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Summary: Experimental observation and numerical simulation of transition flow in a pipe were
carried out at various Reynolds numbers with several kinds of disturbance at the entrance. In the
experiment tracer method was adapted to observe the transition phenomena and in the numerical
simulation, stream function-vorticity formulation was applied to simulate the appearance of
turbulence. These results have shown fairly good agreement between the experiment and the
numerical simulation.

1. INTRODUCTION

Transition from laminar to turbulent flow in a pipe is one of the oldest and yet
unsolved problems in fluid dynamics since the studies by Hagen [/] and Poiseuille [2].
It was proved by Rayleigh [3] that the necessary condition by which the inviscid flow is
unstable is existence of a inflection point in the velocity distribution. Later, Tollmien
[4] proved that this condition is also enough. It was proved that the Hagen-Poiseuille
flow is stable for small axisymmetric disturbance at all Reynolds numbers by Sexl [5]
and Davey and Drazin [6], and also it was shown that the flow is stable for small
nonaxisymmetric disturbance by Salwen and Grosch [7] and Garg and Rouleau [8].
And others discussed that the two-dimensional Poiseuille flow was stable based on the
weak non-linear theory. On the other hand, the experimental observation of pipe flow
(Reynolds [9] and others) unexceptionally shows the flow becomes turbulent at point
downstream from the entrance as the Reynolds number increases.

The purpose of this study is to make clear the transition mechanism in the
Hagen-Poiseuille flow which can not be treated by the laminar stability theory nor the
weak non-linear stability analysis. To do so, the Navier-Stokes equations were solved
numerically by finite difference method and the experimental observation for the pipe
flows were carried out for the flows with various finite amplitude disturbances.

2. EXPERIMENTAL APPARATUS AND METHODS

The experiment was carried out in a plexiglass pipe with an inner diameter D of 3
cm which was immersed in a water tank with the dimension of 50x50x400 cm, as
shown schematically in Fig. 1. Length of the pipe is 300 cm (=100 D) and the one end
was led out of the tank where a screw valve was set to control the flow rate in the pipe.
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Fig. 1. Schematic diagram of the experimental apparatus.
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Fig. 2. Sketch of transition flow in the pipe.

Water entered to the pipe from the other end with or without bellmouth.
Tracer method was adopted to visualize the flow field and to determine the
transition point. The dye used is crystal violet, which visualizes the streak lines. These
visualized patterns are recorded time-sequentially on photographs using motor driven
camera.
The Reynolds number and the non-dimensional transition length are defined as
follows;

Re=DxUlv,
Z*=Z/(Rex D),

where D is the diameter of the circular pipe, U the mean velocity defined as the flow
rate divided by the pipe cross-sectional area, v the kinematic viscosity and Z the
distance from the entrance to the transition point, as shown in Fig. 2. In order to avoid
the spurious disturbances at the entrance of the pipe, a bellmouth is attached, and, in
addition, the various degrees of disturbances are artificially added using one of several
orifices set at near the entrance. The dimension of these orifices and the contraction
ratio are listed in Table. The condition without bellmouth was also taken. The
experiment is carried out in the range of the Reynolds number of about 100 to 40000.
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Table Dimension of the orifices and the contraction ratio

Orifice Diameter (cm) Contraction Ratio
a 1.0 0.11
b 1.5 0.27
c 2.5 0.69
d 3.0 1.0

3. NUMERICAL SIMULATION

The two-dimensional axisymmetric stream function-vorticity formulations are
applied to the entrance region of a circular pipe. The flow is assumed to be
incompressible Newtonian fluid with the constant viscosity and density. These
equations are as follows;

v 1 oy dw 1 Y Jw w Iy 1 { 8(1 2, ) azw}
ot r 9Oz 8r+r or 9z +7 8z Re E~78r\rw)+822 ’
8(1 8w)+ 82(1/;)

Tor\r or/T a2\

Impulsively started from rest, these equations are time-marched by the iterative
Gauss Seidel method. Simulation of the disturbed flow fields was performed for two
cases of Re=2,700 and 10,000.

The mesh system used is schematically shown in Fig. 3. The subscript /0 and JO
corresponds to the axial and radial grid points, respectively. The mesh spacings dz and
dr are fixed and the aspect ratios dz/dr are 1 for the case of Re=10,000 and 2 for
Re=2,700 in order to catch small disturbances.

In order to simulate the inlet boundary condition without bellmouth, the flow fields
with axisymmetric vorticity disturbances at the point near the entrance are computed.
Here, the transition point is defined at where the streamline near the wall (limiting
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Fig. 3. Mesh system for numerical simulation.
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streamline) shows reverse flow.
Time increment was taken to 0.01 for all the cases.

4. RESULTS AND DISCUSSIONS

4.1 Flow visualization

A series of photographs visualized by tracer method is shown in Fig. 4 and 5. The
pipe flow with the bellmouth at the same Reynolds number of 2000 is shown in Fig. 4,
in which the inserted orifice diameters are changed. It is seen that the transition
lengths increase with the orifice diameter. As the disturbance increases due to the
decreasing orifice diameter, the transition points from laminar to turbulent move
upstream and the transition lengths become shorter. On the other hand, the pipe flows
with the same orifice diameter are shown in Fig. 5 for various Reynolds numbers. As
the Reynolds number increases, tracer moves more helically, and the transition from
laminar to turbulent takes place at shorter length from the entrance. That is, the
amplitude of the disturbance and the Reynolds number determine the transition
length, that is, the critical Reynolds number.

4.2  Measurement of transition length

Relation between the transition length and the Reynolds number is shown in Fig. 6,
and is summarized as follows;
1) As the Reynolds number increases at the same entrance condition, the transition
length becomes shorter.

Fig. 4. A series of photographs visualized by tracer of dye.
a), b), ¢) and d) corresponds to the orifices listed in Table.
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Fig. 5. A series of photographs visualized by tracer of dye
for orifice (c).

The Reynolds number (a) 500, (b) 700, (¢) 1000, (d) 1500 and
(e) 2000.

2) As the entrance disturbance strength increases at the same Reynolds number, the
transition length becomes shorter.

3) For the smaller entrance disturbance, the larger minimum critical Reynolds
number is obtained.

Numerical simulation derived a conclution that the velocity distribution of the
Poiseuille flow is realized at 100D from the entrance with the uniform velocity
distribution at the entrance. This is called the Poiseuille line (Z*=100/Re) and is
drawn in Fig. 6. In the case without orifice, the transition line and Poiseuile line cross
at the Reynolds number about 2000. This value is close to the value of 2300 which is
well known as a minimum critical Reynolds number. It can be supposed that the
crossing point of the transition line and the Poiseuille line in the Re—Z* relation
corresponds to the minimum critical Reynolds number for each entrance disturbance.

4.3  Numerical Simulation

In the numerical simulation, artificial disturbance applied near the wall at the
entrance is amplified and flows down as time step proceeds and region of reverse flow
appears. The velocities along a pipe near the wall (r/ry=0.9) at Re=2,700 at t=2469
and Re=10,000 at t=500 are shown in Figs. 7 and 8, respectively. The separation
point is clearly seen at Z*=0.00185 in Fig. 7, where the velocity shows negative in a
small part and is considered as beginning of the transition. This value is smaller than
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Fig. 6. Relation between the non-dimensional transition
length and the Reynolds number.
a), b), ¢), and d) denote orifices in Table.

the experimental value of 0.00234 shown in Fig. 9. For the case of larger Reynolds
number as shown in Fig. 8, the velocity near the wall oscillates violently and the
separation point is expressed clearly at Z*=0.000085. These dimensionless transition
lengths agree fairly well with the experimental value of 0.00006 and 0.0001 shown in
Fig. 9. The numerical simulation diverges over the time steps of these values, so it is
considered turbulence occurs in the region after this point.
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Fig. 7. Velocity variation along the pipe at Re=2,700.

20

u
U:I.O

-10 L l || I
1
0 0,0001 ¢ 00002

Fig. 8. Velocity variation along the pipe at Re=10,000.

5. CONCLUSIONS

As the result from numerical simulation and experimental study, the transition from
laminar to turbulent has the following characters;
1) Transition phenomenon is characterized by three parameters, the Reynolds
number, the non-dimensional transition length, and the disturbance applied.
2) Disturbance artificially applied at the entrance, in the case the transition occurs,
grows to have the reverse flow region.
3) These results show fairly good agreements between the experiment and the
numerical simulations.
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