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Summary : Usually, the design objectives of control systems are not only to achieve specified
performances at the nominal operational points but also to guarantee admissible performances
over the range of parameter variations which inevitablly exist in the actual systems. In
this paper we consider the insensitive controller which guarantees the robustness explicitly
in terms of parameter variations while preserving the performance in terms of cost.

There have been reported many design methods as to this subject. Some investigated
the techniques which augmented the system structures such as the adaptive systems or
others. But here we consider the insensitive controller design that keeps its structure as
usual regulators from the view point of reliability. For this purpose we evaluate the
«Additive Term Design” methods in which the proper additional terms are introduced in
the covariance propagation equations or the cost equations in order to assess the deterio-
ration of the performance index (cost).

Reviewing the previous works we clarify some properties of these ‘“Additive Term
Designs”. And devising a few of new approaches we show that these techniques can
improve the cost surfaces and the stability and the stability margins and the sensitivity
with respect to the equivalent open loop systems.

To show the practical applicability, these techniques are applied to three numerical
examples. One is the longitudinal autopilot of aircraft and the others are the estimation
problem of radar tracking and the attitude control system of a large flexible booster.
These reveal that the “Additive Term Design” techniques are very effective to those systems
and that particularly the M.C.V. (“Maximum Cost Variation”) method improves the cost
surfaces satisfactorily. Since this robustness realization requires only a slight cost increase
at the nominal operational point, these techniques are expected to be applied to a large
number of systems with satisfactory improvement.
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1. INTRODUCTION

For a few decades, modern control theory has been applied to many control
systems. Particularly, linear quadratic (L.Q.) or linear quadratic Gaussian (L.Q.G.)
designs have been utilized in order to minimize the performance index (cost) as-
sociated with state and control variables. The reasons why many designers used
these methods are first of all their lowest cost, but the other important reasons
are their Jarger stability margins than other design methods, as they are fairly im-
portant properties in system designs. L.Q. controllers guarantee at least a half of
gain tolerance and 60 degrees phase margin automatically at the point of nominal
parameters. But in many cases, state feedback on which such properties are based
1s impossible and obtaining wider class of stability margins is not a main goal of
L.Q. design, because they are not evaluated explicitly in such designs. Therefore
one cannot always want the L.Q. controllers to have such properties, and only
expect them indirectly. The situation like this is common with the cases designed
by classical methods. Finally and essentially, even when this L.Q. design is em-
ployed. design procedures of controllers are reduced to trade-off between obtaining
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Synthesis of Insensitive Controllers in Linear Quadratic Control Problems 3

specified performances at the point of nominal parameters and making their per-
formances insensitive to parameter variations. In this paper, the author attempted
to circumvent these situations through the explicit evaluations of insensitivity in
L.Q. designs.

In view of practical control systems, there exist many uncertain sources in their
own models. In some cases, these are produced by nonlinearities in plants which
cannot be described easily or exactly and are approximated as first order into linear
models; such as actuator nonlinearities. In other cases, the causes are due to the
lack of exact parameter informations when many identification tests cannot be
executed; such as rocket or spacecraft dynamics, and sometimes aging effects or
the circumstances under which the systems are driven; such as aircraft dynamics.
In these cases, the most significant objective of system designs is of course to keep
admissible or specified performances retained over a wide range of parameter
variations. The problem of assuring large stability margins is sometimes called as
“robustness” property. The term “robustness” indicates the total properties as-
sociated with the insensitive controllers which have the large stability margins or
stable regions of parameters. This concept is defined not locally but constructed
as to the large parameter variations. Recently, “robustness” property is well de-
veloped and considered by Doyle [28] and other researchers. In this paper, the
author often dares to term these properties roughly “insensitive” properties involving
the preservation of performances or costs. Therefore design purposes in our cases
are as follows.

1) reducing the performance indices (costs) with nominal parameters as small

as possible.

2) and also keeping the performances retained at admissible or specified levels

over a preassigned range of parameters.

(This means robust or insensitive property.)
While the former leads to the optimization of design parameters with respect to
the nominal cost, the latter does not imply that but suggests the another sense of
total optimization evaluating the sensitivity. Namely the design is near optimal
or suboptimal one concerning the nominal cost with insentitive properties. The
meaningful quantity of performances is not defined so easily. In this paper, this
quantitative measure is taken as the same type of performance indices (costs) as in
the usual L.Q. or L.Q.G. problems. The second purpose above is equivalent to
the following.

3) reducing cost increase due to the system variations as small as possible or

minimize the highest cost value over a specified range of parameters.

In this paper, our main discussions are in the analyses of the new design msthod
“Maximum Cost Variation” (M.C.V.). These considerations are made via the
elucidation of desensitizing mechanism by the general form of *“Additive Term
Designs”, which introduce some additional terms into L.Q. designs. Moreover
through these the sufficient condition of cost surface improvement and the expanding
mechanism of stability margins are clarified. And particularly for M.C.V, that
condition of uniform cost surface improvement and the considerably large stability
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margins are made clear.

In this subject, many design procedures have been proposed and developed by
some investigators. Harvey in [/] has surveyed many existing techniques and some
new concepts proposed there and compared with one another from the view point
of cost, when state feedback is possible. According to his results, “Uncertainty
Weighting” method (to be shown later) is most effective and preferable. But
historically speaking, the first attempt to this problem is performed as the output
regulation problem: Even when the disturbances and the changes of reference levels
affect the system through the uncertain mechanisms, the outputs of the system
behave invariantly if the internal stability is assured; This can be achieved by the
augmented systems which contain the same internal models as in disturbances and
reference level dynamics. This property is termed as “Internal Model Principle™
and such output regulation is called “Structually Stable” property if they are retained
even in the existence of uncertainties. (Davison [/5-/7] and others) But this holds
only in the case when internal stability is assured in spite of such uncertainties.
Consequently. one cannot expect this property because the stability of the total
system with uncertainties is hardly clear. The concept of sensitivity is considered
by Cruz and Pearkins [I8] first. Their concepts are the extensions of single-input
and single-output system sensitivity, and this is the transfer function between the
equivalent open loop and the closed loop system with same parameter variations
in multivariable systems. This sensitivity relates to “Return Difference Matrix”
and is utilized to recent investigations and robust properties. Kreindler also inves-
tigated this and showed that the sensitivity is reduced under unity compared with
the equivalent open loop system if the optimal L.Q. control laws are employed.
(Kreindler [24], Cruz [27]) Bhatacharyya [37, 38] and others [39, 41] considered the
idea of “Disturbance Eliminating”. This concept is constructed under the assump-
tion that interaction mechanisms between plants and other dynamics are exactly
known. Therefore the uncertainty considered there is confined to the exogencous
dynamics and the mathematical constraint is very strict one. Hence, this idea will
not be useful in highly uncertain systems.

Generally, there are two types of design methods which have ever been con-
sidered as the procedures for obtaining the insensitive controllers. One type is as
it were “Augmented System Design” methods by which the total system structures
are changed to higher order systems. The other type is contrary to this, by which
the structures are retained as nominally designed ones such as L.Q. systems. ‘“‘Parame-
ter Adjustment” and “Additive Term Design™ belong to this type. In “Augmented
System Design™, Landau [42] surveyed so to speak adaptive systems. And Kreindler
in [I] also considered “Sensitivity Vector Augmentation” design which defines first
order variations of states as augmented system variables and constructs the com-
pensators for them. The basic idea of this is one of estimating unknown disturb-
ing states. This leads to ‘“Mismatch Estimation” of Kleinmann in [/], and
“Orthogonal Filter” of Skelton [52, 53] and other real time parameter identification
techniques. ““Parameter Adjustment” is a very direct method to insensitive purposes.
Salmon [54] devised “Mini-Max Design” algorithm and he applied it to insensitive
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controller designs. Kleinmann also considered “Maximum Difficulty Design” which
utilized the same idea as Salmon’s. ‘““Additive Term Designs” are curious methods
which contain various types of concepts. These concepts evaluate the cost increase
over a range of parameters by using corresponding types of additive terms. There-
fore each method of these is characterized and classified according to the respective
philosophy of evaluating the cost variations. Kleinmann [58, 59] reported ‘‘State
(or Control) Dependent Noise” concept which models system variations as per-
sistently changing ones or random processes. ‘‘Uncertainty Weighting” method has
the simplest form of the additive terms which is introduced in Harvey’s [/]. Peng
[63] showed the ‘“Guaranteed Cost Control” (G.C.C.) concept and Vinkler and
others [65] reported the applicability of this to practical systems. Another form
of additive terms in G.C.C. is found in Jain’s [66] which leads to M.C.V. design
in this paper. Moreover, many researchers have considered these robust designs
by practical or classical techniques.

Among the various kinds of design procedures, the author focused his attention
on “Additive Term Designs” in this paper, because of the simplest structure of
resulted control systems. Even if the highly insensitive properties are made by the
use of complex higher order controller structures, the utilization of them cannot be
always accepted. And from the practical aspects, even the simplest controller will
have the insensitive properties. Hence the objective of this paper is confined to
the problem; What type of additive terms is effective to designing insensitive
controllers? The outline of this paper is the following.

In this paper, at first many previous works considering the insensitive controller
designs are introduced, which are concerned with later discussions. Particularly,
the concept of robustness and some ‘“Additive Term Design” methods are stated
in detail. (Chapter 2)

Next, some new design methods of these are investigated, where the “Maximum
Cost Variation” (M.C.V.) concept that assures uniform cost improvement as G.C.C.
is shown and derived. Some discussions on cost and stability improvement under
“Additive Term Designs” that have not ever been studied in detail appear next,
and the comparisons of these with the existing designs are shown, where a few
of new useful properties and mathematical studies concerning ‘“‘additive term designs”
are established; such as the condition of insensitivity achievement and considerably
large stability margins of M.C.V. and other properties. (Chapter 3)

While the discussions are made for system matrix uncertainties till then, we next
proceed to the systems which have the other types of uncertain mechanisms such
as control matrix uncertainties, and the application of this method to the discrete
systems and the dynamically compensated systems will appear before computation
algorithms. Some computation algorithms of robust output feedback systems with
M.C.V. type additive terms which are utilized in later examples and practically
compensated systems are shown next. (Chapter 4)

Finally the author presents three numerical examples with satisfactory insensitive
properties. First example deals with the longitudinal autopilot of aircraft with
uncertainties of static stability stiffness and the damping derivatives. The example
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has the same model as that of our main discussions in this paper, where the M.C.V.
concept reduces the cost variation considerably with only a little increase of the
nominal cost. Second example is the application to the estimation problem, where
the positions and velocities of a re-entry vehicle with unknown aerodynamic coef-
ficients are estimated by nonlinear filtering procedures. The robust design methods
are utilized to covariance propagation equations with highly improved results. The
last example deals with the attitude control system of a large flexible booster. The
system is a large scale one, in which 23 state variables and the dynamic compen-
sator of several degrees is considered. And model simplifying techniques are used
for designing compensators and the M.C.V. type robust output feedback technique
is applied to the total optimization of this discrete system. The results show that
a better insensitivity is achieved by some existing methods than M.C.V, because of
ambiguous or aprroximated modeling of system variations due to the transformation
between the continuous and the discrete systems. But the designed systems are very
simple ones with sufficient robustness. (Chapter 5)

2. PREvVIOUS WORKS

2-1.  OQOutput Regulation and Structually Stable System

As many controller designs are applied to multivariable systems, system designers
have been required to improve the steady state performances of control systems.
These properties are similar to the type problem in classical single-input single-
output systems, such as the type | servo compensator. These servo compensators
demand the system to have P.I. type feedback if the reference level changes dependent
on time. When the disturbances or external system outputs affect the system to
be controlled, these type problems must be solved. At first, Young [9], Johnson
[0, 11], Pearson [/3] and others [/2] considered this type problem and derived the
integration feedback servo systems in multivariable systems as in classical cases.
And Davison [2, 3, 4] and Wonham [5] investigated the feedforward control for
obtaining the output regulation as to the systems with the disturbances and the
reference level changes. Of these two types of regulators, the feedforward control-
lers are sensitive to the system parameters, that is; if the system parameters change,
the output error takes place with finite or infinite quantity. But the integration
feedback system is so to say robust, where the output is well regulated for a certain
amount of parameter variations. After these researches, Davison [/4], Wonham
[6] and others established the “Internal Model Principle”, which means the servo
control systems must have some rational numbers of copied dynamic models under
which the disturbances and the reference levels behave, through the study on the
role of transmission zero [7]. Further they made discussions on servo compensators
in which any subsystem or internal system is stable, and such controllers are termed
as “Internally Stable Output Regulators”. After the detailed considerations, regard-
less of the interaction mechanisms between the plant and the exogeneous models,
the output regulation is expected to be achieved. In fact, Davison [I5, 16, 7]
established the concept of “Structually Stable Output Regulation” which keeps the
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output regulation properties retained no matter what interaction mechanisms exist,
assuming that the dynamics of external models are known exactly and internal
stability is guaranteed in spite of interaction mechanisms. He classifies the com-
pensator mechanisms into two groups; stability compensators and servo compen-
sators. Though these concepts will be of use to many control systems, in highly
uncertain systems the properties assumed above cannot be expected, particularly as
to the internal stability. Hence, the robust controller designs have become to be
considered from these output regulation problems to the sensitivity or other ones.

2-2. Sensitivity Problems and Its Reduction

It is very ambiguous to define the sensitivity of control systems. Particularly in
multivariable systems, there is no definite selection of sensitivity quantity. The most
primitive idea is cost (performance index) sensitivity versus parameter variations.
This concept is accepted by some investigators, and is to be treated in detail in
this paper. The sensitivity idea, which relates to both the extension of single-input
single-output system properties and the return difference concept, was established
by Cruz and Pearkins [/8]. The motivation of their concept is demonstrated in
Fig. 1. Consider the equivalent open loop system to the designed closed loop
system. Then the output deviations of the open loop system and the closed system
are related with each other as follows:

(Yi(5) = Yeu$)=5() - (Yo — You(s)),  S@O=U+P@)- £~ (1)

where subscripts ¢ and o denote closed and open loop respectively. They defined
the sensitivity as this S(s) matrix.

They also considered the insensitivity conditions that the time-integration of the
output deviation norm is reduced in closed systems comparing with nominally
equivalent open loop systems. That is

j: ) Z e (t)-di < j 0 et)"-Z e(i)-di for V8,0, YZ>O0,

where ec(t)zyc(t)—ycn(t)’ eo(t):yo(l)—yon(t)' (2)

Plant

R(s) , Input Output

r:)ol:[;:::) DT ) S—— P Y

el n:(S)

Controller
Fig. 1-a. Closed Loop System.

Plant

R(s) ' Tnput Output

Y G(s) [y Puls) == Yeuls)

Usiails)

Controller
(G(s) =(I+F{(s)Pn(s))"
=1—F(s)(I Py (s)-F(s))"P (s}
Fig. 1-b. Equivaient Open Loop System.
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This attempt is also studied by Kreindler, who derived through using Parseval’s
theorem the sufficient condition for the inequality above to hold as follows:

ST (—jw)-Z-S(jo)y<Z or (I+P(—jo)F(—jo)"-Z-(I+P(jo)F(jw)>Z,
for Yo >0. (3)

Therefore, this sensitivity is well characterized in the sense of the inequality (2);
that is, from equation (3) in order for the inequality (2) to hold, it is sufficient
that this sensitivity is under unity.

These discussions are also noted briefly by Kimura [/30]. And other attempts
to define sensitivities of control systems are considered by Porter [/9].

But there is the most important question left to be answered. That is—Are
there any design methods by which the sensitivity is kept under unity? Essentially
the answer is in the affirmative. Kreindler [24, 25] and Cruz [27] stated in their
reports that if the optimal control laws (L.Q.) are employed, then the sensitivity
of designed closed loop systems is reduced under unity. (i.e. The inequality (2)
holds in such systems.) The conceptual basis of this property is the circle condition
of L. Q. regulators, which is discussed in later chapters of this paper. This property
is the one of the most important characteristics of L. Q. regulators. However, of
course, if the state feedback is not available, these merits can not be expected.
And the system compared with such regulators in this discussion is only the equiva-
lent open loop one, therefore it is unable to insist that L. Q. regulators are superior
to the controllers designed by other methods.

The discussions on this return difference property is well developed as to the
robustness property recently.

2-3.  Recent Developments on Robustness

Recently many engineers have been studying the robustness property of multi-
variable control systems utilizing “Multivariable Nyquist” criterion. These researches
are made on the basis of classical Nyquist stability criterion, and using the analogy
of multivariable transfer functions. These developments are briefly surveyed in
Kodama [33] and Kimura [34].

Doyle [28, 29] considered the multiplicative form of uncertainties as in Fig. 2.
And he derived the necessary and sufficient condition of robustness; i.e. To what
amount the system stability is retained? The result is

Compensator Plant Qutput

R(s) 4+ U(s)

IZTT[:(> Kis) Y Gls) Y (s)

i Gs)=[1+1L(s)}-G(s)

Fig. 2. Uncertain System Model (I).
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If 5(G-K-(I+G-K)")<l/Ilm(w) or a(I+(G-K)"")>1m(w) for Y>>0,
then YL(s) such that a(L(jw))<lm(w) is permitted for the system to
remain stable, where () and g(x) denotes the maximum and minimum
spectrum radius respectively. (4)

This guarantees that any linear elements L(jw) which do not violate the inequality
above are permitted for the system to remain stable. He continued the discussions
to the design procedures qualitatively, evaluating both robustness and insensitivity
defined by Cruz and Pearkins. The requirement for obtaining robustness is dis-
tinguished from that of sensitivity reduction, and he proposed the trade-off design
technique “g-plot”, because the robustness requirement and the insensitivity require-
ment are qualitatively expressed as follows:

a(G-K)>P(w)/(1—1m(w)) for insensitivity, where P(w) is a certain
large positive function, and (G- K)<1/lm(w) for robustness. (5)

He recommended the procedures that both of two inequalities above should hold
over a sufficiently wide range of frequency. Finally he investigated the robustness
of L. Q. regulators and displayed the same results of "Athans [32] and others; i.e.
a half value of gain tolerance and at least 60 degrees phase margin.

Another consideration is held by Lethomaki [30] and others. They noted the
correct utilization of “Multivariable Nyquist” criterion which was established by
Rosenblock. Their treatment is slightly different from Doyle’s; The uncertainties
are modeled as in Fig. 3. While Doyle separated the robust properties and the
insensitive ones, Lethomaki discussed these by using a single form of inequality.
His formulations are highly relating to the stability margins and give us deeper
insight into the cross feed perturbations and other kinds of uncertain sources. The
basic results are as follows:

If @y<e({+G) and «,<1, then gain factor > h b , phase shift

+a,

gcos”(l ——%aﬁ) or YX(s) such that a(X(s))<«, contained in

L(s):[l X(S)] or [1 O] (cross feed perturbation)

o I X(s) 1
is permitted for the system to remain stable. (6)
ll' —————————————— 1
Co at Plant | 0
R (S) " U (S)' ompensator An Jutput

K(s) :> Gl(s) —:—— Y (s)

*HL_ _____________ ]

(G (s)=G(s)-L (s)
(Perturbed System)

Fig. 3. Uncertain System Model (IT).
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And similar evaluations of L. Q. regulators to Doyle’s are made resulting in well
known stability margins mentioned above. They insist that from the aspects of
stability margins it will be advantageous to design controllers via Lyapunov equa-
tions rather than usual Riccati equations.

And some interesting considerations are mentioned in Cruz [27] and Sezer [35],
Barrett [36].

2-4. Existing Design Methods
2-4-1. Augmented System Design

For these several years, there have been developed a number of robust controller
designs. As mentioned before, roughly speaking, two types of design methods exist
today. One type is the “Augmented System Design” by whose techniques the
constructed systems are changed complex to higher order systems, and the other is
either “Parameter Adjustment” technique or “Additive Term Design™ that main-
tains the structures as in the cases by the nominal controller (L.Q.) designs.

There appear to exist 5 classical approaches in “Augmented System Designs”.
These are as follows.

a) Adaptive Systems; Landau

b) Sensitivity Vector Augmentation:; Kreindler

¢) Multi-Plant Designs: Harvey

d) Mismatch Estimation; Kleinmann

e) Orthogonal Filters; Skelton

Adaptive system designs have spread over a great number of fields of control
systems. The most superior characteristics of this approach are their successful
asymptotic features. These features are supported by certain sufficient conditions
as to stability, which are assured by absolutely nonlinear evaluations. Landau [42]
reviews some types of M. R. A.C.S. (Model Reference Adaptive Control Systems),
and Kreisselmeier [47] devised the adaptive observers that have more feasible struc-
tures in the control systems. But generally these adaptive systems are fairly inferior
to nominal controllers because of their slower damping rates of convergence. Ljung
[45, 46] also studied the real time parameter identification method—extended Kalman
filtering. In practical systems, there hardly exist the cases in which any informations
of system structures and theit variations can not be obtained. System engineers
are usually informed of the tendency of the overall system parameter variations and
of some exact parameters. Therefore these adaptive systems are not required and
too complex to be accepted in usual control systems.

The second method *‘Sensitivity Vector Augmentation” method is the technique
where the sensitivity vector states are assumed to behave according to certain
dynamical models. The design purposes are to suppress the magnitudes of these
sensitivity vectors, and thus the total system performances appear to be retained
more or less. These concepts are exploited by Kreindler in [/], O’Reilly [50],
Fleming [57] and other researchers. Along Kreindler’s the discussions proceed as
follows. Consider the system model with a paramerter vector p,
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x=F(p)-x+G-u. (7)

If we define the sensitivity vector as the partial derivatives of states (or trajectories)
by parameters,

ax
= 9% 8
g 5 ( )

then first order simplified dynamical models of (7) are formulated as follows:

s=F.o+ 9F k. (9)
ap lv=mo

Consequently, we define the augmented system state variables, and arrange the
system as folows:

F 0

. G

i LA f+[0]“a =(37, o). (10)
op Ip=po

Thus the design model is constructed as eq. (10). But we can clearly recognize that
the order of states may be so higher that design computational load will increase
considerably. And the resulted system is never promised to have the robustness
property, so even though this technique is adopted in designs, no improvement of
cost or stability might be realized for the augmented system variables have no physi-
cal meanings.

“Multi-Plant” designs are mentioned in Harvey’s [/]. The motivation of this idea
is very primitive one. If we expect the total system to be stable at several points
of parameters, then we have only to prepare the expanded system model such as
follows:

X, F(p,) o 1f x, G Ol u
1SR R an
xn 0 F(pn) Xn 0 G u

with the feedback constraints of gain matrix K as

u K Ol]lx

=] (1)

u. 0O K||x,
If these design procedures are finished successfully, system stability at these specified
points is guaranteed naturally. And physical interpretations of cost associated with
these expanded models are defined meaningfully. However these computational load
is very severe because of the common reasons with “Sensitivity Vector Augmen-
tation” algorithm; i.e. so to say the curse of dimensionality. Namely if a designer
wants to stabilize a 10-th order system at (10X 10) 2-parameter variated points by
this robust design method, we must consider surprisingly large a number of higher
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order system (1000-th order expanded system), which can be seldom solved. And
effective calculation techniques for solving the gain matrix K like the equations
above are not established. In fact Harvey reported this difficulty and commented
the calculation method in [/], though this technique leads to the usual simple system
structures and may be expected to have the meanings as in mini-max design of
“Parameter Adjustment” techniques discussed later.

There are more tactical compensation techniques which are deeply concerned
with adaptive systems; “Mismatch Estimation™ method and its alternative concept
“Orthogonal Filter” techniques. Kleinmann considers in Harvey's [/] “Mismatch
Estimation” method. The main principle of this formulation is recognized as that
the deviations of state trajectories are caused by other some outputs of external
dynamical systems about which any information is not available. The solid for-
mulations are as follows:

X=F.-x+D-£+G-u,
E=—7. 542 (external model). (13)

It is well known to us that this type of augmented systems resembles to real time
parameter identification techniques except for the absence of nonlinear features,
where extended states are modeled as a first order Marcov process. Because all
the causes of model mismatching are assumed to be the existence of exogeneous
state variables, hence we must install the state estimators or observers with the
control systems, and we must construct the feedback control laws under the higher
order augmented systems. There are no justification and rational determination
techniques of the additional system matrices D, 7 and the random inputs 2.

A similar and more tactical design technique “Orthogonal Filter” is investigated
by Skelton [52, 53]. He adopted the following type of equations like Kleinmann’s
above. The difference between Kleinmann’s and Skelton’s is the structure of the
additional system matrices:

X=A-x+B-u+P,-s, §=D-s, y=C-x+4P,-s,
oo . . . .
10 -

040 .
3060 -
08080 -
00 .

In Skelton’s formulations, external states are tuned to behave as Chebyshev poly-
nomials over the time interval [0, 7]:

T
SRS

. (14)

1 7
g
s(y= |20 1 =01, d—1, g= 21 _1, (15)
4g*—3 T
Lcos (i-cos™'g))
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These polynomials span the orthogonal basis of d-th order in time domain, if the
dimensions of external states are modeled as d-th order. Namely over the time-
interval [0, z], these introduced variables s(¢) express ¢°, ¢, - - -, t?~! time dependent
functions. (often called Chebyshev Filter) Skelton commented that this technique
will be effective to not only parameter variations but observation spillover problems
in truncation, even if the order of external system is quite small. But we should
note that theoretically there are some restrictions naturally that only a few of time-
dependent functions are assumed to be causal sources, and that these are not
almighty but some buffers for output deviations.

2-4-2. Parameter Adjustment

While the previous discussions are treating higher order augmented systems, the
considerations here are relatively simple ones. As commented before, we designers
may well accept the simpler controllers, if the prepared design parameters as in
nominal or specified systems are adjusted properly and so that the robustness is
accomplished. Analogous procedures have been performed in classical designs, too.
In classical approaches, it is a main design work to adjust total loop gain and the
mixing ratio of some outputs of sensors and filters. But in multivariable systems,
these trial and error approaches become highly complex and cannot be synthesized
in detail. Salmon [54] devised the effective mini-max calculation algorithm evalu-
ating control cost;

To find the gain matrix so as to minimize the maximum cost over
the parameter variations.

This is one of the most direct and successfull approaches to obtain robust con-
trollers. In fact the calculation algorithm is finished with finite cost J, then the
robustness property is guaranteed over the specified range of parameter variations.
But the computational load increases so highly at the presence of many uncertain
parameters that the adoption of this may be rejected usually. Kleinmann in (1)
attempted “Maximum Difficulty Design”, and Pearson [55] “Worst Case Design”,
avoiding this computational difficulty, leading to the “Off-Set Design” noted later
in this paper.

Yahagi [57] attempted the different “Parameter Adjustment” approach, who evalu-
ated cost sensitivity explicitly and designed with additional weighting of these cost
sensitivity matrices in output feedback systems. The evaluation of cost sensitivity
is very interesting and will be utilized later. His formulations are as follows.

Under the usual problem;

X=A-x+B-u, u=K-y, y=C-x, D=A+B-K-C,

ler (x7-Q-x+u”-R-u)-dt to be minimized, gj{; =2.5-P, where
0

P:r exp(D-1)- X, XL -exp (D”-1)-dt and D7-S+S-D+Q+CT-K™R-K-C=0,
0
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the modified problem is formulated as
oJ, \" oJ, o
J,=J,+ tr. Sy L2 (L>0) to be minimized. (16)
0A 0A
Notwithstanding these quantitative approaches, the computational load is still high,
because the effective algorithm is not established. He investigated the numerical
technique like gradient method and showed some examples through complex calcu-
lations.

2-4-3.  Additive Term Designs

Apart from the discussions before. quite different approaches are reported by
many authors. In this paper, these are termed as “Additive Term Design” methods
after the structures of resulted Riccati type equations. There are three types of
existing design methods which belong to this ‘“Additive Term Design™ group. One
is the ““Additive Noise” or “‘State or Control Dependent Noise” concept considered
by Kleinmann [58, 59], McLane [60, 61] and others. And the second is “Uncertainty
Weighting” method in Harvey’s [/], and the third is “Guaranteed Cost Control”
technique established by Peng [63], Vinkler [65] and Jain [66].

Generally, if the optimal feedback controllers are designed, we must solve so to
speak the Riccati type equations which express the value of the performance index
(cost) associated with the covariance propagation equations. This titled “Additive
Term Design” methods use the modified versions of ordinary cost equations or
covariance equations, in which a few of additional terms are introduced against
each philosophy. The most advantageous characteristics of these are feasible amount
of computational load and the theoretical justification of treatment.

Kleinmann [58, 59] and McLane [60, 61] devised the “State or Control Dependent
Noise” concept. These are motivated by the equivalent assumption of parameter
variations to random processes dependent on states or control inputs as follows:

X=A-x+B-u+064-x+0B-u<«—>dx=A-x-dt+B-u-dt+0A-x-dé+0B-u-dy,
where &, 7 are Wiener Processes with following properties:

E((&(1) — E(t,))(ES) — E1,)7) :j " g0,
E((E(0) — 1) (1) — (1)) =0,

min (¢,s)

E (1) — 7t (s) — (1)) = j (7). dr. (17)

to

Of course, correctly speaking, these are somewhat strange models, because the
parameter variations are not processes but statistical quantity. But they adopted
the straightforward interpretations of ergodic characteristics and derived following
covariance propagation equations through the use of Ito’s calculus on stochastic
differential equations:

P=4.P+P-A+4*-64-P-64"+0>-6B-K-P-K"-6B", P(t,)=P,,
where u=—K-x, A=A—B-K. (18)
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And they reduced the cost equations and feedback laws of optimal control problems
as follows.
Under the problem of

¢
J:Jl (x"-Q-x+u"-R-u)-dt to be minimized,
to

—S=A"-S+S- A+ 00A"-S-5A+¢>-KT-3BT-S-6B-K+Q+K"-R-K,
S(t,)=0, K=(R+d33B"-S-6B)"'-B”-S. (19)

By this method, it is clearly interpreted that high gain feedback laws are required
at the presence of state matrix ambiguities, and that low feedback gains are needed
at the presence of control matrix uncertainties. Kleinmann proceeded next to the
application of these to the aircraft control problems [59]. And McLane considered
the formulations of output feedback control problems with these dependent noises
[61].

There was reported in Harvey’s [/] that the very intuitive realization of additive
terms is “Uncertainty Weighting”. This design method is fairly simple one and
from the point of computational load this has the same complexity as the nominal
L.Q. ones. The fundamental basis of this concept is as follows. Consider the
original system and first order variated system:

X=A-x+B-u+dA4-x,
O0X=A-0x+6A4-x. (20)

If we expect the trajectories preserved, it is intuitively effective to evaluate or weight
the external forcing vector 4x. This idea leads to the modification of the per-
formance index as

t t
J:jf(xT-Q-x+uT-R-u)dt+ffxT-éAT-M-(SA-x-dt

to to
to be minimized, where M is a certain positive definite matrix. 2D

And the resulted cost equations to be solved are derived easily like the nominal
formulations:

—S=A7.S+S- A+ Q+K"-R-K+35A7-M-5A4,
S(t)=0, K=R-'-B”.S. (22)

The inspection of the additive term above reveals the simplest feature of not con-
taining cost matrix S to be solved, like the same treatment as state weighting
matrix 0. Moreover Harvey reported that this method is superior to any other
design techniques contained in his literature. It will be noted later in this paper
that this concept is only a simplified version of ““State or Control Dependent Noise”
or next “Guaranteed Cost Control” techniques. But whether robustness property
is achieved or not if we employ this method is only a qualitative analogy.

The last concept “Guaranteed Cost Control” was established by Peng [63] and
others. This idea has two aspects of characteristics, one of which is the mini-max
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design feature and the other is Lyapunov’s sufficient stability criterion. By the first

characteristics, this evaluates the upper limit of maximum cost, and minimizes that

cost. As to the stability, when the Lyapunov’s criterion is used, this design

guarantees the stability over the wide range of specified parameter variations. The

discussion proceeds as follows. Consider the cost equation of the variated system.
Under the same problem as (19)

—S§=A7.S+S-A+Q+K"-R-K+347-S+S 04, S(t,)=0. (23)
If we adopt the following values instead of the last two terms above,

y(SAT~S+S-5A]:TT-]A|-T,
where 7T is a transformation matrix of (347-S+S5-04) into a real
diagonal matrix A, (24)

then at any time the calculated cost is proved to be higher than the true cost
value. Regarding this equation as the definition of cost along the trajectories, it
will be a best choice of feedback laws K to minimize the cost tr.[S] at initial time:

—S=A".S+S- A+ O+ K"-R-K+35A"-S+S-04, S(t))=0,
K=R""-BT-5(1). (25)

If we confine ourselves to time-invariant and infinite-time cases, the stability is
guaranteed like followings. In case that parameters are variated, rewriting the cost
equation as

O=(A+0A)7-S+S-(A+0A)+Q-+K"-R-K
+(6AT-S+S-34|—(3A"-S+S-94)) (26)

and applying the Laypunov’s stability criterion, we easily find out that over a
specified range of parameter variations the stability properties are assured sufficiently.
According to the discussions made here, this concept appears to be an applicable
design method. But in practical installations, we should note in our mind that
this might not improve the cost and require the high gain feedback laws unneces-
sarily. There would be the consideration of cost improvement in this paper; i.e.
insensitivity realization in robust sense. Vinkler [65] attempted to avoid high gain
feedback laws which may be required by “Guaranteed Cost Control” and proposed
the multistep guaranteed cost control design. And Jain [66] considered the ap-
plicability of this to estimation problems named “Guaranteed Error Estimation”
with another form of upper limit evaluations, whose form is considered as M.C.V.
concept later in this paper.

2-4-4. Other Works

There have been approached to insensitive controller designs other than the
methods mentioned here. Alike the structually stable output regulation, Bhat-
tacharyya [37 38], and Mita [39, 40], Furuta [4]] and others intended to eliminate
the affection caused by exogeneous disturbances or external unknown dynamics.
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This is usually termed “Disturbance Elimination” or “Disturbance Localization™.
While they considered these “Unknown Input Observers”, Kimura [/30] studied
this type of controllers. And other classical approaches to this item are shown by
Horowitz [70]-[79]. And other researches are presented by Sugano [82], Barnet
[69], Krogh [84] and so many authors [67, 68] and [80, 8I]. Any way, we would
like to discuss our main body considerations of this paper in next chapter based
on the previous works studied in this chapter.

3. New DESIGN METHODS AND DISCUSSIONS

Here we derive some new design techniques and discuss cost and stability im-
provement under “Additive Term Designs.” Particularly the “Maximum Cost
Variation” (M.C.V.) concept which assures uniform improvement of cost is formu-
lated, where the additive terms that have the monotonous features are utilized.
Some useful properties that have not ever been studied in detail are established;
such as the condition of cost improvement and considerably large stability margins
of M.C.V. and others.

3-1. A New Approach to “Guaranteed Cost Control” (G.C.C.)—“Maximum Cost

Variation” (M.C.V.)

The concept of “Guaranteed Cost Control” (G.C.C.) presented by Peng was
reviewed in the previous chapter. Here we derive the new type of G.C.C. method,
which is a little different one from his; i.e. with monotonous characters and leading
to uniformly insensitive controllers, named ‘“Maximum Cost Variation” (M.C.V.).
Now we formulate this through the covariance equations instead of cost equations.
A) Derivation

Let’s consider the nominal system
X=A-x+B-u 27
and uncertainly variated system:
X=A-x+B-u+f(q, t, x, u). (28)

Where f(x) is a nonlinear vector function of x, w, ¢ specified by the parameter
vector g e £.

Assumption 1.

2 is a compact and convex set in R.

Assumption 2.
fQ0, t, x, u)=0

and f(x) is a C’-class vector function with repect to x and u on £.
Assuming the adoption of usual type of feedback control law K, we can obtain
as it were covariance propagation equations as follows:
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P=A.-P4+P-A"+f-x"+x-f7, P(t,)=P,,
where u=—K-x, A=A—B-K, P=x-xT. (29)

Now we set our attention on the minimization of following performance index (cost):
t t
J:ff (xT-Q-x+uT~R-u)dt:thr. (Q+K™-R-K)-Pdt. (30)
Lo to

From this equation, we can easily find out that the larger the covariance matrix
becomes the higher the cost increases. Consequently, in order to evaluate cost
deterioration over the range of parameters’ set, we seek for the covariance propa-
gation equations expressing maximum covariance. (Here the readers should note
that the terms “maximum” or “highest” values etc. do not always imply the actual
maximum one. In this paper these are usually used to denote the upper bound
values, which might not be identical to the actual maximum one but are over it.)
For this purpose, we assume followings.

Assumption 3.

There exists a monotone increasing positive semi-definite matrix function 4(g, P)
of ¢ and P, where g denotes the properly defined norm of parameter vector, and is
assumed to satisfy the following inequality:

0, P)=0 and f-x"4+x-f"<<h(q, P) and h(q, P)>0. 3D
Thereby considering the modified covariance propagation equation as follows,
P=A.P+P.At+nq P).  P(t)=P@)=P, (32)

we can reach to the following result, considering the monotonous feature of /(g, P)
with respect to P.

Theorem 1.
Under the assumptions made above, as to any specified parameter g,
P()y>P(t) at Vtelt, ). (33)
Proof.
If we define the following successive series P°
Pii=AP 4 PAT+h(q, PY)  (i=0,1, )

and taking P%(t)=P(¢), then the results above are easily verified, providing P(t)
exists and A is stable.

Thus we have the G.C.C. system model eq. (32) which evaluates the highest cost
over the parameter variations from eq. (30).

B) Control Problem and the Improvement of Cost Deterioration Limit

From this point, we are ready to set up the G.C.C. problem with the per-
formance index like eq. (30),

This document is provided by JAXA.



Synthesis of Insensitive Controllers in Lirear Quadratic Control Problems 19

J= j Y tr. [(O+ K- R-K)Pldr. (34)

Applying the matrix type calculus of variations regarding eq. (32) as the virtual
system model, we can get the optimal (; in the true sense suboptimal) control laws
as follows. (Here the design range ¢ in eq. (32) is selected as the boundary norm
of parameters.) Defining the Hamiltonian as

H=tr. [(Q+K"-R-K)-P]+tr.[S-P]; Hamiltonian (35)
and differentiating this by K, P and S, we have the following constraint equations:

O=R.-K-P—B".S.P+ gtr. [S-A] ,
0K

—$=dr.5+ 5 A+o+kTRK+ O sw)=0,

P=A4.P+P A7+hq, P), P(t)=P,. (36)

In this case, the evaluated maximum cost (in upper bound sense) which should be
minimized through the procedures above is calculated as follows:

4 1S Pl= —tr. (Q+KT-R-K)- P]+tr. [S-vh— gtr.[S-7] F],

dt oP

J=tr. [S(t0)~P(tO)]+ff tr. [S-h—— gtr.[S-A] .1'5]dt. (37)
t 0P

As is easily recognized, if we attempt to consider the infinite-time problem, the
second term must be a finite value, which requires that the integrant may not be
positive or negative definite value. (This is reviewed again later in this chapter.)

Assumption 4.
The additive term /i is selected such that the integration of eq. (37) exists with

finite value.
Now returning to the control problem, we define the cost deterioration limit in
the large sense within the norm ¢, concerning a certain gain matrix K as follows.

Definition 1.
5J]imil ((]0, K):jtf tr' ((Q+ KTRK)@P)dt,
to
where 5.P:13(q:q0)—13(q:()), (38)

and where P and P are defined in eq. (32) and eq. (29) respectively.
Then the following result is clearly true.

Theorem 2.

The cost deterioration limit defined above is uniformly reduced within the specified
range of parameter variations, ¢,, by the control laws K, in eq. (36), comparing
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the case by the nominal optimal control laws K,. Where the term ‘“‘uniformly”
indicates

5J[imiL ((]’ KZ)SE']IImiL (q()s Kﬁ)ga‘[limn (CI()’ Kl); ‘qléqi)‘ (39)

C) Candidates of Additive Terms and Their Features

Through the discussions before, we have the question,
Is the additive term written explicitly which satisfies Assumption 3?

and the questions on stability, stability margins, cost improvements. The author
shows these characteristics in next sections in detail, but would like to answer the
question above.

In linear time-invariant systems and when the variation is linear and the uncer-
tainty 1s only in the system matrix that is characterized by the single parameter ¢,
equating f as gdAx, we can rewrite Assumption 3 as

g-(0A-P+P-34TV<h(ql, P).  h>0. (40)

The cases where the other types of variations than system matrices exist are treated
later in this paper. In view of an easily recognized inequality

- ’ I A
<~/«-/i ! ~5A)-P-(v/ae-[i K -5A> ~0. a0, (40
A A y
we can accept the following inequality
q-(aA-P+P.5AT)g|q;.<a-P+l.5A.P.5AT), >0, 42)
44

where « is an adjustable parameter. Or, using the spectrum radius of 4 denoted
by o,

q.(aA.P+P.5A7')g1qg.<a+i.02>-P, (43)
«

otherwise utilizing the minimized value of the right hand side of the inequality
above,

q-(6A-P+P.5A")<q|-2-0-P. (44)

If 64 has full rank, minimum spectrum radius o¢,,;, is not zero. Therefore,

g-(0A4-PLP-3AT) < 217 |q|-04-P-3AT (45)

min

is a candidate form of /(x) in eq. (40). These are the answers for the question.
The readers may well devise another type of inequality such as

(V?-Pi‘/la ﬁA)(%?PiJa -5A)T>0. (46)
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In fact this inequality holds itself clearly. But if this form is applied to, the result is
q-(5A'P+P-5AT)giq[‘(aPZ+—1—-5A-5AT>. (47)
(44

In this form of A(x), the monotonous feature with respect to ¢ holds, too, but this
property with respect to P might not be maintained except for the special cases.
And similar forms as in G.C.C. of Peng may be a candidate:

q(6A-P+P-0AT)<|q|-T"|A|- T as in eq. (24). (48)

But this form also may lose the monotonous character as to P.

By the two types of inequalities (47), (48) the cost deteriolation in the large sense
will be improved between the nominal point and the specified variated point. But
in these cases the uniform improvement of cost cannot be promised in sufficient
sense, because in these cases P cannot be always the monotone function of gq.
This is the difference between M.C.V. and usual G.C.C.

And the author notes that the former three types of inequalities eq. (42), (44),
(45) satisfy Assumption 4, because the integrant of eq. (37) vanishes. In view of
these three types, the relationships between existing ‘“Additive Term Designs” and
these will be clarified. 1In fact the third form is the same one as that of the “State
Dependent Noise™ concept by Kleinmann, which shows that if the variation 64 has
full rank, M.C.V. design is almost equivalent to ‘“State Dependent Noise” design.
And as to the second form following interpretations can be made; If this form
is taken in designs, the open loop system which should be controlled is modeled
as that having its pole locations shifted in the right direction a little. Thus it can
be said that this method is almost equivalent to the worst case designs as it were.
The first form (42) is the mixed type of the second and the third, i.e. the character
is the middle one between the ““State Dependent Noise” and the worst case designs
depending on the selection of «. And the fourth type (47) which cannot guarantee
the uniform insensitivity realization reveals that this form relates deeply with
“Uncertainty Weighting” method in view of the second term of it. In this paper,
while the first form design (42) is termed simply as the M.C.V. design, the fourth
form design (47) is called “Uncertainty Weighting type M.C.V.” (U.W. type
M.C.V.). And the other forms are not considered as M.C.V. designs. (The M.C.V.
form stated here is shown in Jain’s [66]. Though his form happens to resemble
this, there’s no consideration like the monotonous character or the relation to the
alternative forms here.)

Thus we have prepared the solid expressions of the additive terms, but the readers
may ask what value of the design range g should be specified. Simply speaking,
this range can be taken as the boundary norm of the parameter variations of which
the designers are informed a priori. But the value taken in this way may produce
considerably so high nominal cost or gain that we cannot adopt these results
practically. (These situations are shown in numerical examples later.) Hence this

range g should be searched from practical points of view together with an adjustable
parameter «.
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D) Some Foundations of M.C.V.

Finally, we show the existence condition of the M.C.V. surface and commented
the monotonous feature. For simplicity, we restrict our discussions to the time-
invariant infinite time problems associated with the first type of M.C.V. additive
term. In this case, the cost equation corresponding to the M.C.V. type covariance
propagation is written as

O:ZT-S+S-Z+Q+KT.R.K+1q|-<a-s+i -6AT-S-5A). (49)
«

This defines the M. C.V. cost value. For this equation is linear one with respect
to cost S, therefore the necessay and sufficient condition for the existence of soluiton
S is readily derived.

Theorem 3.
The necessary and sufficient condition that the unique solution of eq. (49) exists
is
/'li-</TT®I+1®1‘TT+[(]|-(¥-I®[+ al ~5AT®5AT>£;0 G=1.2, -, ),
(¢4
where 1,(x) denotes the eigenvalues. (50)

If the assumption in above theorem holds, M.C.V. surface is well defined and the
monotonous character is proved to exist as follows. Let the two solutions for
distinct parameter values g, and g,

0=S, A4+ A7-S,+0+ KT-R.K+q1.<a-Sl+i-5AT-SlsaA>,
44

0=S,-A+A7-S,+0 + KT-R-K+q2-<a-SZ+—1—~5AT-S2-5A>,
«

where ¢,>q,, (51

and subtracting each other, and note that the following equation for cost variation
holds.

Lemma 1.

The solution of
O:S-Z+ZT-S+M+(Q-S+/3-6AT-’S'5A)\ a, 8>0, M>0 (52)
where A4 is stable, satisfies
§=>85% (=>0), (53)
where S* is the solution of |
O0=S*-A+A"S*+ M. (54)

Using this lemma and the equation above, through the monotonous feature of the
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additive term with respect to ¢ and S, it is clear that M.C.V. cost surface is
monotonous:

S,>8,. (55)
E) An Example

We would like to present a very simple and comprehensive example. While the
cost is improved in the upper limit sense, it is commented here that the cost sur-
face may be improved actually by the M.C.V. design, whose mechanism is deeply
investigated in next section.

Example 1.

We consider the scalar system and its variated one
x=x+u, u=—k-x and x=x4u+q(dax-+ obu) (56)

with the following performance index to be minimized:
er (¢ + w)dt. (57)
0

The usual regulator is solved by the L.Q. method and this results in
k=2.414. (58)
The corresponding stability properties are
gain factor>0.414, phase shift<(65.5 (degrees) (59)
and the stable regions are as in Fig. 4.

The M.C.V. design for this problem is solved for the following uncertainties,
taking the design range ¢ as 1,

da=0b=0.333 (60)

and this results in the following gain and stability properties. (Control coefficient
variation 0b is treated as dbk system coefficient variation, though the exact treatment
of this variation is omitted here which is shown in chapter 4.)

___________________

e
I3 stope 0.4142

-

2 lope - 0.2361

» 1) by nominal design
120 5t MOV, desian

Fig. 4. Robust Design Example—Stable Region.
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k=4.236, (61)
gain factor>0.236, phase shift<(76.4 (degrees) (62)

and the corresponding stable region is illustrated also in Fig. 4. The cost values
at some variated points are compared with each other as followings.

Cost of the Robust Cost of the Nominal

Controller Controller
a=b=1, 2.927 2.412
a=3%, b=%, 6.354 12.345
a=%, b=4%, 1.901 2.797
a=%, b=3%, 4.391 3.618
a=4%, b=4%, 2.195 1.811

It is clear that the cost surface and the stability and stability margins are improved
at some points by slight amount of the cost at the origin. The readers may well
ask if these properties are improved really, and at what regions these improvements
are achieved. In next section the author discusses these problems in detail.

3-2. Cost and Stability Improvement of Additive Term Designs

From the example above, we can expect the cost surface and stability and stability
margins are improved actually by M.C.V. design. In order to make sure of these
properties, we would like to examine and analyze some improvement mechanisms
of these generally. But in practical systems it is almost impossible to realize state
feedback control laws because the number of sensors is limitted. Hence the cost
and stability margin improvements should be analyzed in each practical case. But
even when the optimal output feedback laws are taken, the corresponding cost
equation is still considerably complex, so we cannot discuss these subjects except
for the ideal case, in which state feedback is possible. Therefore hereafter we will
limit our discussions to the comparison between ideal optimal systems and the
suboptimal robust ones designed by “Additive Term Designs”, assuming that state
feedback is possible in both systems. (And implicitly the systems are assumed to be
time-invariant and to be considered in infinite-time problems without any comment.)
And from now on in our discussions, the uncertain sources are assumed to be only
in system matrices, which is in practical systems not restrictive, for the uncertainty
of control matrices can be modeled as the actuator dynamics in system matrices.

3-2-1. Cost Improvement

A) Sufficient Condition 1—Improvement Mechanisms

Now, we deeply consider the problem whether the true cost surface is improved
or not by “Additive Term Designs” and particularly by the M.C.V. technique.

Let’s consider the nominal system design and the ‘“Additive Term Design”
(insensitive controller design) as
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0:S1011+E1TS10+Q+K{RK19 KlsR_lBTSwa "Zl:A—BKl

0=SyA,+ 4,Sx+ @+ KIRK;+ h(go, S),

K,=R'B’S,,, A,=A—BK,. (63)
Thus we have the, ideal optimal control law K, and the suboptimal robust control
law K, of M.C.V. at the design range g, After this point, we define S, surfaces
as overall true cost surfaces and S, surfaces as design cost surfaces by which some-
times the M.C.V. surfaces are meant. And we temporarily define S, surfaces as
true cost surfaces using the insensitively designed control law K. Then the two

types of true surfaces corresponding to the equations above are determined by
following usual cost equations:

0=S,9)4,+A7S(q)+ O+ KI RK,+ S(q)3A(q)+ 3A(q)"S«(q)>
0=_S5.q)A,+ A75(q)+ O+ KT RK,+ 5,(q)5A(q) +3A4(q)"S\(q). (64)

Next, we define cost variation 8S(q) as (S,(¢)—Si(¢)) and write the cost equation
of 4S:
0=0S(q)(A,+0A4(q))+ (A, +64(¢))"3S(q) + KT RK— K RK,
+S1(q)B(K2_K1)+(Kz"'Kl)TBTsl(Q)- (65)

If the two systems are stable at these parameter variated points, the sign of 45(q)
cost depends only on that of the following matrix function by Lyapunov’s criterion:

f(Q):K{RKl — KzTRK2+ SI(Q)B(KZ"— K1)+ (K2~K1)TBTS1(‘])- (66)

At the nominal parameter point without any variations, f(g) is reduced to a simple
form:

f(0)= — (S — S10)BR™'B"(S3— S1) <0. (67)
This inequality directly indicates
55(0)=S,(0)—S,(0)<0, or S,0)<S0). (68)

This property is quite natural one, for S, surface is not optimal at the nominal
parameter point but only suboptimal. And through the slightly different manipu-
lations the alternative forms of f(g) are written as

f(@)=—(Sy%—S:(q))BR'B"(Sy— Sy(g)+(Si(g)—Siw)BR™ 'B"(S\(q)—Sy), or
—(Sy— Svl(q))BR7 'BT(Sy— §1(Q)) + (§1(Q) —S,)BR" 1BT(§1(Q’) — Sho)- (69)
These two forms appear to be not compatible. But by the assumption that the
two systems remain stable at the points considered, both two forms of matrix
functions reflect the sign of 6S(q) cost. Thereby we easily observe that if the

designs are performed treating additive terms as Sd4(q)+0A4(g)"S =h(q, S), at g=gq,;
i.e. 51(qo) =S,

S (@) <S 1(90)- (70
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Fig. 5. Intuitive Interpretation of Cost Improvement.

This relation is also quite reasonable, because in this case the designfis optimally
made at ¢=g, naturally.

This rewritten forms of f(g), (69), indicates qualitative interpretations as in Fig. 5.
Namely if S, surface (nominal surface) is monotonously increasing, then over the
region in the direction of higher cost values, this cost surface can be improved.
Apparently at a glance, if only the cost matrix S,, which is used for control laws
is higher, then at any rate cost surface appeares to be improved. In scalar systems
and some special systems, this analogy is right, but in many systems it is not so
simple as expected to satify the positivity condition of f(g) above. Hence for the
purpose of obtaining more informations from the inequality (69), next we would
like to proceed to the qualitaive discussions on these mechanisms. In order that
the positivity of f(¢) in eq. (69) is realized, the following relations are required to
hold:

L'[(S2—Su(@))BR™'BT(So— Si(@NI=I'[(S(q) — i) BR™'B"(S(q)— Syy))], or
DI(S2%—S(q)BR'B"(Sy,— Si(g NI < DI(S(q)— Si0) BR'B"(S\(q) — Sy))],

where ['(H) denotes the space in which the matrix produces a non zero
image, and D(H)=dim. (I'(H)). (71

Though these relations are not equivalent to the inequality (69) of f(g) and these
interpretations should be made carefully, roughly speaking it is required for cost
improvement by “Additive Term Designs” that the “‘spanned space” of cost matrices
would rather be confined ones. More qualitatively speaking, while the design cost
matrix S, should evaluate and reflect the true cost variations, but it should not
overestimate the cost variations. Particularly if (S, —S,(¢)), (Si(¢)—S,,) and BR™'B”
are positive definite, which is satisfied in scalar systems or some special cases, then
this condition is reduced to (see Kodama [/33])

S1(q)>3(S1+ S). (72)

This inequality indicates, to tell much more roughly, cost improvement can be
achieved over the region denoted above.
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B) Sufficient Condition 2—Requirements for Additive Terms
Now next, we discuss the sufficient condition such that the design surface Sy(q, K;)

is below the nominal surface S,(g, K,) at the specified design point g=g,. If the
design is made by G.C.C. or M.C.V. methods, this condition, if satisfied, absolutely
guarantees the cost improvement clearly. Like the manners taken above, consider
the nominal surface S, and the design cost surface S,

0="S5,4,+ A7S,+ Q0+ K{RK,+ S:04(q) +64(q)"S.,

0:S2-’;1~2+/‘1~2TS2+ Q+ K;FRKz’f‘h(Qa Sz)" (73)
Again like the previous procedures, let 6S(g) be defined as (S:(g9)—Sxg)). Then
the equation for 4S(g) to satisfy is as follows:

0=05S(A,+06A4(q))+(A,+54(¢))"3S+ KT RK,— K{RK,— S,B(K,— K)
—(K,—K,)"B"S,— (g, S;)+ S:04(q)+6A4(q)"S:. (74)

Consequently the sign of 4S(q) depends on the following matrix function f(g):

f(g9)=K"RK,— KIRK,— S,B(K,— K,)— (K, — K;)"B”S,
—h(g, Sy)+ S.04(q)+08A4(q)"S:
= — (S —S1)BR'B7(S3— Si) +(Sx(q) — S1) BR™'BT(S,— Sio)
+(Sy— S1)BR'B7(S(q) — Si) — h(gq, S2)+(S:04(q) +6A4(¢)"S.).  (75)

At the point g=gq, (i.e. the designed point) S;(q,) =Sz, SO
S(40) =(Sz— S10) BR'BT(Syy— Sy0) + Su0A(q)+6A4(qo)" Soo—1(qo, So)- (76)

Therefore in order for design surface Sy(g, K;) to be below the nominal true cost
surface S,(q, K,) at g=gq,, it is sufficient for the following inequality to hold:

f(g)>0, or h(gy, Sy)<(Sy—Si1)BR" 'BT(S3—S10)+ Sy00A(q,) + 6A(q,)" Seo- (77)

This inequality does inform us of very important information; The additive term
h that is used for robust controller designs would rather be bounded one. Well
let’s examine this condition particularly as for G.C.C. and M.C.V. designs. Re-
viewing the requirement for G.C.C. or M.C.V. designs, the additive term A(x)
should be such that

1(qo, Sao) > S20A(qs) +8A4(q0)" Sz and h(0, —) =0,
and for M.C.V. designs 4 is a monotone increasing function of
q, S. (78)

Connecting these conditions, we can easily reach to the following sufficient condition.

Theorem 4.

The sufficient condition for the design cost S, to be below the nominal cost
Si(q,) at g=gq, is that the additive term #4 satisfies, if M.C.V. or G.C.C. design is
employed,
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S300A4(q,) + 5A(‘]0)TS20 <h(qy, Sa)
< S500A(qo) + 0 A(g) " Sap+ (Seo—S1)BR'B"(S,,— S,,)
and also the conditions of eq. (78). (79)

It will be noted again that this condition, if satisfied, absolutely guarantees the cost
improvement. This theorem also reveals that there is really possibility of cost im-
provement by G.C.C. or M.C.V. from the bandwidth of inequality (79), and that
in qualitative sense, additive term or designed cost should be modest rather than
arbitrary. (In real computations, eq. (79) in this theorem is not appropriate for this
Judgement. The direct comparison of true cost surfaces is more effective than this
criterion naturally.)

C) Useful Properties—S, Surface

The upper limit condition of additive term /A(x) in eq. (79) has only to be satisfied
for Si(¢,) (Sy) the designed cost matrix. But hereafter in our discussions, in order
to obtain more deeper insight into the mechanisms, we investigate some character-
istics assuming that such condition as for / is satisfied by any positive semi-definite
matrix V. That is

Assumption 5.
For YV >0,
ViA(q)+0A(q)"V<hlq, V)<V3A(q)+54(q)"V+(V—S,)BR'BT(V—S,). (80)
First of all, as the preparation for introducing a new cost surface, we repeat the
sufficiency of cost improvement under the Assumption 5 again. Considering the

nominal cost surface and the upper cost surface corresponding to respective designed
control laws again,

0=S5,4,+A7S,+ Q+ KTRK,+ S,64(q)+3A(q)"S,,
0=_5,4,+A7S,+ QO+ KI'RK,+ h(g, S.) (73)

under the assumptions (80) as to additive term /A(x). Then the cost variation 6S=
S;— S, satisfies the following equations.

0=035(q)(A,+3A4(q)+ (A, +54(9) 73S +1(q), (74)
where f(g) is defined in eq. (75).

Introducing the inequality of the assumption (80), we have
A@)> —(Sy— Sy(q))BR'B"(S;— S.(q)). (81)

But by the definition of the upper cost surface which is used for designs, S.(q,)=S..
Therefore

f(g)>0, and S,(9,)<S\(q,). (82)

This result guarantees the cost improvement sufficiently under the Assumption 5,
though it’s somewhat strict one.
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Next let’s examine qualitatively the method by which the satisfaction of the ine-
quality in the assumption (80) is judged. Now we define the following new cost
surface named as S, surface:

0=Sy(q)A+ A"S(q)+Q+ K"RK+S5(q)34(¢)+34(9)"S(q)
+(Si(q) —S1)BR'BT(S(q) — S, (83)
where A=A — BK, for some given gain K.

And by similar procedures, we get the relation of the cost variation S between S,
cost and S, cost at point ¢:

0=0SA+ A"6S+h(q, 6S)+ S:dA4(q)+3A(q)"S,
+(S3_Slo)BR_IBT(S3"‘S10)—h(fIa Sy). (84)

If the inequality (80) of A(x) additive term holds, using the monotonous feature of
this, we have

If the eq. (80) is satisfied, then 65 >0 or S,(g)>S.(q). (85)

Consequently, the S, surface demonstrates the satisfaction of the inequality (80)
qualitatively. But the readers should note that this criterion is necessary for that
inequality (80) and that is sufficient for cost improvement. Hence the criterion
above is only qualitative one rather than quantitative one. But in spite of these
ambiguities, this is expected to present us the meaningful informations; such an
example is shown in numerical examples later. If the S, surface is kept nearly
flat under the nominal design, we should recognize that a great amount of cost
improvement cannot be provided. And otherwise we may refine the cost surfaces
through these “Additive Term Design” techniques M.C.V. or G.C.C.. Schematic
illustrations are shown in Fig. 6.

Finally we inquire into the other aspects of S, surface, which relate to the boundary
nature of cost improvement as mentioned before and lead to the properties to be

discussed later. Assume that we minimize the S, cost at point g, by the control
laws as followings:
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Cost may be improved.

Fig. 6. The Concepts of S;, Sy, S3, Cost Surfaces.
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0=Sy(q)(4 — BK)+(A— BK)"S(q,)+ O+ K" RK+ S{(4,)64(q,)
+04(q0)"S(qy) +(S(g0) — S\0) BR™'BT(S(q,) — Syo),
K=R"'B"S(q,). (86)

And the nominal cost S,(¢,) is given by
0="5.(q)A,+ A7 S\(q)) + O+ K! RK,+ S\(q,)0A(q,) + 8 A(9,)"S\(q)- (87)
Utilizing the relations

(S(q0) —S:1)BR'B"(Sy(q,) —S,)) = K"RK+ K| RK,— Si(q,)BK,— K{ B"S(q,),
SR((IO)(A -'BK) + (A - BK)TSB((IO)
= Sy(q) A+ ALSi(q)) —2K"RK + Si(¢,) BK, + KT B"S(q), (88)

we have lastly

0=(Syq,)— Sl(%))(/fl +0A(q,)+ (/Tl +0A(g:)"(Sx(q0) — S:(q0))- (39)
Hence providing the unique existence of the solution above, the interesting result
Si(g0)=S\(q,) (90)

is obtained. This shows that even if we design by S, surface, we can only get the
same cost as the nominal one; that is, any cost improvement may not be expected.
And easily we recognize that the design cost surface S, should be below this S,
surface, which leads to the previous dicussions, (85), where’s qualitative evaluation
of costs between S, surfaces and S. surfaces. We will show the other properties
of S, surfaces in detail later in this paper.

3-2-2. Stability Improvement

In the previous section, we looked into the problem whether the true cost surface
is improved or not by ‘“‘Additive Term Designs”, where we discuss it assuming that
the system is stable at the points of parameters considered. So the cost improve-
ment property discussed there does not imply the stability improvement because
of the assumption made there. In this section, we show that in case ‘“Additive
Term Design” techniques are employed, stable regions are expanded through the
Lyapunov’s sufficient criterion, and that stability margins are also improved roughly
and the sensitivity which is defined in Cruz’s sense is reduced as in usual L.Q.
regulators. And some important results are shown.

A) Stability and Stable Region

The cost equations which are constructed in design procedures of ‘““Additive Term
Design” techniques are written as follows:

0=SA+A"S+Q+ K"RK+h(g, S), A=A— BK. 1)

Where we assume the additive term /A(x) is a positive semi-definite matrix. To speak
roughly, this shows the direct insight into stability properties through Lyapunov’s
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criterion. Namely, let the linear system variation géA satisfy the following relation:
h(g, S)>q(S6A+3A4"S). (40)

These class of variations are permitted for the system to remain stable by “Additive
Term Designs”. Hence the stability over the specified range of parameters is
generally expected to be assured. In fact, this perspective is true and justified also
for the general variated system eq. (28) by the following manners. Defining the
Lyapunov’s function V as

V=xTSx, 92)
we attempt to evaluate the time-derivative of V along the trajectories (28):

d

— V=—x"(Q+ KTRK)x—foa—trif(;‘S@_x+fTSx+xTSf
dt oP
< —tr[(Q + KTRK)P] —tr [@Ffé;@_za — Sh] . 93)

Consequently for the first term is negative, in order to assure the stability, it is
sufficient that the second term is not positive. In view of Assumption 4 and the
considerations made in the previous section as to the linear cases, this relation is
proved to hold. Hence concerning the M.C.V. design, the following results are
obtained.

Theorem 5.

If the M.C.V. method is employed, then the stability is assured over the specified
range of parameters.

B) Stability Margins
Thus we obtain the stable regions, eq. (40), assured by ‘““Additive Term Designs”

in linear cases and Theorem 5 for M.C.V. Next we pick up the problem of the
stability margins. That is—

To what amount the stability margins are improved by these
“Additive Term Designs’?

It is well known to us that the usual L. Q. regulators have a half scale gain tolerance
and at least 60 degrees phase margin. We proceed to this subject through the modi-
fication of well known circle condition of L.Q. regulators, using the robustness
properties that are studied by Doyle [28, 29] and others [30].

We begin with the following assumption.

Assumption 6.
The additive term 4 satisfies

h>uSBR-'B*S,  u>O0. (94)
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Under the inequality above, introducing the complex variable s (Laplace variable)
into the design cost equation,

0= —S(I—A)+(sI+A")S+Q—SBR'B"S+h(q, S) (59)

is obtained. And operating (s/—A)'B from left and — B”(s/+ A)"~' from right,
we have

RG(s)+G*(s)R+ (1 —)G*(s)RG(s) > B'(sI — A)* 'Q(s[— A) ' B>0,
where G(s)=R 'B"S(sI—A) 'B; loop transfer function. (96)

Therefore finally we obtain the modified circle condition as follows:

*
( L G(s)) R( l I+G(s))2 P Roor

I —p I—p (I—p)

g_<wl I+G(s)>2 L ,  where é(s):R”ZG(s)R"V‘". 97)

L —p I—p
This condition implies that the vector locus of the loop transfer function G(s) is
out of the circle with the radius of [/(1—p), whose center lies at (—1/(1—p), 0).
(Without loss of generality, we assume x<Il, because the positive cost solution
may not be obtained otherwise.) This implication is schematically illustrated in
Fig. 7. Moreover, this condition is manipulated as followings:

I+2(G6) = | L =12, ). (98)
1

—

I
—t

\
(=) for Vi,

Operating the mapping

2(2)= 1 + il (99)

Re.

Fig. 7. Modified Circle Condition.
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the image of this is

[fiRe. @=L+ 0| or alr+Ge1= 10 (100)

By the way, here we review the result of Doyle’s [28]:

If o[+ G(s)"1>1,(w), then for YL(s) such that a[L(s)]<1,(w)
the variated system G(s)=(/+ L(s))G(s) remains stable. (101)

Equating L(s)=1I+ L(s), we have the following lemma.

Lemma 2.
If o[I+G(s) 1> 1.(0), then for YL(s) such that a(L(s))>1—1,(w)
the variated system G(s)=L(s)G(s) remains stable. (102)

Now we apply this to the complementary condition of return difference derived
lastly:

o= " (103)

This leads to the gain margin regarding L(s) as a constant diagonal matrix:

gain factor > 1;” . (104)

Comparing with that of the usual L.Q. regulators, this property is improved clearly.
And next, we consider the phase margin. The discussions on this are proceeded
like the manners of Athans [32] or Kimura [/30]. If the control input v is variated

as
P[v]=L(s)%[u], where u is an optimal control input. (105)

and where the operator #(—) denotes the Laplace transformation, then in order
that the system remains stable, it is proved to be sufficient that the following
inequality is satisfied through Parseval’s theorem:

L(jo)R'+ R 'L(jw)*>(1—mR", or RL(jo)+L(jo)*R>(1—pR. (106)
And the alternative forms of them can be written as
L(jo)+L(jo)*>(1—pI, where L(s)=R"L(s)R'~. (107)
This result reveals that if the operator L(s) is
L(s)=diagonal. (exp (¢s)), (108)
then the following class of phase shift is permitted:

cos > 4(1—p). (109)
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Comparing with that of the usual L. Q. regulators, this phase margin is also improved
clearly.

C) Sensitivity

The sensitivity which is established by Cruz [/8] is considered and presented in
the last chapter. And we show that if the ideal feedback control laws are em-
ployed, this sensitivity is reduced under the value of unity. In these “Additive

Term Designs”, this property is proved to be maintained. Because the modified
circle condition is reformed to

all+G(jw)])>1 (110)

and this implies that the sensitivity which is the inversed form of the return dif-
ference is reduced under unity with repect to the equivalent open loop system.

D) Important Results for M.C.V. or G.C.C.

So far, the general discussions on the stability margins of the systems designed
by “Additive Term Designs” are shown. And the evaluations made there imply
that the stability margins are improved in sufficient sense. Next we show that if
the G.C.C. or M.C.V. designs are utilized, higher stability margins are realized
than those in the other ““Additive Term Designs”. Considering the cost equation
in G.C.C. or M.C.V. designs,

0=8SA+A4"S—SBR'B"S+Q-+h(q,, S) (111)
and the upper bound feature of additive term /h(x),

h(q,, S)—S0A(q,) —dA(q,)"S=D(>0) (112)
we obtained the following extended type of the circle condition as previously noted:
al[+G(s)]>1, where G(s)=R"G(s)R'",

G(s)=R'B"S(sI—(A+¢04)"'B, |q]|<q, (113)

Therefore, the gain margins are maintained at the same level as the usual L.Q.
regulators over the specified range of parameter variations. And for the phase
margins, though here we omit the detail considerations, they are also maintained
like the gain margins. Thus we get the following theorem.

Theorem 6.
The systems designed by G.C.C. or M.C.V. methods have the stability margins as
gain factor >3, phase shift <60 degrees
over the specified range of parameter variations.

E) Simple Robust Realization

Lastly we refer to the simpler “Additive Term Design” methods, which are moti-
vated by the conceps or discussions on the stability margins here. The simpler
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forms of the additive term /(%) which may satisfy the inequality (94) are followings:
h=aS™ (m=0,1,2, ---). (114)

These types are termed “Simple Robust Realization” methods in this paper. The
case m=0 is the analogous approach to the “Uncertainty Weighting” method. The
case m=1 is the worst case design in which the open loop system is treated as the
system with the poles shifted to the right. The case m=2 is a very interesting
one. In this case, the x factor in the inequality (94) is independent of the cost matrix
but depends on control weighting and « factor in the equation above:

p=ag(R)/G(BBT). (115)

Hence, this method is expected to improve the stability margins without com-
plexity. The examples designed by this method are shown in numerical examples
in this paper.

3-2-3. Other Cost Properties and Their Evaluations

In the last two sections, we looked into the improvement of cost and stability
and stability margins. There we get the meaningful characteristics as to the “*Additive
Term designs”. But the discussions are a little indirect and the intuitive interpre-
tations are not illustrated clearly before. Hence we show in this section some
characters with S,, S, and S, surfaces introduced before and we evaluate the cost
variation through the use of successive approximations and from other aspects than
before we compare the M.C.V. designs with previous works. Finally through the
discussions here we introduce a new design technique “Statistical Cost Expectation”
(S. E)) method.

A) Cost Sensitivity 1—S,, S,, S, Surfaces

Now let’s consider the nominal cost S(g,) again,
0= Sl(‘]o)gl + /TITSI(%) + Q0+ K{RK,+ S\(q,)0A(q,) + 6 A(q,)" S \(q,) (87)

and the S,(¢) cost with small parameter variaton dq; q=q,+ 09,

0=S,(¢,+069)A,+ ATS\(q,+39)+ Q + KT RK, + S\(¢,+69)5A(q,+ q)
+5A(‘]o+5‘1)Tsx(%+59)- (116)

If we define the parameter derivative Si(q,) of cost at g, as
, |
Si(g)=lim —(Si(gy-+39) — S:(4,)) (117)
aq—-0 5q

we obtain the equation that Si(g,), regarding 6A(q) as qéA should satisfy the fol-
lowings:

0=S/(g)D+ D"S{(q)+ Si(q,)6A+6A47S\(q)), D=A+qéA—BK. (118)

And like the manipulations above we also have the second parameter derivative as
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0="S7(q)D+ D"SV(g,)+2S ()34 + 3A”S(qy)). (119)

Thus we prepared the local characteristics of the nominal cost surface Si(q). Well,
we next attempt to compare these with those of S, and S, surfaces. If so, the
intuitive features of these surfaces which have already been introduced for discussions
before, will be in vision more or less clearly.

First of all we consider the S, surface, Before in (90) we got the result as

S(%(qo):Sl(qO)' (120.)

Here evaluating the cost derivatives defined above, we have

0=544)D+ D"Si(q,)+ Su(q0)3A+3A47S(q), (121

and
0=57(q)D + D"S{(q)) +2(S{qo)5A+3ATSYq)) +2SYqo) BR'B7S(q)).  (122)

Comparison between these and those of S, shows that this S, surface is tangential
to the S, nominal surface at point ¢, and that the curvature of the S, surface is
higher than that of the S, nominal surface at point g,:

SUg)=S1q),  S(q)=>S7(4). (123)

These characteristics are illustrated in Fig. 8. (We should note that the S, sutfaces
examined here are the surfaces which are optimized at every point with respect to
these own surfaces. This is needed for eq. (120).)

And next we evaluate the cost derivative of the S, surface at the nominal point,
for at other points the quantitative comparison like above cannot be made. Well,
we get the following results through the similar procedures:

A — [(ozS(,qLLEATSOBA)P] on S, and

o - o

9/ | S,0A+5A4"S,)P S, wher

oq },_,,,:tr' [(S, 04+ JP] on S, where

P :J exp (Dt)P,exp (D"t)dt and S, is the cost at origin. (124)
U

o for KOS00

Fig. 8. Characteristics of the S; Surface.
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Fig. 9° Local Characteristics of S;, Sg, Ss Cost Surfaces.

These reveal that the cost sensitivity of the S, surface is higher than that of the S,
at the nominal point. From the discussions here, we can show the microscopic
structures of the S, S; and S, surfaces at the nominal point as illustrated in Fig.
9. Namely in the vicinity of the origin, we cannot expect that the inequality shown
in eq. (85) holds, but that at the points somewhat apart from the origin such ine-
quality may be satisfied.

B) Cost Sensitivity 2—True Cost Surface

The cost sensitivity with respect to the specified system variations is thus treated.
But the cost sensitivity as to any elements of the system matrix is not discussed
before, which is an important property expressing the unmodeled system variations.
As reviewed before, Yahagi [57] devised such type of cost sensitivity. Here we
derive the results by another approach as follows.

Assuming the parameter variations sufficiently small, we expand the covariance
solution into the successive approximated forms as follows:

For P=AP+PA"+q(6AP+P5AT), P(1)=P, we expand P as
P:Po+qP1+qZP2+ MR
P,=AP,+P,A",
PlZEP1+P1ZT+(6AP0+P05ATL
P,=AP,+P,A" 4+ (0AP,+ P,5A"7). (125)
And we also expand the performance index (cost) J as
J=Jy+ql,+q* )+ - - -. (126)
Providing the impulsive variation of system matrix at ¢’ such as
0A(t)=38A(t)o(t—1") (127)
we obtain the solutions of P,(z), P,(t) and J,, J, as follows:

D(t, tYGA()P(t") + Pt )3AWNDT (1, t'); 1 2>1,

P(t)=
) (0; t<t,
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O(t, t'YOA*(t")Py(t")+20A(t")Py(t")5A™(t")
Py(t) = + P(t)SAT(t' WO (1, t'); t>t’,
0;, 1<t/

J, :J'f tr. [(O+ KTRK)P(s)]ds,

{
J, :f " tr. [(Q + KT RK)Py(s))ds,
to
where @ denotes the transition matrixof A. (128)

Differentiating the cost by the system variation 64, we have

oJ, — Yo ’ T ’ ’
Ao 207, Y@+ KR D1 )dtP 1. (129)

And noting the following lemma

Lemma 3.

@(s, 1,)=D*'(t,, s), where @* denotes the transition matrix of —A7, (130)
we reach to the cost sensitivity expression quite simply

oJ,

56AM) =2S5,(t")Py(t"), (131)

where S,(¢) denotes the nominal adjoint cost matrix for Py(t). In time-invariant
cases, a quite similar result is obtained by eq. (124). This expression implies that
the cost sensitivity may increase locally if the cost is higher. But these don’t deny
the possibility of cost improvement, for these properties are only local ones and
over the range of not so small parameter variations the higher order effects of cost
variation should be considered.

At any rate, we have prepared a few kinds of cost sensitivities eqs. (118), (124),
and (131). As Yahagi [57] attempted to design insensitive controllers by weighting
the cost sensitivities in chapter 2 regardless of the forms of variations 64’s, we
also analyze the similarity of ““Additive Term Designs™ to the sensitivity weighting
methods.

The most primitive idea is to weight the cost S, considering the finite feature of
P, in eq. (131). This leads to the weighting forms as

aSp  (m=0,1,2, ---). (132)

As readily recognized, these relate to “‘Simple Robust Realization™ methods in the
previous section. And in view of the cost sensitivity in eq. (124), it is a natural
idea to weight or evaluate the upper limit of the sensitivity at the origin. This
leads to the “Additive Term Design” as

h>S8,04+3A"S,. (133)
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Of cource, this is the same approach as G.C.C. and M.C.V.

C) A New Design Approach—*Statistical Cost Expectation” (S.E.) method

So far, we consider the cost sensitivities eq. (124) or (131) in this section. Finally
we present the new type of design method which utilizes the statistical expectation
of cost relating to the successive approximation of cost variation. For this purpose,
we expand the covariance again as

P=Py+qP,+q*Py+ - - -. (134)

If the parameter variation ¢ is statistical quantity, we have the approximated ex-
pectation truncated by the second moment as

P=E[P]=P,+d’P, (135)

in which ¢, is calculated using the appropriate probability density function such as
the normal distribution. Therefore, we can derive the equations that the statistical
expectation P satisfies as follows:

P=AP+PAT46}(04P,+P3AT); P(1)=P(t),
P,=AP,+ P, AT+ 3AP,+ P,5A"; P1,)=0,
P,=AP,+P,A7; P(t)=P(t,), where 4=A—BK. (136)

Namely in this case the system is augmented by three times. Correctly according
to this virtual model, we can obtain the optimal control laws for this as

—8§=A73+84+0+K"RK; §(1,)=0,

—8,=A7S,+ S, A+ % (6ATS+554); S\(t;)=0,

—So=A"S)+ S, A+0ATS,+564; Syt,)=0,

K=R-'B"(S+S,P,P-'+ S,P,P). (137)
Although this concept expresses the cost variation very clearly and theoretically, it
is not so easy to design by these procedures, for the computation is difficult and
the design depends on the initial covariance very strongly. Consequently we had
better use the simplified system model. For this purpose, we assume that the

designed control system is stable sufficiently, that is the system has sufficiently high
damping rate. So we can evaluate P, (¢) and rewrite the equations as

P(t)=(0AP,+ P,0A")4, where 4 is the representative damping time constant,
P=AP 1 PAT + A2 AP +20AP5 47 + P5 A7)
— Ao} (0A°P,+25AP,6A” + P,6 A™). (139)

Neglecting the last term boldly, we can obtain the following approximated equation
of statistical cost expectation:

P=AP+PAT+ 45,(0A°P +- 26 4Ps A7+ B3A™);  B(t)=P(t).  (140)
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This simplified model is very crude one, but we can expect that this reflects the cost
behavior qualitatively. If the virtual model eq. (140) is used, the design procedures
are made as in “Additive Term Design” techniques. We show the simple example.

D) Example of S. E. Formulation
Example 2.

Consider the scalar system
p=—p+qp, q~N(,05); o, =0.5. (141)

The solution of this is given as

p(1)=py exp (—(1—q)t) (142)
and the exact statistical expectation is
p(t)=p, exp (31" —1). (143)

Then the corresponding approximations are as follows:

P(O)=p(1+4t*) exp (—1) for eq. ((136); type I,
p(t)=p, exp (—3t) for eq. (140); type I (144)

The schematic illustrations of P’s and the error ratio to the exact one are shown
in Fig. 10 and Fig. 11. And the evaluations of P,(¢) and (d4P,+ P,dA") are also

exact

0 2.0 4.0

Fig. 10. Approximated Statistical Expectation.

exact
/ ot
p/pet) tyvpe |

type |

3.04
1.0 q1=0
T T >t
0 1.0 2.0

Fig. 11. Normalized Statistical Expectation.
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p, (£)/pl0), (SAp, (t) +p, (t) SA")/pl0)
A

1.0+

( OAp, +p, A" )/p(0)

p,(t)/pl0)

—
—— e o

0 10 20 30 0 °

Fig. 12. Assumption in Type II Expectation.

shown in Fig. 12. These results suggest that after the transient interval, the simplified
model reflects the feature of the exact solution.

Hence, we obtained the new “Additive Term Design” method as the virtual model
eq. (140) with the new additive terms. The application of this is shown in numerical
examples in the later chapter.

3-3. Alternative Design Methods of ‘““Additive Term Designs”

We discussed so far some features of ‘“Additive Term Designs” and through
these a few of the alternative design methods of insensitive controllers are presented.
In this section some robust design methods are arranged and summarized briefly,
which are examined in numerical examples.

1) M.C.V. (Maximum Cost Variation) method

This is one of the “Guaranteed Cost Control” (G.C.C.) methods, both of
which evaluate the upper limit of the cost variation and minimize it like the
manner of mini-max designs. The difference between the M.C.V. and the
G.C.C. is the uniform robust feature which is assured by the monotonous
character of the additive term. The advantages of this are the absolute as-
surance of stability and the high level of stability margins over the specified
range of parameter variations. From the practical aspects, this has the disad-
vantages that the calculation is a little complex and the control laws may fall
into higher feedback gains which cannot be accepted.

2) U.W. (Uncertainty Weighting) method
This is the simplest one of the ‘“Additive Term Designs™ discussed before.
The additive term of this is motivated by the approximation of cost variation
and other points of views. It is reported in Harvey’s that in spite of simpler
procedures this may be a best one. Practically speaking, this has the advantage
of less computational load. But there’s no meaningful guarantee of cost or
stability improvement.

3) S.D.N. (State Dependent Noise) method
This is derived by the random process model which contains state dependent
noise in stead of the system matrix variations. The treatment made in this

This document is provided by JAXA.



42 ISAS Report No. 605

might be somewhat incorrrect because the variation is statistical rather than
random process. But as far as such model is provided, the design is quite
mathematically made. Practical applicability of this is at the same level as
that of M.C.V..

4) 0O.D. (Off-set Design) method
This method relates to the mini-max design or the worst case design, for the
point at which cost is expected to be worst and the design is made is specified
a priori. The practical meaning is quite clear and the design computation is
performed very easily. We can interpret that this avoids the cost deterioration
by shifting the cost surface in the desired direction.

5) S.E. (Statistical cost Expectation) method
This method is formulated in the previous section, which is motivated by
the approximated evaluation of the statistical cost expectation. In this establish-
ment, it is provided that the parameter variations are sufficiently small, and
some crude approximations are introduced. Practical applicability is at the same
level at M.C.V. and S.D.N. methods.

6) U.W. type M.C.V. (Uncertainty Weighting type M. C.V.) method
This is one form of G.C.C, in which the monotonous feature that is required
for M. C.V. is not introduced as the usual G.C.C. techniques. This is named
after the form of the additive term. Of course, the advantages and the disad-
vantages are equivalent to the usual G.C.C.’s.

7) S.R. (Simple robust Realization) method
This is devised in the discussions on the stability margins of ‘““Additive Term
Designs”, some of which are formulated in very simpler forms and can be
regarded as the approximated versions of various types of “Additive Term
Designs”. Computational load is at the same level as M.C.V. and S.D.N.
methods.

8) other methods
There are some straightforward methods to insensitive controllers. For
example, to take the state weightings as larger values relative to control weight-
ings; higher feedback gains, or to use lower feedback gains in the systems
whose open loop stability is assured. A few of these are shown in numerical
examples later.

Thus we obtained the robust design methods above. In the numerical examples
of this paper, the qualitative evaluations and comparisons of them are considered,
being applied to some aero-space systems. Next we proceed to the discussions on
the applicability to more practical systems; the systems with other types of un-
certainties than the system matrix variations, the discrete type systems and the
dynamically compensated systems.
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4. APPLICATIONS TO PRACTICAL SYSTEMS

In the last chapter, we established some new properties as for the systems that
contain only system matrix uncertainty, assuming that they are continuous and state
feedback is possible. Here we investigate the applicability of the robust designs
established before particularly as for M.C.V. to more practical systems; the systems
where the other types of uncertain sources exist or those that are discrete or dy-
namically compensated. And finally we commented the computational algorithm
of robust output feedback control laws by M.C.V.

4-1. Systems Containing Control Matrix Uncertainty (and Other Uncertainty Sources)

So far, we considered the systems in which the system matrix uncertainties exist.
But in many practical systems, there are the other types of uncertainties than those
of the system matrix. The usual actuators contain the nonlinearity or time-delay
more or less. In these cases, the exact values of such parameters are not known
and even if those are obtained precisely, sometimes we cannot model the dynamics
or characteristics due to the complexity. Hence, in many cases, we model the
system as sufficiently simplified one and design it by some methods. And after the
evaluation of stablity margins and the responses, we adopt the designed control
laws. The other uncertainties than those of the system matrix are, in general,
divided into two groups. One is the type of the control matrix uncertainties and
the other is the type of the installed gain matrix uncertainties. The former is
generated by nonlinearities and the latter is by installation ‘accuracies and amplified
scale errors. In this section we consider such systems and show the corresponding
additive term examples of M.C.V. design methods.

Now we consider the following system:

X=Ax+ Bu+0Bu, u=—(K—dK)x. (145)
This is also rewritten approximately as
x= Ax+6(BK)x. (146)
Treating the ambiguous term as the system matrix uncertainty, if M.C.V. design is
employed, we have the additive term A(x) as

h=aP+ L 5(BK)PS(BK)Y,  P—xx". (147
(44

By this point, we proceeded by the same procedures as in the system matrix un-
certainties. But some notes or interpretations should be made. For the systems
with only gain matrix uncertainties, we don’t have to devise the methods other than
nominal regulators. The reason is as follows. The cost deterioration by gain matrix
uncertainties is expressed as

5T—2 tr. (aKTRKPO)Jrf’ tr. [(Q+ K"RK)(t,, 1)
to
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(BOKP,+ PSK"BQ(t,, 1)]dt. (148)
Hence, the requirement for the cost sensitivity with repect to 6K to be zero suggests

307

8(5[() =0, and K=R-'B’S, (S, is the optimal cost.) (149)

But this result is quite trivial one. Naturally this required gain is identical to the
optimal gain in the usual regulators, because the optimal cost is the stationary value
with respect to gain matrix. And in the systems with only control matrix un-

certainties, when the design is made by M.C.V, the resulting feedback gain is given
by

—S=A"S+SA+Q+K"RK+ aS+ L K73B7S3BK.
44
-1
K:(R+L53T553) B'S. (150)
(64

Though the interpretation of this is not so straightforward, intuitively we recognize

that the gain matrix should be lower. This fact reflects the classical approach well.
For the cases with the sensor mechanism uncertainties, we can formulate the

M. C.V. design, too, through the output feedback systems as the augmented forms.

And also we observe the low gain feedback control is needed in this case. (Omitting

the detail discussions here.)

4-2. Discrete Systems

Through the discussions before, we implicitly assume the systems to be continuous.
Here we show the similar results for the discrete systems.

First we formulate the M.C.V. designs for the discrete systems that contain not
only the system matrix uncertainties but the control matrix uncertainties. Consider-
ing the variated system as

X1 =Ap X+ Bty +0A4,.x,+0Bu, (15D
and using the state feedback control law which is assumed to be possible,
u,= —K,x, (152)
we have the closed loop system as
Xe o= (A — B K )x,+ 64, x, — 0B, K, x,. (153)
Introducing the covariance type matrix P,, we get the equations of

~

Py=x.x{, Ak:Ak—BkKka
P,H,:ZkPk/T§+5AkPkJ{+ZkPk5A,€+6AkPk5A,§—5AkPkK{5B,§
—0B.K,P\A; — B, K, P AT — A, P.K[6BT + 6B K. P,KIGBI.  (154)

According to the M.C.V. concepts, we can observe the following inequalities hold.
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G(0AP AT + A,P0AT) glqll(aﬁkmiﬂ 1 aAkPkaAz),

241

g:(— 0B, K, P, AT — A,P.K'3BY) glqzz(azAkPk ar+ ' omk, PkK,faBz’),

o

00— 34, P KI6B — 0B K.P.5AT) <|q:q1| (aSaAkPka,q Ty ; GB.K,P, K,faB,f),
2

where «;, a,, a,>0. (155)

Hence the virtual system model to be considered in M.C.V. approaches is

Plc+1:plgkpkglg'_*_pZaAkPkaAlf_i_psaBkKkPkK}cTaBlgvs
where 0= 14q.a,+q,,, 0:= G/, + gsay, P:s:%/“z‘l‘%/a’a- (156)

As the control problem, we define the performance index (cost) as

N-1
J= kZ(:) (X£Qkxk+u/:chk“k)

N-1

= >, tr. [(Q: + K7R.K,)P,] to be minimized. (157)

k=0

Defining the following Hamiltonian, we obtain the optimal control laws for the
virtual system (156) as follows:

H=tr. [(Q,+ K{R.K)P,]+tr.[S,.,P...]; Hamitonian (158)
S :PHZL;[SE +1"Zlc + 0+ K R.K, +‘025A1€Sk 104, +(O3K/Z'6Bk/TSk 108Ky ;  Sy=0,
K, :(R/c —lf'plBl,cIvSk 1By +p36BlgvSk+laBlc)_lplBkTSk+1Ak' (159)

Though next we would like to attempt to discuss the various properties as established
in the last chapter associated with these discrete systems, unfortunately we cannot
observe these so easily as in the continuous cases. In fact the stability is assured
really over the specified range of parameter variations through Lyapunov’s criterion.
But we cannot obtain the quantitative stability margins as seen in the previous

chapter, for the circle condition of the optimally controlled discrete systems is ex-
pressed as

(I+G(2)*(R+B"SB)(I+G(2)) >R (160)

as far as the author knows, and so this does not provide us the quantitative infor-
mations. And boundary surface S, named before, by which we can qualitatively
predict the cost improvement is not represented as the simpler form. Because in
discrete systems the explicit coupling between the gain and the system variation
exists and so such surface which reflects the cost improvement cannot be defined
clearly. Moreover, the U. W. type M.C.V. design falls into the ambiguous one in
these systems due to the same reason as above, where both U.W. type and S.D.N.
type additive terms exist mixedly if attempted. And the simplified “Statistical Cost
Expectation™ (S.E.) method in discrete systems is degenerated to the S.D.N. type
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design. (Details are omitted.) Consequently we cannot obtain these properties except
for the stability in M.C.V. designs analytically. But we will show the numerical
comparisons and evaluations among these design methods in numerical examples
of this paper.

4-3.  Dynamically Compensated Systems (Output Feedback Systems)

We have obtained the various types of robust controller designs in the systems
where the state feedback is possible. In practical systems, there are few systems in
which such control laws are accepted. Usually, only several outputs are available
directly through some sensors. The modern control theory provides us so called
the separation theorem and we may expect the observers or the Kalman filters to
play the role of the reconstruction of states. But the total system which is con-
structed by these method exactly is sometimes highly complex, and in those cases
we often resort to the classical simpler designs instead of the modern designs. These
situations arc caused by the fact that the meaningful or rational designs for the
dynamical compensators are not provided uniquely; there exist the full or reduced
order or function obscrvers and the Kalman filters and the appropriate compensators
which accomplish the desired pole locations. Hence, the designers have to adopt
trial-and-error approaches between the gains and compensators. Here we confine
ourselves to the discussions on the optimal gains in robust sense assuming that the
appropriate type of compensator is installed a priori. (Of course actually these
procedures should be repeated many times consulting the compensator designs.)

Now we consider the system containing the system and control matrix uncertainties
as

X=Ax-+ Bu-+0Ax-+ dBu, y=Cx. (161)
And we assume that the following compensators are used a priori:
i=Fz+Gy. (162)
Here the gains to be determined are K, and K, as
u=K,y+K,z. (163)

These systems are manipulated and arranged into the following augmented systems:
X A 0\/x B n 04 0\( x 4 oB
— u,
) \eer N\ z2) o o ol\z) o
Cco
)= (x . u=(K, K) y). (164)
z 0 7I/\z z

Thus the dynamically compensated system like above is reduced to the output feed-
back system. Hereafter we redefine the system as eq. (161) and use the same no-
menclature as those in (161). Applying the M.C.V. concept to this, we have the
virtual system model to be considered as follows:
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P——‘XXT, P(to):P(J,

P=AP++PAT+ q,(oclP + 1 BAPBAT) + q2<a2P + b 5BKCPCT1<T53T>. (165)

C(l aZ

If we settle the usual perfomance index (cost) as
J— f Y (XTQx+uRu)dt to be minimized, (166)
to

we have the optimal feedback laws in M.C.V. sense for this virtual system as

—S=A"S+SA+Q+C"K"RKC+p,S+ p,04"S6A+ p,CTK"8B"S6BKC; S(t,)=0,
P=AP+PA"+ p,P+ p,dAP3A” + pdBKCPCTK"3B"; P(t,)=P,

K= —(R+p,0B"S0B) 'B"SPC"(CPC")",

with cost J,;, =tr. [S(¢,)P(t,)], where p,=q,a;+ @00, p.=q,]0t1, ps=0G,]cts. (167)
But the derived equation above is so to say the two point boundary value problem
of matrix type, which cannot be solved at any rate except for the time-invariant

infinite time problems. In this case the problem is equivalent to the following by
McLane [61] and Levine [88], through the reformations of

H=tr.[(Q+ CTKTRKC)P]+tr. [§Ié]; modified Hamiltonian
P= jc P(s)ds,
to

P—AP+PAT+ 0,P+ p.dAPSA™ + p,8BKCPCTKT6B™ +Py;  P(1,)=0,

J=tr. [(Q+ CTK"RKC)P] to be minimized. (168)
Therefore we can obtain the following results evaluating the stationary case,

0=A7S+SA+ Q0+ C"K"RKC+ p,S+ p,6A"S6 A+ p,C"K 6B SSBKC,

0=PA"+ AP+ p,P+ p,3AP3A" + p3BKCPCTK"5B” 4 P,

K= —(R+ p,6B"S6B)"'B"SPC"(CPC")-". (169)

And in discrete systems, we can also derive the analogous equations in time-
invariant infinite time problems. As to the system with system and control matrix
uncertainties

Xpo1=Ax,+ Buy+0A4x,+0Buy, u,=—Ky,=—KCx,,
P, .= pIZPk/'fT—k 0.04P6A" + p,0BKCP,C"K"0B", P,=x,X;,

i tr. [(Q+CTK"RKC)P,] to be minimized, (170)

we have the necessary conditions for optimal control in M.C.V. sense as follows:

S=p,A7SA+ Q+ C"K"RKC+ p,3A7S54+ 0,CTK"3B"S3BKC,
P=p APA" + p5APS A" + 0,0 BKCPCTK"5B” + P,
K=(R+ 0,B"SB+ p,6B"S6B)~"'0,B"SGAPCT(CPCT)". (171)
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Thus we have preparations for the practical applications of M.C.V. to the output
feedback or dynamically compensated systems. In the next section, we show the
calculation algorithms concerning the dynamically compensated systems, which will
be utilized for numerical examples and other practical systems.

4-4. Computation Algorithm of Robust Output Feedback Systems with Additive Terms

Here we show the computation algorithms of M.C.V. type robust output feedback
systems with additive terms, which are derived in the last section. Firstly we present
the overall algorithm and next prove some characteristics which assure the validity
of them. And finally the algorithms for discrete systems are commented.

Theorem 7.
[Algorithm—1]
1) Find K, that guarantees the existence of S,, P..
2) 0=(A+BK,C)'S;+S(A+BK,C)+Q+ C"K'RK,C
+ 0184 p.0A"S,0A+ p,C"K!6B"S 0BK,C,
+ 0,04AP6A" + p, 0 BK,CP,C"K[6B" + P,,
K; . .= —(R4p,0B"S,0B)'B"S,P,C"(CP,C")". (172)

Though the detail proof is given later, we can show that this algorithm is only
a Newton’s method. The relation that the gain matrix K should satisfy is

0=(R+ 0,0B"S6B)K(CPC")+ B*SPC". (173)
12

When the approximated solutions S;, P, are found at i-th iteration, the residual
error E, is written as

E;=(R+p0B"S0B)K(CP.C")+B"S,P.C". (174)
If (i+1)-th approximated solution is searched for as the form of
K, =K, +4K,, (175)
4K, should satisfy the following relation:
(R4 p,06B"S,6B)AK(CP,C")+ E, =0. (176)
Therefore K,,, is calculated by
K..,=—(R+p,0B"S,0B)"'B"S,P,C"(CP,C")"". (177)

But this equation is identical to the eq. (172) in the algorithm.

In order to prove the theorem we show some lemmas. First of all, if the algo-
rithm (172) is employed we can observe that the cost is decreasing monotonously
along the iterations. For this purpose we define a certain matrix function f as

f: (A+ BKiC)TSi—1+ Si~1(A + BKiC)+ Q+ CTK[,TRKiC
4+ 08,1+ p0A”S, A+ 0,CTKI6B'S, 6BK,C. (178)
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Applying the algorithm to this, finally we have

(CPi—l)f(CPi—l)T'—_ —(CPi—ICT)(Ki_Ki—-1)T(R+pSBBTSi—15B)
(Ki_Ki—l)(CPi~1CT)' (179)

Providing that CP,_,CT is nonsingular, which is required for this algorithm, we
obtain

£<0. (180)

Next subtracting the eq. (172) in the algorithm from the eq. (178) which defines f;
we reach to the following equations:

(A+BK1C)T(Si—1 —S)+(Si-i— S)(4 +BKiC)+P1(Si—1 —Si)
+p25AT(Si_1——Si)5A +p3CTKiT5BT(Si_1——Si)5BKiC=f<0. (181)

By the way, from the definition of f, equating 6S=r S,_, (r>0),
(A+ BK,C)"6S+8S(A+ BK,C)+ p,0S+ p.6 A"6S6 A+ p,C"K[6B"6S6BK,C
=rf—r(Q+CTK]/RK,C)<0. (182)
Hence observing that there may exist r (>>0) such that
r(—f+Q+C'K{RK.C)< —f (183)
we have, comparing eq. (181) with eq. (182),
S, <(—r)S;_,. (184)

(Obviously r is lower than unity, because if r>1, then the inequality
—fg—fJi~i«—(Q+CTKfRKiC)<o (185)
r._..

must be satisfied. But this is contradiction.) And denoting the optimal cost matrix
as S,, we can show

(S;—S) <A —=r)(S;-1—SY). (186)

Thus, by the eqgs. (184) and (186) we easily find out that the cost is monotonously
decreasing along the iterations if this algorithm is employed.

These discussions guarantee the validity of the algorithm because of the lower
boundedness of the cost. The readers may ask how the covariance matrix P,
behaves, though which does not lead to cost directly. Unfortunately, the behavior
of the covariances is not so clear as that of the cost along the iterations. But as
for the special case in which the open loop system is stable, we can observe the
covariance behavior a little. Considering the system in which the open loop system
is stable, we can begin with K;=0, and
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Jy=tr. [S\P(,)]=tr. [OP],
Jy=tr. [Szp(to)]:tr~ [(Q+ CTK?.TRK2C)P2]3

J,=tr. [S,P(t)]=tr. (O + CTK'RK,C)P)]. (187)

We can observe
§,<S,, or (188)
tr. [Q(P,—P)]=>0  (i=2,3,---). (189)

In case Q is a unit or scalar weighting matrix,
tr. [P]<tr.[P]  (i=2,3,---) (190)

Hence, the following lemmas are proved.

Lemma 4.

By this algorithm, cost matrix S; are monotonously decreasing. And so the
algorithm converges to the true one, if the solution exists.

Lemma 5.

By this algorithm, if the open loop is stable, with K,=0, then the relation of
eq. (189) holds.

In order to obtain the control laws by this algorithm, we must solve the two
Lyapunov type equations in the M.C.V. design as in eq. (172),

0=(A+ BK,C)"S,+S(A+ BK,C)+p,S,+ p.047S 54+ p,C"K'5B"S,5BK,C
+Q0+C"K{RK,C,
0=(A+ BK,C)P,+ P{A+ BK,C)"+p,P,+ p.0 AP,3A” + p,0BK,CP,CTK'6BT + P,
(191)

Next we discuss the solving technique of these. Considering the transposed forms
of them, the problem is settled to that of solving the following equation:

0=A"S+SA+5A"S6A+36BTS6B+S+M  (M>0). (192)
For this problem, we present the following algorithm.
Theorem 8.
[Algorithm—2]
1) Setting S, as 0,

2) M,=M+5A4"S, 5A+3B7S, 6B+ S,_,,
0=A7S,+S,A+M, (j=1,2,--.). (193)

Now we consider the characteristic of this algorithm. As easily recognized, we
have the following successive equations.
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f‘IT(Si"'Si—l)"*‘(Si“—Si—l)g
= —[0A47(S;-1— §:-)0A+0B7(S\-, — Si-)0B+(Si- = S:- )] <0 (194)

And observing that S,>S; and that the cost matrix to be solved is finite, we con-

clude the theorem above.
In discrete systems, the effective algorithms of solving the control laws as to the

M.C.V. type robust output feedback systems are derived as in continuous systems.
The discussions are made by the analogous manners, but the details are omitted
here. The resulted algorithms for M.C.V. type robust controller designs are as
follows.

Theorem 9.
[Algorithm—3]
1) Find K, that guarantees the existence of S;, P, (>>0),
2) S,=p(A—BK,C)'S{A—BK,C)+ Q-+ CTK'RK,C+p,0A"S,64

+0,CTKT3B7S,6BK,C,
P,=p0A—BK,C)P(A— BK,C)"+ p, AP 5A” + p,dBK,CP,C"KI3B" + P,
K...,=(R+0,B"S;B+p,3B"S6B)"'B"S,AP,C"(CP,C")". (195)

Theorem 10,
[Algorithm—4]
To solve the S=p,A"SA+0ATSGA+3BTSGB+M, M>0
1) Setting S, as O,
2) M,=M-+35A4"S, 3A+3B"S, 3B,
S, =p0,(A—BK,C)S(A—BK,C)+ M, (j=1,2,3, --). (196)

5. NUMERICAL EXAMPLES

In this chapter we show three numerical examples, to which the robust controller
design methods discussed so far are applied. The systems to be considered are not
only the continuous ideal system but also the discrete output feedback system and
the nonlinear estimation problem. Firstly we show the longitudinal autopilot system
and next the radar tracking system of a re-entry vehicle and finally the attitude
control system of a flexible booster.

5-1. Longitudinal Autopilot

In aircraft control systems, there are some ambiguous parameters in their dynamics.
One type of these is the completely unknown uncertainty before the real identi-
fications in flight, and the other is the uncertainty associated with the circumstances
under which the system is driven. The former is the dynamic damping derivative
at the initial design phase and the latter is the cruising velocity or the dynamic
pressure or the static margin shift caused by payload unbalance. Here we restrict
our attention on the system with two types of uncertainties; the dynamic damping
derivative and the static margin uncertainties.
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The longitudinal dynamics of the aircraft can be expressed as

u= % (Cu+C a+C,cos 0,0).
mU,

0

ACZ,Lu—{—( mU, _ ¢ Cw>a—cwa—< mb, . ¢ C,q)(ﬁcu, Sin6,0—C.,.0,,

qS, 20, 7AYS 20,
”Iy 5 - ’C Cmqé - ’C Cmd("Y - Cmaa - Cm&eae' (l 97)
qgS,c 2U, 2U,

Here we adopt some assumptions as follows:

1) short period approximation,

Sye L1 gS,e |
2 | B e, B e, g«
) 2mU; \ | mU? | §°i<<
So¢ CpiaCho | qSyc CroCis, i
3 } 77q77(7)7777 —maza L [ _ P00 Mma 77{579 ! 1 . l 98
) 2mUS Cma } 2mU(2) C‘mée “<< ( )

Using these and regarding the elevator servo mechanism as the first order system,
we have the following system:

@ :pczaa+ 0 +pC2605(f’
é:p/cmaa +p/q0 +p/Cm6e5m

0, = — ! 0, + 1 u (u; command input),
Ty Ty
S qS,c c
where p= 90 , pl= 10 = (Ch,+CL). 199)
p mu, "7 3 q 2U0( 2 ) (

Moreover nondimensionalizing these by the nominal short period of the system,

t= ! r, O0=w, 0, where 0i=—C,, qSeC , (200)
w, I,
the following equations are derived.
( i 0O 1 O 0 0 0
d @ O ¢~ #Cma /«lC‘mae w 0
o = + u,

de | o 0 1 ¢C,, ¢C,, || @ [0

d, 0O 0 O —2 a, A

2
where ¢=plw, p=p'|oi, 1=1joyz, E:’L’gv-,(cmﬁcm). (201)

v

The system matrix uncertainties are expressed as follows respectively:

00 0 0 0 0 0 0
0 0 3uC,.) 0 0 8(65) 0 0

5A, = (Ce) g4 |0 %60 . (202)
00 0 0 0 0 0 0
00 0 0 0 0 0 0
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Where 64, and 04, denote the static margin and damping derivative variations
respectively. Here as the control problem we consider the level flight autopilot
system. The corresponding performance index (cost) is expressed as

J:F [15e2+l_ (0—a)2]dz to be minimized. 201)
o L J, J,

Referring to the Blakelock’s [132], we use the following nominal parameters:

p=0.07257 (1/sec), p’=1.94553 (1/sec?),
C,.——3.714, C,,—= —4.46, C,;,=—0.710, C,;,= —0.246,
(Cgt Crd)= —14.67, w,=1.0974 (1/sec), z,=0.5 (1/sec). (204—q)

And we specify the range of parameter variations concerning their nominal values
as

3(uC )= £300% full scale, d(¢¢)=+83% full scale. (204-b)

Under the parameters above, we show some numerical results. In this problem
the parameters ¢ used in M.C.V. and U.W. type M.C.V. are normalized to unity;
i.e. the largest design range is 1. And the design parameters in the other methods
have little meaning and should be considered as the scale of the additive terms.
Firstly the evaluations for only §A4, variations are shown in Fig. 13—Fig. 26, both
the projection and the contour lines of the cost srrfaces are displayed in order;
Nominal ones in Fig. 13, 14 and the results concerning various factors of M.C.V.
design techniques in Fig. 15, 16, and those of S.R. method in Fig. 17-22, and those
of intuitive high and low feedback approaches are displayed in Fig. 23-26. We
can easily recognize that some of those are valid for the systems to be robust. But
the quantitative comparison of these ‘“Additive Term Design” techniques is not clear
from these figures, so we arrange the results in Table 1—Table 16 and Fig. 27
involving the results that are made by the other methods than those illustrated in

Damping Derivative
Ve

Statie Stability
Stiffness

1007,

Damping

SSDerivative
Static Stability
Stiffness
Fig. 13. Projection of the Nominal Cost Fig. 14. Contour Lines of the Nominal
Surface—Autopilot. Cost Surface—Autopilot.
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b) ¢

0.25

a) ¢

1.00

d) ¢q

0.75
Projection of Robustly Designed Cost Surface—Autopilot

M.CV. «

q

c)

Fig. 15.

0.5, 5A4; only).

/
/1
0.50

b) ¢

=0.25

a) q

d) ¢=1.00

0.75
Fig. 16. Contour Lines of Robustly Designed Cost Surface—Autopilot
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¢) a=1.0
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Fig. 17. Projection of Robustly Designed Cost Surface—Autopilot (S.R. m=0).

E7 ]
° o

.

2\

ey a'h‘“‘;,- - .
TS S
B
AT v
TREs
e i
/':l

¢ a=1.0

//’ ':
///%//f :

Fig. 18. Contour Lines of Robustly Designed Cost Surface—Autopilot (S.R. m=0).
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a) a=1.0 i b) @=2.0

a) «=1.0 b) «=2.0
Fig. 20. Contour Lines of Robustly Designed Cost Surface—Autopilot (S.R. m=1).

a) a=0.1 ' b) «=0.2
Fig. 21. Projection of Robustly Designed Cost Surface—Autopilot (S.R. m=2).

a) a=0.1 a=0.2
Fig. 22. Contour Lines of Robustly Designed Cost Surface—Autopilot (S. R. m=2).
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c) x4.0 d) x5.0

c) X4.0 d) x5.0
Fig. 24. Contour Lines of Robustly Designed Cost Surface—Autopilot
(High Gain Feedback).
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c) x0.17 d) x0.13
Fig. 25. Projection of Robustly Designed Cost Surface—Autopilot (Low Gain Feedback).

b) x0.25

c) X0.17 d) x0.13

Fig. 26. Contour Lines of Robustly Designed Cost Surface—Autopilot
(Low Gain Feedback).

i
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Table 1. Robust Design—Autopilot (M.C.V. @=0.1, dA4; only)
Case | \ Cost max. Cost A“(;o_;t S&g&g
(n%;?égl) | 4.975 (8. 483) (3. 508) 66 deg
=025 3 (8. 448) > 459) 68 deg
q=0.50 t (17, 408) (1307 G- 240) 66 deg
Table 2. Robust Design—Autopilot (M.C.V. a==0.25, d4; only)
Case a Cost max. Cost | 7A Cor;ti - Shtllaggitg
(n%r:n?ﬁgl) 4.975 (8. 483) (3. 508) 66 deg
9=0.25 789 (6.972) (1.816) 69 deg
g=0.30 &.3%) & 704 a1 68 deg
9=0.75 13 168) (5,347 2:2%9) 67 deg
q=1.00 04 692) 709 G350 66 deg
Table 3. Robust Design—Autopilot (M.C.V. «=0.5, d4; only)
Case Cost max. Cost 4 Cost Sltlei;)rlgg B
(n%;(i)fxgl) 4.975 (8. 483) (3. 508) 66 deg
q=0.25 (gﬁ %g) (6. 580) (1. 357) 69 deg
4=0.50 @ 500) . $08) (651 69 deg
q=0.75 : (132 223) | (g: ggg) " (%:%gg) 69 deg
T T A T
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Table 4. Robust Design—Autopilot (M.C.V. a=0. 75, 0A; only)

Stability

Case Cost | max. Cost 4 Cost Margin
(n%;?ﬁgl) J 0.5 (8. 483) O 3508) 66 deg
4=0.25 | (gﬁ ggg) (6. 451) (1445 68 deg
G- | -
=050 | g Coesse | atesn 69 deg
=0 E3E BRSO 08 e
oSG e
Table 5. Robust Design—Autopilot (M.C.V. a=1.00, 64; only)
Case Cost | max. Csot 4 Cost S]\tfggitg
(n%;?ﬁz?l) 4.975 (8. 483) 3 (3. 508) 66 deg
q=0.25 (& 432) (6. 508) (1. 499) 68 deg
4=0.50 (gf }gg) \ (6. 454) (1.318) 69 deg
o | R e
sl S BE S e
Table 6. Robust Design—Autopilot (U.W. d4; only)

Case 1 Cost ‘ max. Cost 4 Cost Sl\t/?;)riéiitg
7 (n%;?ﬁgn ; 4.975 (8. 483) (3. 508) 66 deg
q=5.0 ’ (451: ggé) (7.224) | (2.0340) 67 deg
¢=10.0 (_gf (9)3) (6. 820) | (1.743) 69 deg
T .
4220.0 i (;ﬁ gg(z)) 8.55 | 2.883 f e dcg

(7.914)
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Table 7. Robust Design—Autopilot (S.D.N. d4; only)

| Stability

Case Cost - max. Cost MW;INCost 1 Margin
(rbminal) 4.975 (8. 483) (3. 508) 66 deg
q=0.5 (gﬁ (6%451) (6. 666) (1-062) 68 deg
q=1.0 (g: égg) (7.036) (1.870) 69 deg
g=1.5 iy g &, 086) 69 deg
9=20 (5. 064 337 (.29 69 deg
Table 8. Robust Design—Autopilot (Offset Design)
7 Case ; Cost max. Cos; 7:1 Cost Sl\t,?frigg
(nomal) | 4.975 (8. 483) (3. 508) 66 deg
20% (iﬁ gfls’:;) (6.616) (1.603) 67 deg
40% (iﬁ zlsig) 6.911) (1.794) 67 deg
60% (csxf %Z) (7. 248) (1-971) 66 deg
80% (4513 ;g% i% 2%‘;‘) (g: %71) 66 deg
wnGH &8 &R | sw
Table 9. Robust Design—Autopilot (S.E. dA4; only)

7 Case 7 Cost max. Cost 4 Cost Sl\t,?;);gg o
(n%rzn(i)ﬁgl) 4.975 (8. 483) (3. 508) 66 deg
q=0.1 (g: (l)gg) (6. 800) (1.780) 69 deg
q=0.2 (;: ‘31‘2“7)) (§/: ‘5‘3) (%: (1)%%) 69 deg
4=0.3 (8. 89) (8. 410) (3. 457) 68 deg
q=0.4 (1(6): gg%) (g: ggg) (g: ;g(l)) 67 deg
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Table 10. Robust Design—Autopilot (U.W.M.C.V. a=+/2/2, 54, only)

ISAS Report No. 605

Case Cost ‘ max. Cost 4 Cost %&;;lglfg
¢=0.0 1 ] fes} oo
(nominal) | 95 (3483 (3. 508) 66 deg
¢=0.014 | 5.188 ©166.738 161,550 69 de
(V'2/100) | (7.055) (7.031) (1.843) &
4=0.028 5.334 | 8.090 | 2.756 6 d
(V' 2 /50) (9.5200 (7.193) (1.859) B
q=0.042 5.355 8. 440 3.085 67 de
(BV2/100) | (14.000) | (6. 906) (1.551) g
Table 11. Robust Design—Autopilot (U.W.M.C.V. a=+'2, §4; only)
J .
Case | Cost max. Cost 4 Cost S]\t/?:rl(]:itg
[ ; o
o | E—
¢=0.0 J } co ’ o ;
mominal) | ¥ @4y | (3sosy 60 dex
—— S . ‘ | - —_— —
g=0.014 | 5033 oo ’ oo 68 de
(V2 /100) 6.430) (6. 603) (1.570) &
g=0.028 | 5103 | - | oo 6 d
(v 27/50) (8. 607) (6.555) | (1.452) °8
¢=0. 042 55 | 86.315  80.785 | 66 do
(3v/2 /100) (13.552) | (6. 536) (1.006) g

Table 12. Robust Design—Autopilot (Simple Realization m=0)

Case Cost max. Cost 4 Cost ‘ S]\t/?ggit,{

( n%;?ﬁgl) 4.975 (8?283) (3??08) ‘ 66 deg
¢=0-1 & 8‘01%) (11, 525) (4. 884) 95 deg
4=0.2 (10.301) (26.267) (18.739) f 95 deg

Table 13. Robust Design—Autopilot (Simple Realization m=1)

Case Cost max. Cost 4 Cost Sl\t/?;)rigg
(nominal) 4.975 (8. 483) (3508) 66 deg
¢=1.0 (ssi gig) (6. 980) (1. 521 71 deg
9=20 (20.510) ©.740) @ 3% 73 deg
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Table 14. Robust Design—Autopilot (Simple Realization, m=2)

Case Cost max. Cost 4 Cost ! S]\t?:rigitg
(n({):?ﬁgl) 4.915 (8. 483) (3. 508) 66 deg
q=0.1 (gﬁ gés@z) (8.277) (3.029) |66 deg
q=0.2 (131 ggg) (10, 150) (2. 685) 71 deg
Table 15. Robust Design—Autopilot (High Gain Feedback)

Case Cost max. Cost AA Cost Sl\t,?;)rigg
(|1Qo>11<1ilﬁz(l)l) 4.915 (8. 483) (3. 508) 66 deg
2x2.0 (g: 1(9)5) (7.718) (2. 616) 65 deg
0x3.0 (122 3%2) (7.752) (2.423) 65 deg
gx4.0 (1% fgg) (7. 966) 2. 382) 64 deg
2X%5.0 (2(5)2 gg;) (8. 245) 2. 304) 64 deg

Table 16. Robust Design—Autopilot (Low Gain Feedback)

Case Cost max. Cost 4 Cost Sﬁ‘;’gg )
RX1.0 4.975 (8. 2‘53) (3?208) 66 deg
RX2.0 (gﬁ %(5)) (11.076) (6. 006) 68 deg
Rx4.0 :93) (20.729) (15.411) 70 deg
RX6.0 (gﬁ 33(1)) (54.793) 49.273) 71 deg
RX8.0 o & Pl 72 deg
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|
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8.5f- eNominal Controller /(

8.0

High Gain «

el A

.
ot

Maximum Cost

----- MOV e 05

7.0k ~AMCN e 075)

TW. tape MO
v 0,71

UW. type MOV
“la 1415

[ L L
5.0 5.5 6.0

Cost at the Ovigin

Fig. 27. Robust Controller Designs—Autopilot (54;)

Fig. 13-26. (In these Tables, the values in parentheses in Cost column denote the
design costs and those in max. Cost and 4 Cost column indicate the values evaluated
only in the direction of 64,, moreover if not commented the gain margins are infi-
nite.) [Especially the Fig. 27 represents the characteristics and differences between
the design methods. Naturally the method which reduces not only the cost at
origin but the highest cost over the specified range of parameter variations is more
preferable. From this point of view, we can conclude that the M.C.V. and U.W.
type M.C.V. methods are superior to any other design method considered here, and
that the methods except for them have as same effectiveness as one another. The
S.R. methods and high or low gain feedback techniques have less validity for in-
sensitivity. And S.E. design established in this paper has as same effectiveness to
it as U.W. and O.D, S.D.N. designs. The best result of the M.C.V. designs has
higher cost than the optimally designed cost by only several percents, but the cost
surface is improved very drastically. Here we should note that the stability margins
are improved not so considerably as in the cost surface from Tables 1-16. This
fact can be interpreted that the stability margins at the origin do not reflect the
overall improvement well. The robust feature of the stability margins in M.C.V.
designs in chapter 3; the stability margins are maintained at the same level as in

the usual L.Q. regulators over the specified range of parameters, is observed in
Table 17 together with the other effective designs. It is clear that the M.C.V.
design actually guarantees the sufficient stability margins over the specified region
as considered in chapter 3. This property can be expected to play the role of
robustness for the unmodeled uncertainties other than d4,. In fact, Fig. 28 demon-
strates that the M.C.V. and U.W. type M.C.V. methods that are based on only
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Table 17. Robust Design—Autopilot (Stability Margins)

T —
| nominal MCV ¢Z%3  UW (g=20.0) | offset (100%)
100 29 deg 68 deg 67 deg 62 deg
—100% (—5.6 dB) (—19.9 dB) (—16.0 dB) (—16.0 dB)
80 42 deg 68 deg 67 deg 63 deg
—80% (—11 dB) (—26.1 dB) (—22.6 dB) (—23.4 dB)
60 . 52 deg B 68 deg 68 deg 63 deg
—60% (—36 dB) (—55.0 dB) (—52.0 dB) (—52.0 dB)
—40% 58 deg 68 deg 68 deg 64 deg
—209% 63 deg 68 deg 68 deg 65 deg
0% 66 deg 68 deg 69 deg 65 deg
20% 69 deg 68 deg 69 deg 66 deg
40% 71 deg 68 deg 69 deg 66 deg
60% 73 deg 68 deg 69 deg 66 deg
80% 74 deg 68 deg 70 deg 67 deg
100% 76 deg 68 deg 79 deg 67 deg
Cost 4.975 5.614 5.642 5.742

0A, variation have higher robustness than other methods in the case that not only
0A, variation but 34, variation exist. Fig. 29 illustrates the S,, S, and S; surfaces
discussed in chapter 3 for this case. From the considerations made there, we can
expect qualitatively that over the left part of about —30% line the cost may be
improved. This perspective is true roughly for the cost is really improved over the
left part of about —60% line. The two S, surfaces corresponding to the optimal
and the robust gain are also shown in this figure. We should note that though
the S,(g, K,) surface is not below the S(g, K,) surface, which is sufficient for cost
improvement as discussed in chapter 3, the true cost surface is actually improved.
This shows that the design range need not be the maximum boundary value of
parameters.

Next, were show the results when the two uncertainties 4, and JA4, are considered in
insensitive controller designs. They are illustrated in Fig. 30—Fig. 35, in which the
projection and the contour lines of the cost are also shown in order concerning
various types of designs. In Fig. 30, 31 the results by M.C.V. and in Fig. 32, 33
the improved region in detail, and in Fig. 34, 35 those of U.W. type M.C.V. are
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illustrated. Particularly in Fig. 32, 33 the qualitative discussions in chapter 3 are
shown, where one point dashed lines correspond to the region of eq. (72) and two
point dashed lines denote that of eq. (85) respectively. As evaluated before, the
quantitative arrangements are displayed in Table 18—Table 27, and in Fig. 36,

I 1
‘Optimal Cost
12.0F |
;
I
]
]
i
11.0F |
|
:
]
3
i
j 1
21008 |
] |
= |
: ot
= ;
9.0f 1
|
:
i
8.0k i T 7L, type MLCV. (a=0.71)
)
g N ALCN, (a=0.5)
751 4
:] I 1
50 55 6.0

Cost at the Origin

Fig. 28. Robust Controller Designs—Autopilot (641, 6A43)

Guaranteed
Cost

S K (S

(OLCY. @205, q=1.0)

! it H 1 -

L b —
-100% 100%, 'l

dA; Variation

Fig. 29. S;, S, S; Cost Surfaces—Autopilot.
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d) ¢=04

¢ ¢g=03
Fig. 30. Projection of Robustly Designed Cost Surface—Autopilot (M.C.V. «

0.75).

0.2

b) ¢

0.1

a) q

0.4

d) ¢q

0.3

9 q
Contour Lines of Robustly Designed Cost Surface-—-Autopilot (M.C.V. «

0.75).

Fig. 31.
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0.2

b) ¢

Cost Improved Region—Autopilot (M.C.V. «

Fig. 32.

0.75).

0.4

b) ¢

0.3
Cost Improved Region—Autopilot (M.C.V. «

a) ¢

Fig. 33.

0.75).

=0.015

b) ¢

g=0.01

a)

0.025

Fig. 34. Projection of Rebustly Designed Cost Surface—Autopilot

d) ¢q

0.020

q

9]

(U.W type M.C.V. «=1.0).
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Table 18. Robust Design—Autopilot (M.C.V. a=0. 1)
Case | Cost max. Cost 4 Cost Sl\t/?;)rigitr}ll
A e
*q=0 L -(IIZ: t00) ‘ 10,827 3.824 74 deg
Table 19. Robust Design—Autopilot (M.C.V. a=0.25)
- ;ase o ”‘Cost ‘ max. Cost | 4 C;;; Hsl\tfggg
(H%E?ASD 4.975 oo | © 66 deg
q=0.1 (2: ggf) 11;81 | | 67.:/28 76 deg
R TR R sp6 | 75de
P T ! s T
Table 20. Robust Design—Autopilot (M.C.V. a=0.5)
Case Cost max. Cost 4 Cost | sl\t,?:rigg
A ;‘i’ﬁ;’]) 4975 | - - 66 deg
g=0.1 é: gég) 7 o o 7 de;
7=0.2 (3: %fé) 7 7.918 -~ 2 765 75 &eg
v q=0.3 (lf:‘l‘g‘g) " 5:0047” 2.555 75 deg
B a6 26 7 des
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Table 21. Robust Design—Autopilot (M.C.V. «=0.75)

Case Cost max. Cost 4 Cost Sl\t/?;)ri;iitg

(n%;?ﬁgl) 4.975 o © 66 deg

g=0.1 & 88) e oo 71 deg

q=0.2 a gg%?# pon | 18.208 74 deg

g=0.3 (1(5): ﬁ%g) 7. 448 . 2.232 g deg

q=0.4 o %) 7.658 ! 2. 164 73 deg
Table 22. Robust Design—Autopilot (M.C.V. a=1.0)

Case Cost | max. Cost | 4 Cost Sﬁfﬁgﬁ
e inal) 4.975 °° e 66 deg
o1 | EB | - . 70 ds
q=0.2 (.5,: 283) o308 4,335 73 deg
q=0.3 . g%%)m— 8. 068 2.847 73 deg
q=0.4 (132 2'9’3) 7. 506 - 1.928 73 deg
Table 23. Robust Design—Autopilot (U.W.)

Case Cost max. Cost 4 Cost Sl\t/?frilgiig'
(nCIo——r;l(i)r.lz(i)l) 4,975 oo ) 66 deg
g=5.0 (§: gﬁg) oo I deg
g=10.0 & %8%) 0o : 4.919 76 deg
q=15.0 R (.5,: gg%) 8. 509 2.948 76 deg
q=20.0 ) (§: (5’(1)%) 9.283 3.276 76 deg
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Table 24. Robust Design—Autopilot (S.D.N.)

Case Cost max. Cost ; 4 Cost , S]\t/?;)rigitg

(n%rzn?ﬁgl) 4.975 oo 3 } 66 deg

;;:0.2 3 9 oo | oo f 72 deg

7 rq:o.4 (g: (1)2% 15606 | 10.448 76 deg

q=0.6 (§: ggg) 8.372 2.887 77 deg

q=0:8 (g: 22‘6‘) 9. 402 3.318 76 deg

Table 25. Robust Design—Autopilot (0.D.)

Case | Cost max. Cost "' 4 Cost Sl\t/?abrigg
(noﬁ’n‘?;]al) s 975 - E e | 56 degmm

szvo% | (Z: D) | o | o 72 deg

74(;%,7 s (Z;‘% 002 | 183 75 deg
W | SM s | 2w | jede

80% | (Z: ;gg) - 8. 802 3 069 | 76 deg
T e

Table 26. Robust Design—Autopilot (S.E.)

- Case Cost max. Cost \ Agost S&ggg

(n%;(i)r.u(i)l) 4.975 ! o) » o) 66 deg

'''' gm0 | S0 o . 6 deg

;:(7)7.”(7)4777 1 (gjfgj) 8 275 N 3.061 79 deg

q=0.06 - (% Zgg) 8.878 3.129 B 78 deg

q=0 08 (gj 223) 1 e sess | 7; deg
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Table 27. Robust Design—Autopilot (U W.M.C.V. a=1.0)

Case Cost N max. Cost \ 4 Cost S;,?;Dr'gitg
T i
q=0.0 |
(nominal) 4.975 oo oo ‘ 66 deg
4=0.01 (g: };}g) 11.395 6. 280 75 deg
q=0.015 | (§ ;%) 7.553 2.392 75 deg
g=0. 020 \, (g' ;gg) 7. 467 2.279 74 deg
| 5
— | B L |
g=0. 025 | (1% %%) 7.341 2.079 73 deg
Table 28. Robust Design—Autopilot (Stability Margins)
I : a=.75 uw
‘ nominal MCV g=.4 (g=13.0) offset (70%)
Cost 4.975 5.494 5. 403 5.544
0.456A4:,+0.46A4, 82 deg 77 deg 83 deg 82 deg
0.45A4,—0.46A4; 55 deg 68 deg 68 deg 68 deg
—0.46A4:+0.45A, 70 deg 77 deg 83 deg 82 deg
—0. 454, —0. 4343 \ 40 deg 69 deg 69 deg 69 deg

involving more results than Fig. 30-35. The superiority of the M.C.V. and U.W.
type M.C.V. designs is also recognized in Fig. 36, while the other methods except
for them construct the almost same robust systems as one another. The robust
property of stability margins is also depicted in [Table 28, which also supports the
discussions in chapter 3. The numerical examples of S,, S, and S, surfaces are
shown in Fig. 37, which demonstrates the qualitative features of them considered
in chapter 3. In this figure, the mathematical discussions in that chapter are illus-
trated particularly for gain K,, where the S, surface suggests the cost improvement
over the left part of —40% line, the true surface is really improved over the left
part of —80% line. At the points where the Sy(g, K;) is below the S,(gq, K,) surface,
the true surface is really improved, which is treated as sufficient condition in chapter
3. But it is also found out that the required gain need not be so ‘“large” one as
K,, because even the ‘“smaller” gain K, actually improves the true cost surface
drastically, though the mathematical discussions as for Sy(g, K;) and Si(g, K)) are
not applied. Here the readers should note that the S, surfaces for K,, K are much
higher than that in the case with only 4, variation in Fig. 29, because the double
additive terms in M.C.V. or U.W. type M. C.V. make the design cost higher. There-
fore we dare not have M.C.V. designs and U.W. type M.C.V. designs with correct

This document is provided by JAXA.



74

ISAS Report No. 605

Cost /
444
“ Guaranteed
Cost ([ Sa)
1000 g
SulqKit 8wl

—x ] SR
Sytq. Ky )
Soig K S
Si(q.Ke
—
x \ /‘:;;‘,’5_‘/)/
T R— . s o
Si(q.Ka) 5.0 K, optimal
Ko M.CV (@075, 0.4)
Ks M.CV. (@==0.75, ¢-=1.0)
1 1 1 1 1 1 L 1
-100% 1007%
d\1, S\, Variation
Fig. 37. S;, Ss, Ss, Cost Surfaces—Autopilot.

Table 29. Statistical Cost Exspectation—Autopilot (Quasi Normal Distribution)

Method ’ Ceas Cost Method Case Cost
N | 4=0.2 5131 | g=0.4 5.223
@S [ g=0.3 | 5.269 SDN g=0.6 | 5539
‘  g=0.4 5.539 4=0.8 6.133
og=001 | s | 409 5.214
@=L0 gm0 | s22 80% 5.783
¢=0.025 | 5316 1009 W}Wﬁ 6.621
q=10.0 5.263 o g=0.03 |  s5.163
Uw g=15.0 5.613 g=0.04 5.283
4=20.0 | 6.061 ji o 4=0.06 5.809
e T g=0.08 |  6.863

design range for parameters and treat this as somewhat confined and appropriate

narrower one.

some robust design methods.
distribution which regards the specified parameter boundaries as 3¢ levels.

Next we attempt to compare the statistical cost expectations between

Table 29 shows these based on the quasi normal

And

Table 30 shows these based on the uniform distribution; i.e. the simple expectation.
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Table 30. Statistical Cost Expectation—Autopilot (Uniform Distribution)

Method Case Cost ‘ Method }‘ Case Cost
B - g=02 s78 | - g=0.4 561
MY " 4=0.3 | 5607 | SDN Cg=0.6 | 588
Cemos | ams | o eme
o o e B e BT
Uwmey | 4=0.015 | 5.595 | 60% |  5.782
@O e s | 0| we | sw
| q=0.025 T sess | D0 | 6503
7 g=10.0 5.724 \ q=0.03 \ 6.529
uw 7;:153 - t:iis f91.?:i; . © 4=0.04 ¥ 5766
g=20.0 6.327 | g=0.06 |  6.152
S 7“ | g=0.08 L 7112
/‘?;.D;N.

6.0+
U.w.

M.C.V. (@=0.75)

w
o
T

Statistical Cost Expectation

“U.W.type M.C.V. (@=1.0)

L

5.0 55 6.0
Cost at the Origin

Fig. 38. Statistical Cost Expectation—Autopilot (Normal Distribution).

The schematic illustrations cosresponding to these are made in Fig. 38 and Fig. 39
respectively. These results indicate that against our anticipation if the system is
only stable over the region then the cost expectation depends almost only on the
cost at the origin regardless of the design methods. But only in Fig. 39, the dif-
erences between the methods are observed clearly, which suggest that the M.C.V.
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CW.otype MOV ta 1.0

1

6.5
z
Z 6.0
|
7oL
55

5.0

Cost at the Origin

L
5.5

6.0

Fig. 39. Statistical Cost Expectation—Autopilot (Uniform Distribution).
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Fig. 40. Step Responses at the Origin.
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=1

b= Flight Path Angle (rad) 91'1 Flight Path Angle (rad)
'-'] by Nominal Controller by M.C.V. Controller
5 \ 5 \
S RWA o)
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e v~ o ~
A RVAVAY < ]
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= =

= o"
= : . S T T ™
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2 ~ by Nominal Controller o by M.C.V. Controller
TS — [\ /\ /\ TS N
X X
2 2 \/\V
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: \ :
E vaRRi
=3 =
O 1 O 7
S <

5 T T T w T 1 T 1 T T T T 1
o R "l!ime' (se‘c) ! 2(‘).0 10 Time (sec) ' 20.0

Fig. 41. Step Responses at 70% Variated Point.

and U.W. type M.C.V. designs are superior to any other design, which is also
revealed in Fig. 36. Finally we compare the step responses between the nominal
design and the robust M.C.V. design at the point where the nominal surface produces
considerably high cost. These are summarized in Fig. 40, 41. While the response

is quite bad in the nominal system, much better response is obtained by the robust
M.C.V. system.

5-2. Nonlinear Filtering

Now we apply the robust design techniques to the estimation problem. The
problem is the radar tracking one with unknown dynamical parameters in the model.
Here we implicitly assume that the systems to be considered are extended Kalman
filters, because of nonlinearity. We consider the two-dimensional dynamics of the
re-entry vehicle as in Fig .42. The equations of motion are expressed as

X= V;w y: v
V,=— D os7— L sin 7,
m m
V,= L cos 7 — D in r—g,
m m
D= % V:C,S, L= —;*PWCLS, cosT=V,/V, sin7=V,/V. (205)
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Fig. 42. Tracking of a Vehicle.

Rewriting these, we have

Vy=—aV,V—8V,V,

V,=BV.V—aV,V—g,
oS
2m

o=

S
-Cp, = 2",’;1, C, (206-a)

with two measurements range and elevation angle:
r=v/x*4y? 6=cos™" [x/+/x*+ 7. (206-b)

Here we assume the gravity is constant and the earth is flat and the vehicle does
not have any thrusters. More solidly speaking, this is modeled as a re-entry vehicle
under the hypersonic flight condition, with the following parameters:

m=350 (ton), S=200 (m’), C, (true)=0.40, C, (true)=0.15,
0x=35 (m), 0,=0.005 (deg), measurement interval=1.0 (sec),
Vio=3.0 (km/sec), V,,=—0.9 (km/sec), X,=—200 (km), Y,=60 (km),

V.=3.3 (km/sec), V,,=0.0 (km/sec), X¥,= —220 (km), ¥,=66 (km).
(206-¢)

where ¢, and ¢, denote the standard deviation of range and elevation angle measure-
ment errors respectively and (+) indicates the estimated value.

In application of the M.C.V. and other ‘“Additive Term Design” techniques to
the filtering problem, we dare to assume that the modification is confined to the
covariance propagation. Because these design techniques are derived in control
problems providing that the system structure is not changed and so the design
procedure is reduced to the selection or calculation of gains (in this case Kalman
gain). For example, from the standpoint of the statistical expectation, we should
modify not only the covariance propagation equations but the state estimate propa-
gation equation in Kalman filtering. But from the practical view points such systems
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may produce worse estimates between the measurements or updates and so they
cannot be adopted. Hence we have the evaluations confined to the systems with
modified covariance propagation equations.

In Table 31 and Fig. 43, 44, 45, 46, we show the estimation results (error covariances
and actual errors) of the nominal Kalman filter in various cases where the parameters
are exactly modeled or mismodeled to the true ones. From these it is easily observed
that the theoretical nominal Kalman filter is highly sensitive to the system parame-
ters and may diverge. In practical applications, the other estimation techniques
than Kalman filters such as least square methods or some methods are usually used
in order to keep the Kalman gain high; the methods of resetting the covariance
matrix or introducing the virtual system noise. Or if the system is permitted to
be complex, the real time parameter identification technique is used to adjust the
installed model to the true dynamics. The readers should note that this approach
is similar to the “Mismatch Estimation” concept. The results of this taking the
virtual noise covariances as much larger values are shown also in Table 31 and
Fig. 47, 48. These reveal that if the system structure is permitted to be higher
order one or complex one, in this exmaple from 4-th order to 6-th order, it is
possible for us to improve the estimates as demonstrated. But our approach here

is quite different one from this.

We seek for the methods that may not change

g,_-] X-Range (m) i Y-Range (m)
":? -~ é ~
X X
o ®
= o]
= o]
C\! <
o~ T T T T I S 1 P=) T ] T 1 T T T 1
ro ' Time (sec) 100.0 0 Time (sec) ‘ 100.0
:‘1 X-Velocity (m/sec) ':]T Y-Velocity (m/sec)
. J
op % |
% . X
= 2
> o]
< r:\g—
N B S S R S N L - T T T T ™
0 Time (sec) ! 100.0 L0 ! Time (sec) ' 100.0
Fig. 43. Nominal Tralectory Data L.
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ST Parameter a (1/m) ~ Range Data (m)
-{ N
-t -]
x| s
: x|
£ G
£ ~
Q‘— -
= T L YL A S = T T |
T 1 T o T T T T
0 Time (sec) 100.0 Time (sec) ‘ 100.0
N Parameter 43 (1/m) pest Angle Data (rad)
R £
X X
o £
g | E
£ bl
= T — | S
= T T T T =) T T T T T
'l Time (sec) ! 100.0 0 5 T}me (seé) ‘ 10‘0-0
Fig. 44. Nominal Trajectory Data II.
Table 31. Estimation by the Models with Various Parameters
T 1 T =40 (sec) ‘ T=100 (sec)
Case ¢z (m) ‘ & (m/ s) . v (m) 1 7 (m/s) oz (m) & (m/s) l y (m) | 7 (m/s)
«0.8 | 3371 | 8. 556.3 | 122.8 | 1569.0 | 57.1 } 8722 | 32.6
<0.9 164.2 ‘ 33.8 274.3 ‘ 57.9 ‘ 750.6 ! 27.9 409. 1 ‘ 15.3
x1.0 1 | | - e
(true) 2 70.74 \ ,,,,6?7 17 0.1 | 55 01 0.7 | 0.02
1.1 1649 | 331 2471 52.4 700.4 257 3716 | 13.4
»1.2 334.7  66.2 | 481.1 101.0 ‘ 1353.1  49.7 713.2 25.3
‘ ! | ‘ 1 i |
Real Time ! 1 |
Nentifinton | 17 0.000 147 ‘ 0.2 7.2 135 41 7.9

the system structure as in the discussion on control problems before. Essentially
our robust designs are equivalent to the methods of keeping the Kalman gain high.
But while the practical or intuitive approaches are formulated without any theoretical
foundations, ours are justified by the discussions in chapter 3. Fig. 49—Fig. 58
illustrate the results (covariances and errors) by some “Additive Term Design”
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Fig. 45. Estimation by Exact Model (460 m, m/sec scale).
Table 32. Estimation by the Robust Filter (M.C.V. a=1.0)
T~ T=40 (sec) T=100 (sec)

Case | z(m) | & (m/s) ! y(m) | g(m/s) | z(m) ‘ Z (m/s) l y (m) ‘ ¥ (m/s)
g=0.1 | 8.1 | 480 | 943 | 76.1 7.6 | 1.6 2.1 1.8
g=0.2 19.9 ‘ 28.0 25.0 45.9 L9 | 04 0.4 0.4
g=0.3 3.0 | 158 22.3 36. 1 26 | 0.04 4.4 1.5
g=0.4 | 12 | 122 4.7 21.6 120 | 2.4 3.4 1.7
g=0.5 2.3 12.7 1.3 197 | 26 25 | 9.4 0.9

techniques. In Fig. 49-53 M.C.V. designs are shown and in Fig. 54-57 U.W. type
M.C.V. designs are demonstrated, and the attempt to introduce the apparent system
noises is made in Fig. 58. Here the true boundary values of variations or the
largest design range in M.C.V. or U.W. type M.C.V. are 0.2, because these results
are evaluated in the 80% mismodeled filter. In the other cases than M.C.V. or
U.W. type M.C.V, this design range has little meaning and should be taken as
the scale of the additive term. It is obvious that considerable improvement of
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Fig. 46. Estimation by the model with 809, parameters. (+1200 m, m/sec scale).

Table 33. Estimation by the Robust Filter (M.C.V. ¢=0.3)

R T=40 (sec) | T=100 (sec)

 Case ‘7x (m) ‘ £ (m/s) ‘ y (m) \ 71;'/77(7m/5) | z (m) V%Wi(m/sr)” Y (m)r z'/(m/si)ri
«=0.5 | 39.4 ‘ 35.8 } 6.8 | 56.3 os0 02 29 | L5
¢=1.0 | 3.0 7‘ 5.8 1 22.3 l 36. 1 2.6 \ 0.04 4.4 L5
w=2.0 | 0.5 } 9.2 \ 2.8 s 45 ‘ 33 0.2 0.3
«=3.0 ; 2.4 ‘ 56 1.2 \ 1.1 5.5 ‘ 3.9 ‘T\ 6.2
@=4.0 | 31 3.5 2.8 2.6 35 0.9 3.1 | 2.4

estimates is made by appropriate selection of these techniques. The quantitative
evaluations of actual estimation errors are rearranged and summarized in Table 32—
Table 37, and the schematic comparison is made as histograms in Fig. 59—Fig. 62
for various types of robust estimation techniques. These show that any “Additive
Term Design” method is very effective to the estiamtion improvement more or less.
Particularly, the M.C.V. or UW. type M.C.V. methods are assured to produce
highly improved estimates. (Here the deterioration of estimate at time 40 (sec) is
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Fig. 47. Estimation by Real Time Parameter Identification (60 m, m/sec scale).
Table 34. Estimation by the Robust Filter (U.W.)
e TG I T=100 (seo) 7
Case |z | i@ | gy | amp |z | 2 oy | g
2= 108 1.6 | 109 | sons 116.3 | 72.4 ‘ 5.2 | 150.7 10.3
e=100 | 209 | 57 | 212 645 277 | 2.8 713 6.5
G*=108 6.7 0.6 | 59.4 3.0 | 6.6 1.3 28.8 3.6
q*=108 ‘ 2.8 0.4 ! 14.6 15.9 3.7 9.4 6.9 | 1.6

caused by the fact that the difference between the installed model and the true

dynamics

is large at that time.

And the fact that the design ranges in M.C.V. and

U.W. type M.C.V. are treated over 0.2 in some cases is due to the nonlinear features
under which the inequality eq. (31) cannot be assured easily here.) From the results
obtained here, we observe that while the error covariances that reflect the magnitudes
of Kalman gains settle to stationary values regardless of the actual errors by apparent
system noise concept as in Fig. 58, the covariances in U.W. type M.C.V. reflect
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Fig. 48. Estimation by Real Time Parameter Identification.

Table 35. Estimation by the Robust Filter (S.D.N.)

1' - T =40 (sec) | - T:lOO (sec)

Case | wm s oy g | e | E@e | g g
=10t | 280 67.6  S62.7  121.8 | 1350.6  49.5 = 882  3I8
@=10° | 3023 636 5535 126 6910 2.0 7083 30.0
P=10° | 14,0 40.1 5543 1250 | 2137 1.0 4334 216
e=10" \ 37.1 5.3 250.0 5.0 75.8 5.7 118.3 9.7
g2=10° C12 204 1.8 199.8 7.3 1.5 1.2 2.4
e=sx10r | 7.3 57 137 7.6 | 24.6 2.9 3.8 5.2

the actual errors well as in Fig. 54-57 and so that mathematical basis can be
justified qualitatively for this U.W. type M.C.V. It should be noted that the
results by M.C.V. also indicate these properties more or less. But unfortunately,
we cannot obtain more informations concerning the difference between these methods
as in the previous numerical example. Because while the high feedback gains indicate
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Fig. 49. Estimation by M.C.V. (¢=0.1) (£120 m, m/sec scale).
Table 36. Estimation by the Robust Filter (S.E.)
— T=40 (sec) | T=100 (sce)
Case | a | s | v [smn | c@ | s | ve | o
q2=10° 267.5 58.9 557.7 ‘ 122.2 493.3 20.4 630.5 28.1
q?=1098 60.5 23.7 464 2 I 111.4 148.7 9.2 237 7 ) 14. 9—*
q?>=107 2. 9 1 4 16 6 r 11. 3 ‘ 41.9 4.0 7727.5 "*"70_“
q'~’—-2><107‘ 17| a7 \ 2.4 | 2Ls } 27| a3 | a2

the much effort of actuators and these are evaluated as the penalty of cost in control
problems, in estimation problems high Kalman gains are almost independent of the
resulted estimation error and can be realized without difficulty actually. Hence we

cannot discuss further as to this comparison.

Finally the results of the cases where

the modeled parameters are different from the cases before are presented in Table
38. The M.C.V. methods are fairly effective also to these cases with highly mis-
matched models.
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Fig. 50. Estimation by M.C.V. (g=0.2) (£60 m, m/sec scale).
Table 37. Estimation by the Robust Filter (U W.M.C.V. a=10"1)
- T=40 (sec) | T=100 (sec)
Case oz (m) .z (mIS) ‘ Yy (m) g (mfs) oz (m) ' Z (m/s) Ly (m) : Y (m/S)
g=0.01 4.9 28 | 38 | 316 . 138 | 1.6 | 248 | 3.4
| e B L o i . . [ L !7”777
= —0.1 9.7 0.6 109 | 113 5.3 .2 110 2.1
q=1.0 | 46 6.8 23 | 46 , L1 | 0.3 48 | 10
q:S.O . 2.8 1.1 16.2 145 L6 ‘ 0.3 3.8 0.7
Table 38. Estimation by the Robust Filter (to other Models)
' T =40 (sec) i T 100 (sec)
Case | z(m) | &(mfs) Ly | (m/s) 1 zm | (m/s) ] v (m) - 9 (mfs)
1.2 3| 0 |57 1.2 L 61 | 70 | os2 |17
%0.5 1| 205 1 w1 | ®3 | 62 | 21| 30 | 26
| [ \ - o
x0.5 | | ss | 13 ~ L4 . 0.3 0.2
€=0.5) | 6.6 | 20.1 6.9 l . | j
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(a=1.0) (q=0.3)
Fig. 51. Estimation by M.C.V. (g=0.3) (460 m, m/sec scale).
Fig. 52. Estimation by M.C.V. (¢=0.4) (+60 m, m/sec scale).
Fig. 53. Estimation by M.C.V. (g=0.5) (£+60 m, m/sec scale).
Fig. 54. Estimation by U.W. type M.C.V. (g=0.01) (%60 m, m/sec scale).
Fig. 55. Estimation by U.W. type M.C.V. (¢=0.1) (£60 m, m/sec scale).
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Fig. 56. Estimation by U.W. type M.C.V. (g=1.0) (60 m, m/sec scale).
Fig. 57. Estimation by U.W. type M.C.V. (g=5.0) (+60 m, m/sec scale).
Fig. 58. Estimation by Apparent System Noise (460 m, m/sec scale).
Fig. 59. Estimation by Robust Filters—Position Error at 40 (sec)
Fig. 60. Estimation by Robust Filters—Position Error at 100 (sec).
Fig. 61. Estimation by Robust Filters—Velocity Error at 40 (sec).
Fig. 62. Estimation by Robust Filters—Velocity Error at 100 (sec).
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5-3. The Attitude Control System of a Large Flexible Booster

In this section we consider the applicability of the “Additive Term Designs” to
the robust attitude control system of a large flexible booster. The system is highly
complex and a large scale system and so we can insist that this is a typical example
of practical application. The block diagram of this system 1is illustrated in Fig. 63.
The body dynamics are derived by the structural transfer matrix method considering
the aeroelastic interactions. (The detailed discussions as to this subject are omitted
here.) The equations of motion of the body are written as follows:

7’+a7’:b9—|—aﬁ+z (c;6,+d,€)+k,T,,
J
O+e0-+f0=fT+3 (g,é,+he)+k,T.,
J
éi+2Ciwiéi +w3$i:pi(0_r)+qi0'+z (rz'jéj '+sij‘£j)+kéiTc‘ (207)
J

In this example, bending vibrations are truncated into 5-th degrees, and so the body
dynamics are modeled as 13-th order one. The actuator is a Thrust Vector Control
device (T.V.C.) which is modeled as the second order system. The rate gyro is
installed at the foot of the booster body which is an analogue type device and
modeled as the fourth order system. The rate integration gyro is located at the
second stage of the booster which is a discrete type device and modeled as third
order system. Thus the overall system is modeled as 22-nd order one. The infor-
mations obtained directly are outputs of these sensors; two rate informations con-
taining the bending vibrations and the measured attitude. The on-board controller
is constructed in the digital computer which is of course a discrete system with
the computation time-delay. The structure of this controller is assumed to be as
follows:

[T 1
: |
jAdd.Input Controller | Hold Command T.V.C. Control Plant Dynamics
! + Output ! Input Force Output
I 0 o T H(s) A T(s) == ps >
| - Uy | uls) T, (s
| |
b o

; Delay ‘1| Ist Stage 2nd Stage
' |
|
: uy, <~ r K —] Ri(s)

Kl ————— J
|I { 1st Stage Rate Gyro
I " |
| |
| K, F(z) N |
| “ ] Reis) Ko
| Dynamic - |
Il Compensator Orein f‘an Stage Rate Integration Gyro
L Onbowrd Controtter ]

Fig. 63. Block Diagram of the Attitude Control System of a Flexible Booster.

This document is provided by JAXA.



94 ISAS Report No. 605

Zy1=Fz,+ Gy, (compensator),

i, = K,y + Ks2;,

Uyy o= Usy (delay),

vl =(w, 0o, 0,) (direct outputs). (208)

The overall system is the order of (234 p)-th system considering the delay mechanism,
where p denotes the order of the controller.

There are many uncertainties in this system as in many large scale systems. They
are first of all structural uncertainties of the bending mode shapes or frequencies
and the aerodynamic coefficients of each part of the booster which affect the system
through the aeroelastic interactions, and second the characteristic frequency of the
T.V.C. device which depends on gas consumption before and others. In this con-
sideration, we confine the uncertainties to the structural one and that of T.V.C.
device for simplicity. Namely the structural uncertainty considered here is that of
bending mode shapes at the second stage gyro where the slopes of higher mode
shapes are changing considerably. Here we assume this ambiguity is equivalent to
the uncertainty of the second stage gyro location, which is empirically proved to
be possible.

As well known, there’s no unique and rational technique to construct that type
of conrollers (208), which are much smaller than the open loop full system. For
this purpose we adopt the model reduction technique and the Kalman filter type
design approach. There have been reported many considerations as to the model
reduction techniques. Aoki [I/2, 113] devised the aggregation technique and
Davison [/14, 115] and Rao [/16] considered the method based on the representa-
tive pole locations, which are utilizing so to speak the singular perturbation tech-
nique. Here we used the similar method to Devison and Rao’s, which is an intuitive
and simple truncation technique as follows:

The system:

x=Ax-+Bu, y=Cx

can be transformed into

f=A%+ Bu, y:éf,
where

A—block diagonal (_Zi b,

i 4

) and some real diagonal elements,
A.:(A)=a,+b,j; complex conjugate pair, eigen values of A then

the smaller system is reduced after truncation. (209)

Using this we prepared the simplified structure of the controller like the manners
taken in usual discrete type Kalman filters as follows: (z, in eq. (208) is exchanged
with <, here)

%..,=Fx,+Bu,+Gy; propagation (as compensation),

X, =Hx,+Ky,; update (used for feedback). (201)
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Here we omit the covariance propagation equations, regarding the covariance as
constant and assumed to be identical to the initial one which is evaluated qualita-
tively. Thus the matrices in the controller are modeled as

-1
J,é, P+APAT)CT> ;  Kalman gain,
sn
F=A(I—-KC), G=4K, H=(I—KC),
where sn denotes the adjustable parameter and P is a virtual
covariance matrix fixed a priori, and 4 and C are the system

and measurement matrices of the reduced smaller model. (211)

K=APATCT<C(

Through these discussions, we have preparations for the control problem. The
objectives of this control system are to control the attitude to the reference one
and to suppress the first bending vibration which is required to reduce the structual
load during the transient state. Hence the performance index (cost) to be minimized
is expressed as (concerning the states)

J= kZ:E) [q0012c+qui+qe$?,k+Qeéik"|‘ Gy - Usi). (212)

The weighting parameters are determined by the expected cost ratios of each state
as

do=(1—r)/0s, r,=exp (—dr/z,) etc,
where 6, is an assumed initial attitude error and 4z is a sample
interval, z, is a desired damping time-constant. (213)

The readers should note that some design parameters are left undetermined in order
to accopmlish the actual pole locations or other properties and to obtain the nominal
system after the trial-and-error synthesis. Particularly the initial covariance matrix
which is required for both the optimal output feedback design as weighting factors
and the controller structure design, is calculated based on the evaluations of charac-
teristic frequencies and the interactions, except for a few parameters to be adjusted.

Based on these preparations, we present the numerical evaluations in Table 39—

Table 39. Design Parameter(do)—Attitude Control System of a Booster

Case f-pole §1-pole f-gain Cost I\?:rigin | 1\52?:;
Cgoms | 2850 2 e | eomae | 12e | HdE
M‘eozo. 0s0 | 373 j ;“2‘21: o j‘ 107.9 | 7.078x10* | 1.9 dB - ggg
*700:0'075 ;gﬂéj | i**zﬁ: ggg) 93.9 ”;.266><7170; 2.7 d; _4§ 2‘125
770():0. 100 | L3489 j N :Ezgigzgagj 25 | 7. osx1 | 3448 | _4;73 ggg ‘
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Table 45 in order to select the nominal system without considerations of uncertain-

ties.

In these some factors are adjusted; initial attitude error (Table 39), admissible

initial T.V.C. command level (Table 40), mixing ratio of the first bending state
(Table 41), virtual factor in the controller (Table 42) and the order and type of

the controller (Table 43, 44, 45).

As this system is reduced to an output feedback

one, the resulted system is not so satifactory one naturally. But here we select the
case with 5-th degrees controller as nominal one and proceed to the robust design.

Table 40. Design Parameter (TVCy)—Attitude Control System of a Booster

Case | #-pole &1-pole f-gain | Cost ﬁ' :rigi n &2;‘;&
7 fvc0=1.0 :11283 ; +—2(1)"2$gj 9.2 9.62x10 \ 5.8 dB ] _g{’v‘c}ég
rvamvo | 3 32l ol s | saas | s
TVCy=5.0 5%3%8} | ;2(21: g 008 1@000 | 19 dB | _“Zggg
Table 41. Design Parameter (K;; Mixing Ratio of Ist Bending Mode)—
Attitude Control System of a Booster
Case f-pole E &1-pole f-gain Cost I\(/I} ;Egi n ‘ I\let:;;?n
K:1=0.0 ;?: g{gj ‘ i“28: gjgj 23.5 1.8322:10t | 9.6 dB s deg
kmos | 200 M e | aesae | asas | 0
K,=1.0 7 j_r% g‘??} i‘“zg 940 .5 74050000 | 34dB G
Ki=2.0 132465 —_*-_2?1: fggj 9. ) L4010 | 30as | 4 GEE
Table 42. Design Parameter (SNR; Compensator Parameter)—
Attitude Control System of a Booster
Case d-pole &-pole #-gain Cost I\(/I] ::lg]in l\}jltell?;?n
SNR=0.1 | ;;:82% i_ztl)ﬁ(l)i%j 157.3 | 88424100 | 0.3dB } * ggg
SNR=1.0 | ;g:‘s‘g?j i;g:gﬁgj 82.5  7.4951° = 3.4 dB 7 f; ggg
SNR=10.0 330 +‘2§ prog T3 Ty o1 33dm e
SNR=100.0 ;é g??J ‘25 cg"ﬁj 77.2 7664 102 3.3 dB - ggg
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Table 43. Feedback Types—Attitude Control System of a Booster

Case f-pole ’ &1-pole f-gain Cost I&} :rigi n I\I;[l;?;?n
?;"7 e —2 657"“ 7 —6.418 N | o
Feedback +1.641 j +20. 433 j 20.6 4,293 102 7.1 dB 40 deg
| , .
Output —0.439 | —0. 659 o 35 deg
Feedback +1.398 ‘ +20.681j| 300 1.099>10* | 0.7 dB —16 deg

Table 44. 2-input Kalman—Attitude Control System of a Booster

Gain

Phase

Case f-pole §1-pole f-gain Cost Margin | Margin
D | @l S ns | sosae | eoas | 4 Gt
Sth o3 g‘?‘l’j - ;_r“zg:gﬁgj 82.5 7.495x:i02 3 47 &B ﬁ_“; ggg
7th Rt j i}jﬁ%ﬁ j o 76.6 | 7.304 102 57 w | 7‘1‘73‘ ggg

9th ;;:3‘5‘31, ﬁg (5)Z§j 56;4 7. 131 10? | 7.07dB - 7477;;

Table 45. 3-input Kalman—Attitude Control System of a Booster

Ca;é 6-pole f fl—r;ole f-pole Costr h(/l}:ilglin i ﬁl;?;?n
o B . o . o e o e | o

w9 N s | sasae | Lom | B
Cose 0% eme o | i | oisas ‘ 1 deg

Tth “} B AW we | smae | osa | 4

9th f TS | 5138, } 95.7 8300100 | 3.6 dB \ A—gg§§~

The readers should note that this nominal system has the following properties:

cost="7.495X 10%, cost variation (at 60% )= co,
cost variation (at 1009 )= oo, gain margin 3.4 dB,
phase margin=47 deg or —8 deg. (214)

To speak solidly, we have specified the range of two uncertainties as

oy (55.35—135.35) (1/sec), w,,=95.35 (1/sec),
drgp;  (—70.0—+470.0) (cm), Ary,,=0.0 (cm). (215)
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Where o, denotes the characteristic frequency of T.V.C. device and 4r,, indicates the
location uncertainty of the second stage gyro, which reflects the ambiguities of higher
mode shapes mentioned before. Here these uncertainties are linearized approxi-
matedly and used for robust controller designs. In this case the largest design range
in M.C.V. is adjusted as 3.1. In the other cases than M.C.V. this range has little
meaning and should be considered as the scale of the additive term. In Fig. 64—
Fig. 71, we show the numerical evaluations made here; projections and the contour
lines of the cost surfaces. In Fig. 64, 65, the resulted cost surfaces of the nominal
system are shown, and in Fig. 66, 67 those of the M.C.V. design, in Fig. 68, 69
those of the U.W. design, in Fig. 70, 71 those of the S.D.N. design are illustrated.

From these, we can see that some “Additive Term Design” methods improve the
cost surfaces drastically. And the quantitative evaluations are rearranged and shown

in Table 46—Table 51 involving the other results than those demonstrated in Fig.
64—71. And schematic comparisons of these are summarized in Fig. 72. As noted
in chapter 4, in these discrete systems, the U.W. type M.C.V. and S.E. methods
are degenerated to M.C.V. or S.D.N. methods respectively. In view of Fig. 72,
we easily find out that the M.C.V. method is slightly inferior to the other methods
such as O.D, U.W. and S.D.N.’s against our anticipation.  This is caused by the
fact that while the uncertainty models in this system are approximated ones which
is constructed and modeled equivalently through the corresponding continuous
models, the evaluations presented here are based on the exact parameter variations
as for (215). It is a very cynical nature that though we want to design insensitive
controllers, the M.C.V. designs are sensitive to the ambiguities of the uncerainty
modeling. And the fact that the design range in M.C.V. cannot be taken here
arbitrarily for parameter a due to the difficulty of first step in eq. (195). If this
is circumvented, the better results are produced than those here. But at any rate
it may be insisted that we can obtain the insensitive systems through the ‘“‘Additive
Term Design” techniques involving M.C.V. thus. The representative properties of
these systems are as follows:

Position of 2nd Stage Gyro

TN
Frequeney Jg
1007,

TV Freguenes
o

Fig. 64. Projection of the Nominal Cost Fig. 65. Contour Lines of the NominalCost
Surface—Attitude Control System Surface—Attitude Control System
of a Booster of a Booster.
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Table 46-a. Robust Design (M.C.V. a=200-1)—Attitude Control System of a Booster
Case \ f-pole . 51-1?016 \l f-gain 1 Cost | | ?6(%2? R ‘{(Ilgo%zt)
4=0.0 j—“%:gg(‘)ji Ty gggj 82.5 7. 495 102 - o
R T A T
02 DL MR we JMEM um o«
T R R 3 TSI
Table 46-b. Classical Stability Margins—Attitude Control System of a Booster
g=0.0 g=0.1 q=0. 27 q=0.3
Gain Margin l 3.4 dB ‘ 4.2 dB 1 5.1dB | 6.3 dB
e | 42 | Bl Bdr o R

Table 47-a. Robust Design (M.C.V. @=300"1)—Attitude Control System of a Booster
g=0.0 ;%z‘s‘g?j‘} 2390 i 82. 5 7. 495 10° o0 oo
or | 3ROSR ws | IS - | e
R T T T
Ceos | AR B ws | GRS e | e
q=0. 4 ;3%‘ | ;23233‘3‘]- 7.8 | (18 ?ggé}gz) “ 13.72 33,44

Table 47-b. Classical Stability Margins—Attitude Control System of a Booster

Gain Margin

Phase Margin

¢=0.0 | g=0.1 | ¢=0.2 q=0.3 g=0.4
- 43dB | 5.4 dB 6.5d8 7.2 dB
E 47 deg | Sldeg | S3deg | S5 deg 56 deg
—8deg  —15deg | —17 deg —21 deg —24 deg
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Table 48-a. Robust Design (M.C.V. a=400-?)—Attitude Control System of a Booster
. | A cCost | 4 cCost
Case d-pole é1-pole f-gain Cost (60%) (100%)
—2.460 |  —3.008 ‘
q=0.0 . . 82.5 7.495x 10 o J o
+2.571§ \ +23.9405 | B |
B ~2.315 | —3.300 7. 688 102
q=0.1 +1.603) | £23.825 20.1 (8. 183 10%) o o
_ —2.270 —3.475 7. 8353102
q=0.2 +1.159) | 423,662 j 12.0 (87365 10;) 14.55 o
_ —2.202 —3.670 7. 986 102
9=0.3 +£0.801j | £23.462 ] 8.3 (9.314% 10%) 13.79 33.59
e )
_ —2.107 —3.923 8. 147102
a=0.4 | L0473]  +£232%] 5.9 (9. 9515 107) 12.89 30.65
Table 48-b. Classical Stability Margins—Attitude Control System of a Booster
[ — L g=0.0 \ g=0.1 g=0.2 | ¢=0.3  ¢=0.4
| ‘
Gain Margin ‘ 3.4 dB l 4.4 dB 6.0 dB 7.3 dB l 8.2 dB
47 de ) |
. ‘ g 52 deg 54 deg 56 deg 58 deg
Phase Margin | —8des | —l4deg | —18deg | —24deg | —27 deg
Table 49-a. Robust Design (U.W.)—Attitude Control System of a Booster
3 ) on 4 Cost 4 Cost
Case d-pole &1-pole f-gain Cost (60%) ‘ (100%)
4=0.0 ey g‘?‘l’j oy e j 82.5 7.495 107 . ’ 3
B —2.157 —3.302 7.5195 102 |
9=0.2 £2.438§ | +23.416 j 71.3 (7. 670 10%) o o
B —1.739 —3.877 7.635% 102 .
q=0.4 £2.264 | +22.303] 68.6 (8. 0155 102) 15.1 ©
_ —1.463 —5.114 7. 808 < 102 N
a=0.6 | o148 | +21.624] 61.7 (8. 402 10%) 13.9 32.2
B —1.272 —5.868 8.011 % 102
9=0.8 | 157035 | 421.495] 55.6 (8793 10) 13.4 29.9
_ —1.136 —6.354 Cogwsxier | B
q=1.0 +£1.926] | =£21.403 50.1 9. 179 10%) 12.5 28.4
Table 49-b. Classical Stability Margins—Attitude Control System of a Booster
T . g=0.0 g=0.2 g=0.4 ! g=0.6 g=0.8 | g=1.0
Gain Margin I 3.4 dB 4.7 dB 6.8 dB j 8.4dB | 10.1dB J 11.2 dB
L S
. 47 deg 46 deg 45 deg | 44 deg ‘ 43 deg | 43 deg
Phase Margin —8 deg | —14deg | —22 deg | —28 deg | —35deg | —40 deg
i ! ; _ !
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Table 50-a. Robust Design (S.D.N.)—Attitude Control System of a Booster
A Case . 6-pole | §;-pole H-l f-gain | Cost ) “ f&;;jt : 1(11(():0:)17507)
P £ S es | esae | e | e
- T I 1
o | 3E, S we | B - -
o | B BB s | EEIE | wy e
: q=715.0 7 j_r;:gggj | +—2§ 2‘5)‘3‘: e “ (7, ggii}gi) 14.83 | 35.31
,,,,,, R |
w0 | TH D SEE D ee | GEES no | ows
Table 50-b. Classical Stability Margins—Attitude Control System of a Booster
S| a=00 | g=s0 q:1001 g=15.0 | ¢=20.0
Gain Margin ! 3.4 dB | 3.6 dB 5.4 dB 8.9 dB ; 13.6 dB
RV £ I - 5 R -~
Table 51-a. Robust Design (O.D. Quasi Offset Design)—Attitude Control System of a Booster
== C;;e \ 0-p;>le ‘ 7 &1-pole 76-gai1:r Cost “ 1('65;())5; 4(11(?;0(7?)"
s | =, 5 'gﬁgj w5 | resae | e | e
w38 BB v | d B | me | s
T 3 3B, e IR | me | s
w | 3B REL| w0 | G | me | ew
— R I — S —— i —_
wi | BW, A%, s FEA | ne | es

Table S1-b. Classical Stability Margins—Attitude Control System of a Booster

Gain Margin

Phase Margin

0% | 25% s0% | 15% |
34dB| 49dB) 6.5dB\ 7.9 dB
|
- —— S VNS, (S -
47 deg ] 47 deg 47 deg \ 47 deg |
—8 deg | —15 deg —21 deg —25 deg |
i \

47 deg
—29 deg

100%

8.9 dB
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cost=_8.147 X 10, cost variation (at 60%)=12.9,
cost variation (at 100%)=30.7,
gain margin=8.2 dB, phase margin=58 deg or —27 deg. (216)

From this we observe that cost and stability margins are fairly improved compared
with (214).

We show the improvement behavior of the cost surfaces by successive utilization
of M.C.V. in Fig. 73, 74 schematically. And the S,, S, surfaces for these are
presented in Fig. 75. These demonstarate the validity of M.C.V. methods also in
this system in spite of ambiguous modeling of uncertainties. Because over the
region where the Sy(q, K;) surface is below the S,(g, K,) the true cost surface is really
improved.

Next we present the statistical cost expectation as to these resulted systems in
Table 52—Table 54, where as commented in the example of the autopilot, these
expectations depend almost on the cost at the origin and meaningful differences are
not clarified. Finally we demonstarate the step responses of these systems in Fig.
76 and Fig. 77. We should note that in the nominal system the instability occurs
at the relatively higher frequency, which is essentially out of our concern and in
fact the output to be controlled is not almost influenced. In our insensitive designs,

=7 Attitude Output (fad) :T Attitude Output (rad)
-/ by Nominal Controller -./\J by M.C.V. Controller
g 51N
X | \ll >< ‘ ~\\\
g‘ \\‘ *é‘ “\\'\_
= | e =]
o @)
Q)- Q)‘q
2 =
2 2
=" &
:)' ¥ i T T T r T T T 1 — T T T T T I T T 1
! Time (sec) 5.0 10 Time (sec) 5.0
N " N o~ R '
=y I.V.C. Command (v) ST I.V.C. Command (v)
. by Nominal Controller N bv M.C.V. Controller
E =
X * X
2 BRI
£ !- -h,,Jn'.z..w;\e‘e‘qﬁz‘v\;"v‘eWv\iv‘v'v'wrm/vwvww £ - %v‘»w.-'.-vv,w,m...
S | w"’\"h S
> =
= Ol
N Nv
(=] T T 1 T 13 T T + (=} T T [ T T T T 1
10 ‘ Time (sec) ' 5.0 10 ' Time (sec) ‘ 5.0

Fig. 77. Step Responses at 609 Variated Point
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Table 52. Statistical Cost Expectation (60% level, Quasi Normal Distribution [le})—
Attitude Control System of a Booster

Method

MCV
(@=400-1)

Case 1
q=0.2
qg=0.3

q=0.4

qg=10.0

q=15.0
q:20. 0

Cost x 102

7. 846
7.995
8.155
7.542
7: 680
8. 183

Method

uw

oD

|

Case.
q=0.4
qg=0.6
W qg=0.8
7 Vq;il.O
25%
50%
75%
100%

Table 53.

Attitude Control System of a Booster

Cost10°
7.644 A
7.815 .
8. 018
8.232
7.535
7.551
7.581

7. 607

Statistical Cost Expectation (60% level, Quasi Normal Distribution [2¢])—

Method

MCV
(@=400"1)

SDN

Cost < 10?

7.840
7. 990
7 8. 151
7.7534
7.676
8.”71 80

Method

Uw

Oob

Table 54. Statistical Cost Expectation (609 level, Uniform Distribution)—
Attitude Control System of a Booster

Method

MCV
(@=400"1)

Case 1

q=0.2 |

q=10.0

q=20.0

|
qg=15.0 |

Cost

7.577
7.693

8.193

uw

OD

i Method

Case

q=0.6

q=0.8

Vq : 1.0
259
50%
75%
100%

q:O. 4

Cost
7,659
7,827
8. 029
8.242
7.614
7513
7,601
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though this critical state is not considered explicitly and not weighted, the influence
of this state on the response is only a little. (Of course, the weighting of this state
will improve the responses. But here we dare to avoid this approach for com-
parison, because such a state is not reguired to be damped well but desired not to
grow up, and from the truncation problem of higher modes we had better suppress
the loop gain over the range of higher frequencies.)

6. CONCLUDING REMARKS

In this paper, we show first in chapter 3 that the “Additive Term Design” methods
can improve the cost surfaces and stability and stability margins and the sensitivity
with respect to the equivalent open loop system. In the discussions on cost and
stability improvement, we showed these mechanisms in detail and established the
sufficient condition of cost imrpovement, for which the useful properties are intro-
duced via some new cost surfaces. Particularly, the M. C.V. design techniques which
introduce the monotonous feature into the G.C.C. method established by Peng, are
revealed to guarantee almost the same amount of stability margins over the specified
range of parameter variations as in the usual L.Q. regulators. And through the
discussions there we devised a few of new ‘““Additive Term Design” techniques such
as the “Simple Robust Realization” and the “‘Statistical Cost Expectation” methods.
While the main investigations are confined to the continuous systems where the state
feedback control is possible, we consider the applicability of such techniques to the
more practical systems; the systems that contain the control matrix uncertainty and
the discrete systems and the dynamically compensated systems. And the computa-
tional algorithms which are also utilized for the other types of systems, are established
for the general form of the M.C.V. type robust output feedback systems that are
continuous or discrete. In numerical examples, we have the satisfactory results,
though the designed systems have as simple structures as the nominal system, which
do not require the additional internal states as in the adaptive systems. These
illustrations are shown in the longitudinal autopilot system and the estimation pro-
blem of the radar tracking system and the attitude control problem of a large flexible
booster. The first example; the autopilot system demonstrates the superiority of
the M.C.V. method to the other “Additive Term Design” techniques, for the ad-
ditional cost at the origin is only about several percents of the nominal cost in order
to accomplish the satisfactory improvement of the cost surface and stability margins.
And the last example; the attitude control system of a booster which is a very
practical one and is a discrete type system containing the output feedback, reveals
that the M.C.V. method is slightly inferior to the U.W. or O.D. or S.D.N. methods,
for the ambiguous modeling of the uncertainty matrices but that these methods
really improve the cost surfaces and the classical stability margins. From these
numerical examples we can surely recognize that without making the system compelx
it is possible to construct the robust systems by these “Additive Term Design™

techniques particularly by the M.C.V. design with a slight amount of the additional
cost at the origin.
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There are many problems to be studied in future as to these designs; In the
methods investigated in this paper, we must adjust not only the weighting factors
in the performance index but the other factors for the additive terms. These are
essentially arbitrary ones and we have no rational procedures to determine the forms
of them. And we should note that these methods are not always accepted, for
usually there are no possibility that the stability is assured over infinite range of
parameter variations and these may require the much higher feedback gains that
cannot be realized for the actual devices. In these cases, we must consult with the
other quite new design techniques.
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AppPEnNDIX 1. The Equations of Attitude Motion of a Flexible Booster

Employing modal analyses and quantitizing the integration, we have the following
ordinary differential equations of attitude motion as

MVi=qS > aCyo+TO—T+2 Y, §)+T.—MgcosT,
[2 K
Iéqu Z o, C X+ Tt(xz Z Y_;/,Sj —Z Y_;zsj)‘f‘ T.x,,
7 7 J
[w(ék+2Ckwk'ék+wiEAf):qS Z Cyoe, Y+ T,Y,, Z le‘r‘::j +T. chza
7 J

W =0T+ V8 — iV(xié+ SV E 4V,
J J
I o(x) Y () Yi(x)dx = M3, (A=1)

And introducing some definitions, we have the following equations of motion in
chapter 5:

=qS ; Cyusy €2;=¢S 4? Cvai Y4 ©=¢S ZL_’, CrniXis

c;=qS ZL] CyviYi, ;=4S ZL: Cy..Y;x, =48 ZL] CyoiXs,

;=4S ZL“ CyaiYix, €55.=9S ZL Cyv.,Y;: Vi

Coe=¢S EL__‘, CyvaiYiiYis (A-2)

(l:(Cr-{—T[)/(MV), b= _CB/(MVZ)’ Ej: *CU/(MVZ)’
dJ:((u_*"T!Yj/L)/(MV)’ kr: 1/(M V)a €:CS/([V), f: "Ca/la

gj:—csj/(”/)s hj:(c7j+Tt(x£Y]/‘z_'_ DI, k,=x]1,
Pi=CulM, q,= — 5 [(MV), Fy; = —C&)kj/(MV)
Skj:(csm‘*' T, YHY;L)/MS kek: Y /M, (4-3)

This document is provided by JAXA.



Synthesis of Insensitive Controllers in Linear Quadratic Control Problems 111
Ftar=b0+af+3 (&, +dE)+k,T,
7

0+eb+f0=fT+3 (g4,+h&)+k,T.,
§k+2Ckwkék+wisk zpk(ﬁ*‘r)’f'(hé‘*‘ Z (rkjéj +Skj$j)+k5ch' (A_4)
J

APPENDIX 2. The Model Simplifying Technique

Here, we present the model simplifying technique which is used for the construc-
tion of the smaller compensator in chapter 5. The basic idea of this is the trun-
cation principle which neglects the rapidly damped states after the decoupling of
the states. We consider the following system:

f=At+Bu, y=Cx
If the eigen values of A-matrix are arranged in order of slowly damped states as

X=Ax+Bu, y=Cx, (4-5)
o(A)=(4;, A, Ay - -+, 2,), Where A, 2, - -, 4;; real,
Ay Ao (J=i+1,i+3, ---); complex conjugates (a;+b,;v/ —1). (4-6)

where some real eigen values are assumed to be not rapidly damped. Thus these
are rewritten and we denote the corresponding eigen vectors as

€1, €, €, +-- for A, A, A, --- respectively. (4-7)

then the following transformations are derived:

?:[eh €y, &, - - Ty en]-19
(-1 0 0 0 )
0—-1 0 0
0 0-1 0 0
Z 0 ‘
== O | 9
0 0
0 block diagonal (_’1 {)
Y=2ZY, j=+v—1,
f= {%Bu, y:C":C',
£=Yx, B=YB, C=CY-,
A=YAY-'=block diagonal( . bi). (4=8)
—b; a;

Therefore we have the approximated smaller systems through neglecting higher order
systems:

f=A%+Bu, y=Cx (4-9)
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APPENDIX 3. Nomenclature

a; certain coefficients

b; certain coefficients

c; closed loop suffix or chord length

d; dimensions of some systems

e; error vector or elevator deflection angle
f; some vectors or matrix functions

g; gravity constant or a certain coefficient
h; additive terms

indices

imaginary unit

indices in discrete systems

some functions

mass

nominal suffix or dimension

B W we wae ws

- .

open loop suffix
parameter vectors

- .

parameter vectors or their norms or dynamic pressure
some factors

- .

Laplace variables or some state vectors
time

[

control input vectors or velocity variation
variated input vectors

state vectors

output vectors

some state vectors

Ge we o we G

Niw ¥ €< € o+ n m0T 0 3 B — = . —

.

system matrices

control matrices

observation matrices

some matrices

expectation operator

compensator dynamics or matrices

certain systems or matrices or loop transfer functions
Hamiltonian

unit matrix or moment of inertia

performance indices (costs)

e e we we we

[

.

“ .

gain matrices or certain systems

- .

certain systems
some positive matrices or mass
normal distribution

Ge we

.

covariance matrices or plant dynamics or some matrices
state weighting matrices

“ .

OCoZEZrAR e ~TOmmIOwy

<.
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R; control weighting matrices

S; cost matrices or sensitivity matrices or area
T; some transformation matrices or transpose operator
U; cruising velocity

V; some positive matrices or Lyapunov function
X; some systems

Y; Laplace transformations of outputs

Z; some positive matrices

a; some adjustable parameters or angle of attack
B; some adjustable parameters

7; flight path angle or some matrices

J; variation

¢; damping constant

7; Some noises

6; attitude angle

A; eigen values or random noises

p; some factors

&, exogeneous states or bending states or noises
©; air density

0; spectrum radius or standard deviations

7; representative time

¢; phase angle

w; frequency

A; diagonal matrices
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