The Institute of Space and Astronautical Science
Report No. 618, December 1985

Method of Péckaging and Deployment of Large Membranes
in Space

By

Koryo Miura

(November 25, 1985)

Summary: The purpose of this paper is to present a new concept of packaging and deployment of large
membranes in space. The problem of biaxially folding of a plane is transferred to the elastic problem of
a biaxially compressed infinite plate. After solving the problem, the plate thickness is reduced
infinitesimally small, and thus the result represents the isometric transfer of an infinite plane subject to
biaxial shortening. As a result, the concave polyhedral surface is discovered, which is composed of a
repetition of a fundamental region, which is further composed of four congruent parallelograms. It is
shown that the packaging and deployment by this surface geometry satisfies various requirements as to
operations in space.
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1. INTRODUCTION

A number of future space missions will require ultra-low-mass, large space platforms
or structures (LSS). As the representatives, we can exemplify the solar power satellite
(SPS), the large antenna, etc. It is no doubt that whether such a kind of LSS project
comes true depends upon how plane structures composing the LSS are made lighter and
to what extent their cost is reduced. Thus, thickness of reflector surface, solar cell
pannel, etc. is desired to be more and more thinner. As the result, it seems likely that the
membrane structure which does not depend upon its bending stiffness, but depends upon
in-plane stiffness comes to be greatly realized.

The study of membrane structures have been making considerable progress in its both
theoretical and practical fields through various kind of structures on the earth. However,
as for space applications, some problems, which have never been in serious considera-
tion on the earth and therefore never been given investigation to them, become very
important. They are the problems concerning packaging and deployment. ‘Membrane
elements of huge amount of square, regardless of their types such as deployable structure
or erectable structure, are to be packaged, transported by shuttles, and deployed in
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space. Such a technique is beyond by far our imagination accustomed to familiar earth
bound problems. For increase of the performance and reliability of LSS, it is conceived
that the fundamental research should further be promoted in this field. The purpose of
this paper is to present a new concept of packaging and deployment of large membranes
in space.

2. PACKAGING OF MEMBRANE ELEMENTS AND ITS PROBLEMS

Notwithstanding that membrane elements can naturally be admitted in-plane deforma-
tion, it can be dealt with as an inextensional object when packaging is studied
macroscopically. To grasp a concrete image, one can take up a sheet of paper in
imagination.

Packaging of membrane elements is tentatively classified as follows:

One-dimensional folding;
A. roll type
B. accordion-door or fan type
Two-dimensional folding;
C. orthogonal type (the operation B is repeated in two orthogonal directions)
D. other type

Among these A and B can be called one-dimensional folding owing to the fact that just
one dimension of two-dimensional expansion of a surface is to be folded. Therefore one
length is resticted to be not longer than the cargo hold. Theoretically C and D types can
be, on the other hand, folded into optionally small size.

When one imagines a deployment operation in space, it is easily seen that the
automatization of it cannot be attained unless the deploying process itself is simple and
reliable to a considerable degree of extent. Thus simplification of the process is the
utmost important requirement.

Since folding and deployment can generally be considered as two phases of a
reversible process, the study of both may be performed by just conceiving one phase,
say, the folding. The difference between them is that a complicated machine can be used
for the folding process, while it is not so for the deployment in space.

Another important factor which must be considered is stress and fracture caused by
folding. A thin sheet which is usually called a film has, in general, ductility endurable
enough for the stress and deformation produced by giving a single fold. The stress
concentration, however, occurs at the node when more than two folds cross each other.
Ilustrated in Fig. 1 is the deformation around a node with regard to a plastic sheet folded
orthogonally. Hereafter, we will call this stress at the vicinity of a node the nodal stress.

Figure 2 is an enlarged sketch showing deformation of a sheet in the vicinity of a node.
Qualitatively, breaking of membrane can be explained as follows.

Consider a sheet of membrane having a thickness t, which is folded at fold a. At the
fold the membrane is curved, with a radius of curvature ri. A maximum tensile stress
will be produced on the outer surface of the fold, in the direction perpendicular to the
fold. This stress is proportional to t/ri. Thus, it is seen that the tensile stress will be
greater the larger the membrane thickness, and the smaller the radius of curvature. When
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Fig. 1. Deformation around a node of plastic sheet folded orthogonally.

Fig. 2. Enlarged sketch showing deformation of a
sheet at a node.

a second fold b (having a radius of curvature r2) is made perpendicular to fold a, an
additional tensile stress due to fold b is produced on the outer surface of the point of
intersection of fold a and fold b, that is, the node c. Furthermore, since many more
nodes on other sheet of membrane will usually come just inside the node c, a very large
tensile stress will be exerted perpendicular to fold a. The outer edge of node ¢, where
several tensile stress are superimposed, will be the starting point of breaking, from
which a crack will be developed along the fold a. When one thinks of folding a Sunday
edition of The New York Times, one will fully aware of these characteristics inherent in
orthogonal folding.

It is thought that, heretofore, the orthogonal folding is a only known principal method
of two-dimensional folding. It is the method already known in the era of ancient Egypt.
In the era of human activities in space, other prossibilities of two-dimensional folding
may be sought by the use of modern analytical procedures.
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3. AN ANALYTICAL METHOD FOR STUDYING WAY OF FOLDING

The process in which a plane is regularly folded into a smaller plane belongs to a
process called isometric transformation, whose conditions are severely restricted.
Furthermore, particular conditions as a space structure must be satisfied. These
conditions are summarized in the following.

1) Isometric condition must be held unchanged throughout the process.

2) Fold line is to be a two-dimensional tessellation of a plane by repetition of a
fundamental region.

3) Folding (deploying) process itself must be complete within the fundamental region.
4) Deploying process is to be done through simple, continuous, and monotonous
movement.

These conditions are so severe that it seems almost impossible to purposefully find a
transformation that fulfils all of the conditions laid down and still attains the required
function. Heretofore we have no analytical means to solve such a problem. If the
situation is unchanged, are we obliged to depend upon such a classical method of
Euclidean geometry, in which we are compelled to make use of our intuition and a
trial-and-error method?

In reply to such a question, the author is going to explain that a problem of plane
folding can be to some extent converted to an analytical problem described by partial
differential equations.

Take an infinitely large elastic plate. Since this is, so to speak, an ordinary extensible
plate, von Karman’s equations of large displacement configuration can be applied. Let
us consider the case when the plate is uniformly contracted, on an average, in two ortho-
gonal directions in its plane. The word ‘infinitely large’ cited here has some significant
meanings.

First, it means that the thxckness of the plate is infinitesimally small in relative sense.
With reference to such a thin plate, the effect of decreasing thickness is that the strain
energy of bending deformation decreases much faster than that of in-plane deformation.
Since deformation certainly tends towards the one with minimum strain energy, if the
thickness is reduced to zero, it should result in the pure bending deformation without any
in-plane stretching and contraction. In short, both thickness and elasticity are fading
away in accordance with this way, and the geometric solution of isometric transforma-
tion of a plane will finally remain.

Secondly, ‘infinite’ means that there is no terminal, therefore, a solution is assuredly
periodic in both orthogonal directions. Thus we will be able to obtain at least an ‘initial’
solution of folding a plane by solving von Karman’s equations of plate and by getting to
infinity. The term, ‘initial’ means that the deformation will be restricted within a
domain to which von Karman’s equations are to be applied. Deformation to be followed

to finality, required by present study, should be assured with the aid of other

implements.

The computation was carried out by TANIZAWA and MIURA (1978) [/], and some of
the results are shown in Fig. 3.

Figure 3 shows the normalized deformations of typical solutions by means of contour
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Fig. 3. Various solutions as to deformation of bi-axially shortened infinite plate (contour map).
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Fig. 4. Convergence to DDC surface (N: number of terms in Fourier series expression).
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maps. The numbers at the border indicate the elevation and the solutions are shown
within their square fundamental region. These solutions correspond to extremes of the
strain energy. Itis to be noted that the deformations of case number (1), (2), (6) and (10)
resemble each other. Moreover, according to the calculation, the value of the strain
energy of such a kind of solution is found to be, without exception, remarkably smaller
than those of the other solutions.

4. GENERATION OF DEVELOPABLE DOUBLE CORRUGATION SURFACE

It is found that this configuration bears a close resemblance to the surface which has
been predicted by MIURA (1970) at IASS Symposium, Wien [2], and it was later named
the developable double corrugation surface (DDC surface). Further computation also
revealed that, by increasing the number of terms in Fourier series expression of the
solution, the solution converges unlimitedly to the idealized DDC surface, as shown in
Fig. 4.

In principle, a fundamental region of a tessellation can be converted to another
fundamental region by transferring some portion of it. Thus, the square fundamental
region shown in the right figure of Fig. 4, can be modified to a herringbone shaped
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Fig. 5. Fundamental region of developable double corrugation (DDC) surface.

Fig. 6. Bi-axial shortening of a plane into a developable double corrugation (DDC) surface.
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fundamental region. It is a polyhedral surface composed of four congruent parallelo-
grams as shown in Fig. 5.

A whole configuration of the surface is obtained by two translations of this
fundamental region in orthogonal directions X and Y, as shown in the upper right figure
of Fig. 6.

In order to study the characteristics of the surface, particular attention must be given to
the vicinity of vertex or, in terms of geometry, the polyhedral angle. It is observed that,
if the difference between the right and the back side is discarded within the problem of
chief interest, every polyhedral angle of it is congruent with each other. The polyhedral
angle, shown in Fig. 5 is composed of four angles a, «, B8, and 8, where a and B are
internal angles of a parallelogram, respectively, and thus they are supplemental with
each other. Therefore, the sum of four angles of the polyhedral angle is always 27r.
Furthermore, it goes without saying that at every edge of the polyhedral surface, the sum
of internal angles is 27r. It can be concluded that the sum of internal angles is 2w
1 everywhere on the surface. This is the proof that the surface is isometric with a flat
1 surface or, in other words, the surface is developable.

At the beginning of this analysis, we define the analytical solution within the domain
to which von Karman’s equations are to be applied. However, the above reasoning on
the developability of the surface clearly does not depend on the finiteness of deforma-
tion. Thus, the resulting DDC surface may be considered as the solution of the problem
up to where the shortening approaches the finality.

5. Two DIMENSIONAL FoLDING BY DDC SURFACE

Is there any way in which a plane will be folded in two mutually perpendicular
directions at the same time, and in a uniform way? At first thought one can hardly
believe such a possibility, but the developable double corrugation (DDC) surface does
give the solution. Remember that the DDC surface is obtained by the contraction of a
plane in two orthogonal directions. In Fig. 6 a series of pictures of a paper model shows
how a plane is folded up and contracts itself lengthwise and broadwise simultaneously.
The intermediate product of this process is a DDC surface consisting of a number of
congruent parallelograms. If an ideal paper of vanishing thickness is assumed, and it is
folded up infinitesimally closely, then it will be folded up into a point. In other words,
folding of this sort corresponds to transformation of a plane into a point.

A remarkable fact to be noted here is that the foldings or contractions in two mutually
perpendicular directions are not independent with each other. The contraction in the X
direction should always be accompanied by the contraction in the Y direction, and vice
versa. In contrast, the foldings in the X and Y directios are completely independent in
the case of the so-called orthogonal folding. This may help one understand the singular
feature of the proposed method of folding.

Consider a sheet of papaer so folded that it forms a DDC surface, and see the motion of
an arbitrary fundamental region on the plane. When the fundamental region is given
some deformation, say, by making the fold angle sharper, the adjacent fundamental
region will undergo exactly the same deformation, which, in turn, causes further
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Fig. 7. Basic parallelogram element whose tes-
sellation composes fold lines of two-dimensional
folding by DDC surface.
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Fig. 8. Locus of folding and deployment of two-dimensional folding by DDC surface (relation

between shortening ratios Sxand Sy ).

deformation to the fundamental regions adjacent to each of the deformed regions. Thus,
it is seen that the deformation given to a particular fundamental region will propagate 4
over the entire surface in an instant. The paper, when so folded, behaves as if it has a :
built in linkage mechanism to fold or deploy. To deform, that is, to fold the whole
paper, it is necessary only to fold any one of the fundamental regions. 4

Figure 7 shows a basic parallelogram element which determines fold lines of
two-dimensional folding by a DDC surface. It is seen that there are only three
independant parameters which completely determine the fold line geometry. In
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addition, to determine a DDC surface in three dimensional space, a parameter such as the
angle w between the parallelogram element and the original plane is necessary as shown
in Fig. 8.

If Sxand Syrepresents the shortening ratio in X and Y direction, respectively, these are
expressed as follows:

Sx-cos [sin"' (cos@-sinw)] 1)

Sx=cosw/cos [sin~' (cosh-sinw)] )
where the definition of 6 and w are described in Fig. 8. The relation between S, and Sy,
and w is plotted graphically in Fig. 8 (§=6°). The solid curve in this figure indicates the
locus of (S,, S,) along decreasing of . When w=90°, we obtain the completely folded
position, while when w=0°, we have the completely deployed position, both are
indicated so in the figure.

It is observed that there are two distinct phases in the deployment process. The first
phase of a deployment occurs primarily along the Y direction up to 80% of full expansion
with only 20% deployment in the X direction. On the contrary, the second phase
followed is carried out primarily in the X direction. Nevertheless, on the whole, the
deployment process is perfected through a single, simple, continuous, and monotonous
movement.

In a previous section, we have enumerated four required conditions which must be
fulfiled by any way of folding. It is seen that the characteristics of the method of folding
by the DDC surface studied above are exceptionally favorable for all of the re-
quirements.

Next, with regard to the strength of folds, the folding method under consideration has
an essentially advantageous feature. In the case of the orthogonal folding, that portion
of the sheet which thrusts itself deeply inside the second fold causes a large tensile stress
at the node, as has been explained earlier, whereas, in the case of present folding, only a
single sheet of membrane will come beneath the second fold, and that with less depth.
This helps reduce the above-mentioned stress by a large margin. As a result, the folds in
our case is much stronger than those in the case of the orthogonal folding.

6. CONCLUDING REMARKS

In summary, a new concept of packaging and deployment of large membranes is
presented. The concept is founded on the characteristics of a developable double
corrugation (DDC) surface. It is shown that the packaging and deployment by this
surface geometry satisfies the necessary requirements. Further engineering study will be
needed for developing the concept.
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