# Dust dissipation timescales of protoplanetary disks and debris disks

Hiroshi Maeshima,<sup>1,2</sup> Takuya Kojima,<sup>1,2</sup> Takao Nakagawa,<sup>1</sup> Jungmi Kwon,<sup>1</sup> and Satoshi Takita<sup>1</sup>

<sup>1</sup>Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan <sup>2</sup>Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan

## ABSTRACT

The far-infrared excess of stars with protoplanetary disks and debris disks is expected to provide us with key information on dust dissipation process in the outer disks. In order to reveal the typical behavior of the disks including objects fainter than the current survey limit, we stacked far-infrared images cut out from the image of *AKARI* all-sky survey in the 90  $\mu$ m band (WIDE-S) on the basis of known object positions. We carried out two type of studies: one is the study on protoplanetary disks based on observations of T Tauri stars, and the other is the study on debris disks based on observations of A-type main sequence stars. Our studies show that, as disks evolve from protoplanetary disks to debris disks, the dust dissipation timescale becomes longer. This suggests that with disk evolution the dominant dust component changes from primordial dust, which remains small without growing into planetesimals, to secondary dust, which is formed by collisional destruction of planetesimals.

Keywords: Star-Formation: protoplanetary disks, circumstellar matter

## 1. INTRODUCTION

Protoplanetary disks (PPDs) are gaseous and dusty disks around pre-main sequence stars, and debris disks (DDs) are dusty disks around main sequence stars. Dust in the disks is warmed by stellar radiation and flux excess from photosphere flux is shown in the infrared wavelength region. As dust is farther from the central star, dust is colder and the peak of radiation becomes longer wavelength. Therefore, the far-infrared (FIR) excess of stars with the disks is expected to provide us with key information on dust dissipation process in the outer disks (~100 au). However, the number of objects detected in the FIR has been limited due to poor sensitivity of current observations. In order to reveal the typical behavior of PPDs and DDs including objects fainter than the current survey limit, we stacked FIR images cut out from the image of *AKARI* all-sky survey in the 90  $\mu$ m band (WIDE-S) on the basis of known object positions.

We carried out two type of studies: one is on PPDs based on observations of K–M type T Tauri stars (TTSs), which are low mass pre-main sequence stars, and the other is on DDs based on observations of A-type main sequence stars.

## 2. DATA ANALYSIS & RESULTS

#### 2.1. Protoplanetary disks

The first study is on PPDs based on observation K–M type TTSs. In order to make a unique catalog of TTSs closer than 200 pc, we collected multiple catalogs via vizieR catalog access tool. We collected 19 catalogs (Table 1), and there are 906 K–M type TTSs whose H $\alpha$  emission equivalent widths (EWs(H $\alpha$ )) are measured. The H $\alpha$  emission is caused by strong accretion onto TTSs, and becomes weaker with the evolution of a central star. Then we sorted these TTSs into 3 groups according to EW(H $\alpha$ ) as an indicator of evolutional stage : the TTSs whose EW(H $\alpha$ ) is larger than 20Å are classified into a "high-EW" group, that between 10Å and 20Å into a "mid-EW" group, and that less than 10Å into a "low-EW" group. Next, according to several criteria, we exclude TTSs which are not suitable for stacking analysis. Finally, the high-EW group has 112 TTSs, the mid-EW group has 82 TTSs, and the low-EW group has 372 TTSs.

We stacked 90  $\mu$ m IR images in each group, and aperture photometry was performed on the stacked images. The result is summarized in Table 2. We obtained 3 stacked images and their 90  $\mu$ m fluxes respectively. The 90  $\mu$ m IR fluxes decrease drastically in a typical TTS evolution timescale, and we conclude that decay timescale of the 90  $\mu$ m IR flux of PPDs is 1–10 Myr. This timescale is roughly consistent with the dust dissipation timescales probed at near-IR and mid-IR wavelengths (Ribas et al. 2014).

Corresponding author: Hiroshi Maeshima maeshima@ir.isas.jaxa.jp

## P23 - 2

### H. Maeshima et al.

Table 1. Selected 19 catalogs of TTSs

| Cluster                | Catalog                                                           |  |  |
|------------------------|-------------------------------------------------------------------|--|--|
| MBM12                  | Hearty et al. (2000)                                              |  |  |
| $\epsilon$ Cha         | Murphy et al. (2013)                                              |  |  |
| ho Oph                 | Wilking et al. (2005), Erickson et al. (2011)                     |  |  |
| R CrA                  | Neuhäuser et al. (2000)                                           |  |  |
| Taurus-Auriga          | McCabe et al. (2006), Slesnick et al. (2006b),                    |  |  |
|                        | Guieu et al. (2006), Rebull et al. (2010), Wichmann et al. (1996) |  |  |
| Upper Scorpius         | Preibisch et al. (2001), Preibisch et al. (2002)                  |  |  |
|                        | Slesnick et al. (2006a), Slesnick et al. (2008)                   |  |  |
| LCC & UCL <sup>a</sup> | Mamajek et al. (2002)                                             |  |  |
| MBM 55                 | Hearty et al. (1999)                                              |  |  |
| Cha I                  | Frasca et al. (2015)                                              |  |  |
| Lupus                  | Galli et al. (2015)                                               |  |  |
| Cha II                 | Spezzi et al. (2008)                                              |  |  |

Note-(a) Lower Centaurus-Crux and Upper Centaurus-Lupus

Also, disk dust mass was estimated on the assumption of optically thin FIR emission and isothermal dust temperature  $(T_{\text{dust}} = 20 \text{ K})$ . We estimate the dust masses as

$$M_{\rm dust} \simeq \frac{F_{\nu,\rm dust} d^2}{\kappa_{\nu} B_{\nu}(T_{\rm dust})} = 10.6 M_{\oplus} \left(\frac{F_{\nu}}{1 \, \rm Jy}\right) \left(\frac{d}{150 \rm pc}\right)^2 \left(\frac{\kappa_{\nu}}{27.8 \, \rm cm^2 g^{-1}}\right)^{-1} \left(\frac{B_{\nu}(T=20 \rm K)}{B_{\nu}(T_{\rm dust})}\right)^{-1},\tag{1}$$

where  $F_{\nu}$  is the observed 90  $\mu$ m flux, *d* is the distance (*d* = 150 pc),  $\kappa_{\nu}$  is the dust opcacity ( $\kappa_{90\mu m} = 27.8 \text{ cm}^2 \text{g}^{-1}$ ), and  $B_{\nu}(T)$  is the flux of blackbody radiation.

| Group   | Nstack | EW(H $\alpha$ ) [Å] | observed flux [Jy] | disk dust mass $[M_{\oplus}]$ |
|---------|--------|---------------------|--------------------|-------------------------------|
| high-EW | 112    | 67 ± 6              | $0.61 \pm 0.03$    | $6.5 \pm 0.3$                 |
| mid-EW  | 82     | $14.6\pm0.3$        | $0.086 \pm 0.037$  | $0.9 \pm 0.4$                 |
| low-EW  | 372    | $3.6 \pm 0.1$       | $0.041 \pm 0.017$  | $0.4 \pm 0.2$                 |

Table 2. Result of stacking analysis on TTSs

#### 2.2. Debris disks

The second study is on DDs based on observations of A-type main sequence stars. From Extended Hipparcos Compilation (Anderson & Francis 2012), 3,045 A-type main sequence stars were selected. In order to classify stars into 2 groups as the stellar age, the age estimation of stars was carried by two ways. First, if a star was judged to belong to a certain cluster from its position and velocity, we consider the stellar age is the same as the cluster age. Second, stellar ages, which cannot estimate by the first way, were determined by reference to  $Y^2$  isochrones (Yi et al. 2003) in a H-R diagram. After the age estimation, the stars were sorted into two groups: the stars younger than 300 Myr is classified into "young A-star," and older than 300 Myr into "old A-star." Next, according to several criteria, we exclude stars which are not suitable for stacking analysis. Finally, young A-stars group has 1,214 stars and old A-star group has 1,501 stars.

We stacked 90  $\mu$ m IR images in each group, and aperture photometry was performed on the stacked images (Figure 1). The result is summarized in Table 3. We obtained 2 stacked images (Figure 3) and 90  $\mu$ m IR excess ratios (observed flux over expected photosphere flux). The expected photosphere flux in 90  $\mu$ m is extrapolated from the *K<sub>s</sub>*-band flux of the Two Micron All Sky Survey (2MASS) catalog (Cutri et al. 2003), assuming the spectra as that of the black body radiation. The 90  $\mu$ m IR excess of young A-stars is significantly larger than that of old A-stars, and the 90  $\mu$ m IR excess become fainter as central stars become older. The result is consistent with the previous result (Su et al. 2006). By applying steady-state model (Wyatt et al. 2007), we suggest that the 90  $\mu$ m IR excess ratios of A-stars decreases in 230<sup>+160</sup><sub>-100</sub> Myr (Figure 4).

#### DUST DISSIPATION TIMESCALES OF PROTOPLANETARY DISKS AND DEBRIS DISKS

P23 - 3





**Figure 1.** (a) An example of single TTS image. (b) The stacked image of 112 high-EW TTSs. (c) The stacked image of 82 mid-EW TTSs. (d) The stacked image of 372 low-EW TTSs. The red circles show the aperture and the region enclosed by two green circles show sky annulus. The field of view is  $10'15'' \times 10'15''$ 

**Figure 2.** Observed fluxes of stacked TTSs as a function of mean EW(H $\alpha$ ). The black symbols mark this work. The blue line shows  $5\sigma$  detection limit of a single point source in WIDE-S All-Sky Survey mode.

**Table 3.** Results of stacking analysis on A-type main sequence stars

| group         | Nstack | age [Myr]     | observed flux [Jy] | 90 $\mu$ m IR excess ratio |
|---------------|--------|---------------|--------------------|----------------------------|
| young A-stars | 1,214  | $97 \pm 78$   | $0.041 \pm 0.005$  | $12.3 \pm 1.5$             |
| old A-stars   | 1,501  | $570 \pm 197$ | $0.029 \pm 0.004$  | $5.61 \pm 0.88$            |



**Figure 3.** Left panel: The stacked image of 1,214 young Astars. Right Panel: The stacked image of 1,501 old A-stars. The red circle indicates the same as Figure 1. The field of view is  $20' \times 20'$ 



Figure 4. The  $90 \,\mu m$  IR excess ratios of stacked A-stars as a function of mean age. The green line shows the fitted theoretical model line.

## P23 - 4

## H. Maeshima et al.

## 3. DISCUSSION

We conclude that the decay time of 90  $\mu$ m flux of PPDs is 1–10 Myr. This timescale is consistent with "primordial dust" dissipation timescale. Primordial dust remains small without growing into planetesimals and dissipate in a few Myr by radiation pressure and by Poynting-Robertson effect (Williams et al. 2011). We suggest that the decay time of 90  $\mu$ m IR excess ratio of DDs is about 230 Myr. This timescale is consistent with "secondary dust" dissipation timescale. Secondary dust is formed by collisional destruction of planetesimals. Because of dust provision by the destruction, effective dissipation timescale of secondary dust is extended by ~100 Myr. Our results show that as disks evolve from PPDs to DDs, dust dissipation timescale becomes about ten times longer. This suggests that with disk evolution the dominant dust component changes from primordial dust to secondary dust.

## ACKNOWLEDGMENTS

This research is based on observations with *AKARI*, a JAXA project with the participation of ESA. We thank Mr. Yasuhiro Matsuki for the original code of the stacking analysis which is the basis of our studies. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France.

## REFERENCES

Anderson, E., & Francis, C. 2012, Astronomy Letters, 38, 331 Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, The IRSA 2MASS All-Sky Point Source Catalog. Erickson, K. L., Wilking, B. A., Meyer, M. R., Robinson, J. G., & Stephenson, L. N. 2011, AJ, 142, 140 Frasca, A., Biazzo, K., Lanzafame, A. C., et al. 2015, A&A, 575, A4 Galli, P. A. B., Bertout, C., Teixeira, R., & Ducourant, C. 2015, A&A, 580, A26 Guieu, S., Dougados, C., Monin, J.-L., Magnier, E., & Martín, E. L. 2006, A&A, 446, 485 Hearty, T., Magnani, L., Caillault, J.-P., et al. 1999, A&A, 341, 163 Hearty, T., Fernández, M., Alcalá, J. M., Covino, E., & Neuhäuser, R. 2000, A&A, 357, 681 Mamajek, E. E., Meyer, M. R., & Liebert, J. 2002, AJ, 124, 1670 McCabe, C., Ghez, A. M., Prato, L., et al. 2006, ApJ, 636, 932 Murphy, S. J., Lawson, W. A., & Bessell, M. S. 2013, MNRAS, 435, 1325 Neuhäuser, R., Walter, F. M., Covino, E., et al. 2000, A&AS, 146, 323 Preibisch, T., Guenther, E., & Zinnecker, H. 2001, AJ, 121, 1040 Preibisch, T., Brown, A. G. A., Bridges, T., Guenther, E., & Zinnecker, H. 2002, AJ, 124, 404 Rebull, L. M., Padgett, D. L., McCabe, C.-E., et al. 2010, ApJS, 186, 259 Ribas, Á., Merín, B., Bouy, H., & Maud, L. T. 2014, A&A, 561, A54 Slesnick, C. L., Carpenter, J. M., & Hillenbrand, L. A. 2006a, AJ, 131, 3016 Slesnick, C. L., Carpenter, J. M., Hillenbrand, L. A., & Mamajek, E. E. 2006b, AJ, 132, 2665 Slesnick, C. L., Hillenbrand, L. A., & Carpenter, J. M. 2008, ApJ, 688, 377-397 Spezzi, L., Alcalá, J. M., Covino, E., et al. 2008, ApJ, 680, 1295-1318 Su, K. Y. L., Rieke, G. H., Stansberry, J. A., et al. 2006, ApJ, 653, 675 Wichmann, R., Krautter, J., Schmitt, J. H. M. M., et al. 1996, A&A, 312, 439 Wilking, B. A., Meyer, M. R., Robinson, J. G., & Greene, T. P. 2005, AJ, 130, 1733 Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67 Wyatt, M. C., Smith, R., Su, K. Y. L., et al. 2007, ApJ, 663, 365 Yi, S. K., Kim, Y.-C., & Demarque, P. 2003, ApJS, 144, 259