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Summary: Rarefied gas flows around a circular disk in a hypersonic stream are analysed by the
direct simulation Monte Carlo method. The domain of calculation is fully three-dimensional. The
rarefaction effect upon the flow field, the drag and heat transfer coefficients, and the recovery
temperature is shown for Kn=0.1-20 at the wall to stagnation temperature ratios of 0.5 and 1. The
drag coefficient is in good agreement with the experimental data for argon by Legge. The cell network
proposed here can easily be applied to more general lifting flows.

1. INTRODUCTION

One of the most challenging problems in rarefied gas dynamics is the rarefied flow
around the aeroassisted orbital transfer vehicle (AOTV). It is a three-dimensional
flow of gas mixture with translational, rotational, vibrational, chemical, and radiative
nonequilibrium. Only the direct simulation Monte Carlo (DSMC) method, together
with a newborn supercomputer, may make it possible to compute such a complicated
flow. Dogra, Moss and Simmonds [/] calculated an axisymmetric flow along this line
by use of the DSMC method. The problem in adopting the DSMC method is that one
must have recourse to many assumptions or models that have not yet been verified
enough by experimental or theoretical studies. Our position on the problem is that
such assumptions or models must be checked one by one for some flows which are
simple enough to be treated by both the DSMC method and experiment.

Here is considered an axisymmetric hypersonic rarefied flow of monatomic gas
perpendicular to a circular disk. This simple case was investigated experimentally by
Legge [2] and theoretically by Hermina [3] who used the Bird method [4] together
with a dubious assumption of weighting factor. In a near future we intend to extend
the present work to the case when the disk has an angle of attack. Therefore, the
network of cells used here is so devised as to be applicable to fully three-dimensional
flows. The collision process in the DSMC method is treated by the modified Nanbu
method [5, 6]. Only the assumption of diffuse reflection and the model of rigid sphere
are employed in the present calculations.
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2. OUTLINE OF SIMULATION CALCULATIONS

We consider a rarefied flow around a circular disk perpendicular to the hypersonic
stream U,. Figure 1 shows the domain of calculation. It is a circular cylinder with
radius R and length (a+b). The radius of the disk is 7. The cell network is as follows:
first the domain is divided into N, wafers with thickness Az; next each wafer is
subdivided by circles and radial lines as shown in Fig. 2. The radius r, of the kth circle
1s given by

re=kAr,  (k=1, 2, ..., N,), (1)

where Ar is the radius of the innermost circle. The annular region r,_,<r<r, (k=2, 3,
.., N,) is divided into N, subregions where

N,=3k, (k=2, 3, ..., N,). (2)
It is to be noted that the innermost circle is not divided by radial lines. This network of
cells is reasonable, since the maximum distance L between two molecules in a cell is of
the same order for all cells. In fact, the distance L is
L=2Ar for k=1,
and

L=2rsin (A¢2)  for k=2, 3, ..., N,,

where A¢p=2n/N,. Then we have

L T\ _ =«
b kin (Z)< Fm10).
Ay ksin (- )<3 (=1.05) (3)
b Q —
R
J
Fig. 1. Domain of calculation. Fig. 2. Network of cells.
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This means that L/2Ar is between 1 and 1.05 for any cell. Next we consider the cell
volume. The volume V, of the innermost cell is V=a(Ar)*Az and the volume Vi of
cach of N, cells in the annular region r,_;<r<r, is given by

Vi  2k-1 _
TI—T’ (k=2, 3, ..., N,). (4)
This ratio is between 1/2 and 2/3. The total number N_ of cells is

N(.=[%N,(N,+1)—2]Nz. )
Our choice of the sizes of the cell and calculation domain is as follows,

R=3rp, a=(2-6)rp, b=2—6)rp, Ar=0.2rp, Az=(0.1-0.2)rp,.

In a typical case, N, is 21480.

The simulation starts by putting molecules in the whole domain upstream of the
disk. These molecules are given the velocity of the free stream. They have no peculiar
velocity since the Mach number of the free stream is assumed to be infinitely large. As
time goes on, fresh molecules come in across the upstream boundary (z=a).
Molecules which go out of the domain of calculation are eliminated. This is reasonable
for hypersonic flows. Molecules which strike the disk are diffusely reflected with
complete thermal accommodation to the wall temperature T,,. The intermolecular
collision is simulated by the modified Nanbu method [5, 6]. The outline of the method
is as follows. The probability P;; that molecule i collides with molecule J over the time
interval (1, t+As) is

n
P = OT8i5AL (6)
where N is the number of simulated molecules in a cell, n the number density, o the
total collision cross-section, g; the relative velocity of the collision pair at time ¢. Let
us fix the attention on molecule i. The probability P; that molecule i collides with
others is
N
Pl":z P‘]
j=1
The probability of no collision is (1-P,). Clearly, the summation of the two
probabilities is unity, i.e.

1=(1—P,-)+P,-=gNl] [(—IIV—PU)+P,-]-].

The probabilities P;;, Py, ..., P,y are distributed as shown in Fig. 3, where the interval
[0, 1] is divided into N equal segments. If a random fraction Urbetween 0 and 1 lies in
the jth segment, we have only to calculate P;. 1t Uy <(j/N)— P, there is no collision,
and otherwise there is a collision with molecule ;. Equation (6) can be expressed in
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terms of dimensionless quantities as

P.=— gA_"iA_tA 4
Y 2 V 2 N()Kn Vk ’
where g,;=g,/Uo, Af=Atl(rp/U), Kn(=A«/2rp) is the Knudsen number, and N is the
number of simulated molecules in a far upstream cell with volume V. Here A.

denotes the mean free path in the free stream. In the simulation the values of Kn, Af
and N, are given as data. In a typical case our choice is Ny=30 and Ar=0.01.

(7)

3. REsuLTS AND DISCUSSION

In order to clarify the rarefaction effect upon the flow field, the drag and heat
transfer coefficients, and the recovery temperature, the numerical calculations are
performed for the Knudsen numbers of 0. 1-20 and the wall to stagnation temperature
ratios T,/T, of 0.5 and 1. Owing to the assumption of hypersonic flow, the present
problem is governed by only two parameters Kn and T,/T,. There is no need to
specify the Mach number of the free stream. Figure 4 shows the velocity profiles along
the stagnation streamline for 7,,/Ty=1 and 0.5. As the Knudsen number decreases,
the gradient of the velocity profiles becomes very large, which means the formation of
shock front. The wall temperature has little effect on the velocity profiles. In Fig. 5 are
shown the density profiles along the stagnation streamline. A large increase in density
occurs near the disk in the cold wall case. Figure 6 shows the temperature profiles
along the stagnation streamline. It is seen that there appears a greater temperature
jump for a larger Knudsen number. In Figs. 7 and 8 are shown the density and
temperature profiles on the front surface of the disk as a function of the radial
distance, respectively. At the edge of the disk the density and temperature suddenly
drop due to the expansion of gas. In order to obtain more knowledge on the flow field,
the density contours for Kn=0.1 and T,,=T, are given in Fig. 9. The compression and
expansion regions can clearly be seen. Figure 10 represents the streamlines for the
cold wall case T,/T,=0.5. In case of the smaller Knudsen number, there appears a
flow towards the backside of the disk due to the higher frequency of molecular
collisions.

Figure 11 shows the drag coefficient Cp, for T,=T, in comparison with the
experimental data (denoted by a symbol ©) for argon by Legge [2]. Agreement is very
good. The figure also includes the results for T,/T,=0.5. Here the drag coefficient Cp,
is defined by

D

Cr=_ 2
b= 1 U2A° (8)

It
:
I

1 2 j-1 j N-1 N
N N N N N
Fig. 3. The modified Nanbu method.
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Fig. 4. Velocity profiles along the stagnation streamline.
(a) T./Ty=1, (b) T./Ty=0.5.
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Fig. 5. Density profiles along the stagnation streamline.
(a) T,/Ty=1, (b) T../Ty=0.5.
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Fig. 6. Temperature profiles along the stagnation stream-
line. (a) T,./To=1, (b) T,/Ty=0.5.
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Fig. 7. Density profiles on the disk surface.
(a) T./Ty=1, (b) T,/To=0.5.
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Fig. 8. Temperature profiles on the disk surface.
(a) T/To=1, (b) T./T,=0.5.
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Fig. 9. Density contours for Kn=0.1 and T,/Ty=1.
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Fig. 10. Streamlines for T,/T,=0.5.(a) Kn=1.0, (b) Kn=0.1.
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where D is the drag and A=sr,. In the limits of the free molecular and continuum
flows we have from [7]

N T 9a
Comat T T sy, (9a)
Y I
and
=T (kn1) (9b)
Py ’

with y (=5/3) the ratio of the specific heats. Equation (9b) is based on the modified
Newtonian theory.
Figure 12 shows the heat transfer coefficient Cp; defined by

CH_ Q

with Q the net heat transferred per unit time from gas to the disk. In case of the free
molecular flow we have

L (11)

In Fig. 13 we show the recovery temperature T,, that is, the wall temperature when
the heat transfer to and from the disk is balanced (Q=0). In the free molecular regime
we have from Eq. (11)

T, 2y
T()_}/+1 '

(12)

The recovery temperature decreases with Kn and tends rather abruptly to a limiting
value near Kn=0.2. A similar behavior is seen in the data of Cy, for T,,=T, (Fig. 12).
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Fig. 11. Drag coefficient. Fig. 12. Heat transfer coefficient.
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Fig. 13. Recovery temperature.

The numerical calculations were carried out by making use of the supercomputer
SX-1 at the Computing Center of Tohoku University.
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