, convective heat transfer does
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Fig. 4. Streamlines of Marangoni convection in Bridgman method.
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(c) L=10mm, Ma=1060
Fig. 5. Isotherms of Marangoni convection in Bridgman method.

not seem to be dominant in each case, because the velocity is very small there. Figure
5 shows the temperature distributions corresponding to Fig. 4.

Furthermore, the heat transfer on the cold wall was studied. The cold wall is the
simple model of the solidification surface, which plays an important role in the crystal

growth. Nondimensionalized heat transfer coefficient, i.e., the Nusselt number, is
defined by

Nu=hL/2 (14)

where /4 is the heat transfer coefficient, A the thermal conductivity. By integrating the

distribution of the local Nusselt number along the cold wall, average Nusselt number
is obtained as
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Fig. 6. Local Nusselt number distribution on cold wall.
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In the following discussion, another Nusselt number Nu, will be employed. It is
previously obtained from heat conduction analysis in which the convective heat
transfer is neglected.

Figure 6 shows an example of the distribution of local Nusselt number on the cold
wall. These distributions deviate upward, and they are spread as the Marangoni
number increases. This is able to understand from that the influence of the flow field
on the heat transfer is spread from free surface as the Marangoni number increases.

Figure 7 shows the correlation between the average Nusselt number and the
Marangoni number. In this analysis, two nondimensional numbers, i.e., the
Marangoni number Ma and the aspect ratio L/H, are the governing parameters. The
normalized Nusselt number Nu/Nu, approaches to unity as the Marangoni number
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decreases. Nine data are obtained by changing the length of the free surface and the
temperature difference. The data are distributed close to a curve. An approximate
formula of this curve is obtained from Fig. 8 as

Nu/Nuy=1+1x10"*Ma (16)

Therefore, the heat transfer is only governed by Marangoni number within the range
of the parameters given in the present analysis. The influence of the aspect ratio does
not seem to be significant. The ordinate of Fig. 8 expresses a ratio of the net
convective heat transfer rate to the conductive one. The linear correlation, expressed
by Eq. (16), can be obtained.

These computations were carried out on a personal computer NEC PC-98X A with a
fast floating-point processor. It took about two or three hours for each run. By using
the 41x21 grid points, converged solutions were typically obtained after 600 time
steps for ¢<<107*, where ¢ is a criterion for the relative error of the nondimensional
temperature.

4. CONCLUSION

Natural convection driven by the surface tension, so-called Marangoni convection,
was analyzed by using the finite difference method. The result of the preparative
computation was compared with Ochiai’s experimental and numerical results [2].
They showed fairly good agreements. Further analysis was made for the mathematical
model of Bridgman method. It was shown that the vortex center moves from near free
surface toward the opposite boundary as the Marangoni number increases. A simple
correlation between heat transfer coefficient and Marangoni number was also shown.

The present authors would like to express our sincere gratitude to Dr. Mikio
Morioka of Ishikawajima-Harima Heavy Industries Co., Ltd. for his helpful advices
on the arrangement of the data.
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