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Summary: With emphasis on the effect of numerical accuracy of the scheme, a new algorithm is
presented on the basis of an improvement of the Arakawa’s method. and numerical computation are
made for the continuous, transient phenomena of a shear layer from a linear regime to a nonlinear
one by use of the Euler equations satisfying vorticity, energy and enstrophy conservations. A
comparison is made to clarify the validity of the present scheme applied to the transient phenomena of
a shear layer with an assumption of a monochronic disturbance. and detailed examination is made
further on the change in flow field of the merging vortices.
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£ @ Vorticity
v O +0,]
A ¢ Grid spacing

Superscripts
# : The Jacobian approximation of the first kind

The Jacobian approximation of the second kind
## . The Jacobian approximation of the third Kind

: T

L The long wave band

M The medium wave band

S The short wave band

1 The approximation to the Jacobian on the referring coordinates

2 The approximation to the Jacobian on the coordinates obtained by the rotation of the
referring coordinates by /4

aw : The approximation to the Jacobian on the coordinates obtained by the rotation of the
original coordinates by arctan(1/2) anti-clockwise

cw : The approximation to the Jacobian on the coordinates obtained by the rotation of the
original coordinates by arctan(1/2) clockwise

o : The approximation to the Jacobian on the original coordinates

small disturbance

1. INTRODUCTION

With the development of computers in late 70s and ’80s, many direct simulations
(in the sense that they do not utilize any assumption or model equation) for shear
layers [1, 2] have been carried out using a finite difference scheme.

In general, it is natural that the algorithm of any numerical scheme should be
formulated in view of the importance of accuracy of the solutions to the partial
differential equations under consideration. However, it must be noted that there
seems to exist another viewpoint to be taken into account in making numerical
algorithm, that is, the algorithm must satisfy the physical requirements 1.e.
conservation of vorticity, energy and enstrophy, if any. Of course, if an infinite
number of grid points could be utilized to solve the partial differential equations, it
would be easily expected that the numerical solution satisfying the physical
requirements can be obtained without any difficulty. However, if the simulation is
made using a finite number of grid points, it will not be guaranteed that the physical
requirements are always satisfied. The reason for adopting Arakawa’s method [3] in
the present approach may be laid on the fact that it stands upon the latter viewpoint.

As to the total image of the shear layer flow, not only how the transition goes on
continuously but also what takes place in the layer are not known precisely yet in the
transient process from the linear regime to the fully-developed one. However, it is
expected nowadays that the numerical approach may presumably bridge the gap lying
between the linear regime of the shear layer and fully developed one, so that the
detailed information pertient to the physical process in the transition will be known.

It is the purpose of the present study to demonstrate the importance of satisfying
the physical requirements in formulation of an algorithm in order to improve the
stability and the accuracy of the solutions in long term numerical integrations. With
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emphasis laid on the above-mentioned statement, a modified Arakawa’s method is
developed for improvement in accuracy and resolution of the numerical solutions, and
is applied to clarify the characteristic flow structure of the shear layer in transient
process as well as the validity of the above-mentioned concept.

Chapter 2 gives the governing equations. In chapter 3, the numerical algorism used
in this study is formulated, in which the modification of Arakawa’s method introduced
to satisfy the physical requirements is shown. Chapter 4 is devoted to show the results
of the present numerical simulations. First of all, simulation with monochronic
disturbance under the cyclic boundary condition is carried out for transition from the
linear regime to the nonlinear states in order to clarify feasibility of the present
numerical algorithm. Then, taking advantage of the results just obtained in the first
simulation, some typical processes of vortex-merging are simulated to demonstrate
the characteristic flow field. A random disturbance simulation is made in either cyclic
boundary condition or flow-out boundary condition in order to demonstrate further
the validity of the present scheme. Finally, the concluding remarks are described in
chapter 5.

2. GOVERNING EQUATIONS

In the Cartesian coordinates system (x, y), the Euler equation for incompressible,
two-dimensional unsteady flow without external forces can be written using
nondimensional expression of the vorticity as

o
~éTC+v- V=0, (2-1)

where

v=kX Py,
E=k- P xv= P2y,

and y; the stream function, V; the two-dimensional differential operator defined as
V'=10,+])9,, (i, j); the unit vector in the plane of motion and k; unit vector normal to
the plane.

Equation (2-1) can be rewritten as

o¢
E‘—J(C, ¥), (2-2)

where J is the Jacobian operator.

3. NUMERICAL ALGORITHM

3-1 General characteristics of numerical scheme

The Jacobian in the governing equation can be replaced by space-differences
written in the conventional form such as
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Ji; (&, I’U):ZZ-T {(Girrs =G )W 1= Wii— )~ (G =G ) (Wir 1= Yim1 )}

(3-1)
where i and j denote the finite-difference grid indices in x- and y-directions,
respectively, and A is the grid spacing. From now on, the bold J will denote a finite
difference approximation to the Jacobian. If the governing equation is integrated over
some hundreds of time steps by use of Eq. (3-1) together with an appropriate
time-dependant method with suitable accuracy, it will be easily found that the solution
tends to have a characteristic flow structure termed “stretching” or “noodling” [4].
This phenomenon is characterized by the flow structure in which the fluid motion
degenerates to eddies that have wave length of a few grid intervals in size and of
elongated, filamented shape. In the early stages of this phenomenon, the noodling
may be due to the nonlinear effect of governing equation. However, once the
noodling is formed, the associated eddies are usually intensified without limit, thus
violating numerical solutions to turn out explosive growth of the total kinetic energy
of the system. Platzman [4] pointed out the existence of the so-called “aliasing errors,”
i.e. errors due to misevaluation of the shorter waves, to which the finite grid system is
not capable of providing proper resolution (See Appendix A.).

As has been mentioned above, attention must be paid to the following three points
in order to carry out numerical simulations adequately, those are alias error,
conservation of invariants and phase error (reasonable behavior in convection of
physical quantities). There seem to exist two ways to satisfy the second and the third
requirements, e. g. the one is to use such a higher-order accuracy scheme as to
accomplish conservation of the invariants and low phase error within its accuracy at
the same time, and the other is to make first a numerical scheme with the restriction of
conservation and then to develop it to higher-order accuracy. Spectral method,
pseudospectral method (see Ref. [5]) and modified differential quadrature method
(see Ref. [6, 7]) belong to the former, whereas the finite volume method and the
Arakawa’s method belong to the latter. The former schemes have advantage in the
sense of alias free, because they can resolve shorter waves more accurately than the
latter, and, above all, the spectral method is perfectly alias free scheme (see Appendix
A.). In general, since the latter schemes need a larger number of grid points to
identify the same wave number than the former, aliasing to the latter occurs in the
earlier stage of computation than the former. Therefore, it is very important to
remove the shorter waves that cause the aliasing in any numerical schemes except
spectral method.

3-2 Constraints on the advection term

Equation (2-1) implies the conservation of vorticity for individual fluid particles.
moreover, since the advection of vorticity as well as any physical quantity in
two-dimensional incompressible flow can be expressed by the Jacobian given in Eq.
(2-1) or Eq. (2-2), it will be easily known that there are strong integral constraints on
the advection term that arises from the nature of the Jacobian. Among these
constraints the simplest ones associated with two-dimensional incompressible flow can
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be given by the relations

J (p’ q)=07 (3_2)
pJ (p, 9)=0, (3-3)
qJ (p, 9)=0, (3-4)

where p and q are arbitrary arguments and the barred quantities denote the average
over the computational domain, along the boundary of which either p or q is constant.
From these integral constraints applied to the advection of vorticity, it will be known
that the mean vorticity, {, the mean kinetic energy, K=v*2=( ¥ )2, and the mean
square vorticity (enstrophy), V=_£%2=(72y)%2 are conserved with time in a closed
domain, having no inflow or outflow across it.

A series expansion of y by use of orthogonal harmonic functions, ,, satisfying the

equation
72y, + k=0, (3-5)

leads to the following relation for conservation of energy and enstrophy

dK d
— = =0, (3-6)
dt dt Z Ka
v _ d - (3-7)
dt  dt 22 Va=0,

where

1 —-—0
=—(Vy,)
Kn 2 ( wn) M

Vo= (P =rK,

Therefore, the average wave number, k, defined by

D 2
KZE n KnKn ,
2. K,

is conserved with time. This implies that no systematic one-way cascade of energy
transfer to the shorter waves can occur in two-dimensional incompressible flow, as
Fj¢rtoft [8] pointed out. If three waves (or three groups of waves, each of which has a
characteristic average scale) are considered, for example, only the following energy
transfer is possible:

(3-8)

KL €« KM—> Ks,
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or
K, - Ky <« K,

where K;, Ky and Kg denote the mean kinetic energies of the long waves, medium
waves and short waves, respectively. However, it must be noted that Kraichnan [9]
pointed out the occurrence of only the former type of cascades in two-dimensional
isotropic turbulence.

3-3 Finite difference approximation of the jacobian

The finite difference expression of the Jacobian at the grid point (i, j) may be
written using a relatively general form, as

iy

¥ Cijir g jrGivir jri Wisivj+i (3-9)

where G, j+ is the vorticity at a neighboring grid point (i+i', j+j") and Y4 4+ 1S
the stream function at a neighboring grid point (i+i", j+j"). The coefficients C; j.; j.iv i
must be so chosen that Eq. (3-9) becomes an approximation to the Jacobian within
the order of necessary accuracy. Moreover, there exist several physical requirements
mentioned previously, which must be imposed as constraints on these coefficients.

In order to clarify the condition for conservation of enstrophy, it will be convenient
to define

Ai,j:i+i'.j+j’=§ CijirjriirjWivirj+j (3-10)
It must be noted that A, ;. j+; is assumed to be given by a linear combination of the

velocity components expressed in finite difference forms of the stream function. Thus,
Eq. (3-9) can be reduced to

Jii (8, W)Zizj, Ai,j;i+i"j+j’Ci+i’,j+j" (3-11)

If all of the {i.; ;+; be formally set equal to a constant, then, Jacobian will vanish
regardless of the value of the vorticity. Therefore, the following relation must be held

,ZJ: Aijivinj+i=0, (3-12)

which is a finite difference expression for VV-v=0, as will be seen later more clearly.
Multiplying Eq. (3-11) by 2 ;, then gives

28 i 4(S, W)ziz_j‘q 2 A jivinj+y Gglivin g+ (3-13)
It will be found that the left hand side of Eq. (3-13) indicates a temporal change of &

due to advection. This, in turn, implies that the term 2 A; .+ j+Gi Giviv j+j can be
interpreted as the gain of square vorticity at the grid point (i, j) due to the interaction
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with the grld point (i+i,, J+J’) Slmllarly, the term, 2Ai+i’,j+j’;i,j Ci+i’,j+j’§i,j can be
interpreted as the gain of square vorticity at the grid point (i+i’, j+j') due to the
interaction with the grid point (i, j). In order to avoid false production of square
vorticity, these two quantities must have the same magnitude but opposite sign

regardless of the values of £, ; and ;- j+j. Therefore, the following relations must be
held

A i j+i =~ Aivi j+jing (3-14)
and, in particular,
A ji;=0, (3-15)

if the square vorticity is to be conserved in the finite difference scheme.
Replacing i by i—i’ and j by j—j' in Eq. (3-14) leads to

A i j—ir =~ Aisi =i (3-16)

Egs, (3-11) and (3-12) are now rewritten as
Ji,i(C, w)=21* {Ai.j;i+i',j+j'Ci+i',j+j"Ai—i',j—j';i,jCi—i',j—j'}, (3-17)
"y {Aijisi j+i—Ainir -y 1 =0, (3-18)

Where 3 * denotes summation for the indices j'>0, i’20 and j'=0, i">0. Taking Eq.
(3-18) into account, Eq. (3-17) can also be reexpressed as

Jii(&, U’)=l2’* {Aijizicjoj Givijri— G FAS joiii(Gi—Ginirj—i) ) (3-19)
or
Jii(C, 1/}):;_:4* {Aijsisinj+iGirijeit G = Aisi joii (Gt Gii =)} (3-20)

Thus, Eqgs. (3-18), (3-19) and (3-20) correspond, respectively, to the differential
forms:

1
—5 Vv=0, (3-21)
J (& p=-vV(, (3-22)

and
I, ¢)=—=V-(v0). (3-23)
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The expression given by Eq. (3-19) may be called as “advective form” and the
expression given by Eq. (3-20) may be called as “flux form”. Both are identical in the
non-divergent case. The flux form given by Eq. (3-20) indicates that the flux of a
quantity from the grid point (i, j) to the grid point (i+i’, j+j’) can be expressed as a
product of the corresponding mass flux and the arithmetic mean of the quantities at
the two points.

Multiplying Eq. (3-17) by 2§ ;, then, gives

2 G di (g, W)ZI,ZJ;* {2 Ajjivinj+iGiiCisirj+i
3-24
—2A i joiaiGiGimii—i ) ( )

It is remarkable that the right hand side of Eq. (3-24) again consists of the difference
in fluxes of the square vorticity, in which geometrical means appear in contrast with
the arithmetic means in Eq. (3-20). Therefore, it is clear that both J;;({, ) and
2 & ,;Jii(¢, ) can be written in flux forms adequately if Eqs. (3-14) and (3-15) are
valid.

In the conventional finite difference scheme for the Jacobian, Eq. (3-1), the
following relations are used for arbitrary 1 and j;

Aijiv1j= Z%(U’i,jﬂ—’l’i.j—]), (3-25)
Ai.j;i~_1.j=_ﬁ(lﬂ.ﬁl_yﬁ,jvl)w (3-26)
Ai,j;i,j+1=—T}T(WHIJ_U}FI.J')’ (3-27)
Ajjij-1= ﬁ(ujHl,j_U’il.j)v (3-28)

Replacing i by i+1 in Eq. (3-26) and j by j+1 in Eq. (3-28), then, leads to
1 :
Ai+1,j:i,j:_W(WHI.HI-WHIJ—I)v (3-26')
and

1 /
A= e (Yisrj+1= Vic1j+1)- (3-28")

It will be easily known in comparison of Eq. (3-25) with Eq. (3-26') and Eq. (3-27)
with Eq. (3-28’) that Eq. (3—-14) is not satisfied by the finite difference scheme given
by Eq. (3-1). The net false production of square vorticity that is due obviously to the
interactions between the grid points (i, j) and (i+1, j) and also between the grid points
(i, j) and (i, j+1) in this scheme can be expressed, respectively, as
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2(Ajiis1,jtAirt i j)GijGivn

CijCir1,j —
=_—Eﬁ{(wiﬂ,jﬂ_1/’1+1,j-1)'(‘/’i,j+1‘¢i,j-1_)}, (3-29)
and
2(A0 i jr 1A+ GG (3-30)
=£‘i%ii'2j+l {(Wis1 1= Vv )= (Wie = ¥im 1)) :
These equations can be further rewritten as
1 ,
5 (Dis12.j+12+Dit12.j-12) 8 jGi+ 1.5 (3-29")
2
and
.._1 ,
T(Di+1/2,j+1/2+Di—1/2.;+1/2)§i,j§i.j+1, (3-30")
where

-1
Di+1/2’j+1/ZE—A > (Vit1 jo1 Vi~ Vije1— Vier )

The last expression is a finite difference approximation to the cross derivative
—3%y/oxdy, which indicates a component of the deformation tensor. Furthermore,
the false production of square vorticity, for which Diy12.j+12 1s responsible, can be
expressed as

';‘DH 12,5+ I/Z(Ci.jgi'f- l.j+Ci._i+lCi+l.j+ 1 _Ci.jgi.j+I_Ci+l.j§i+l,j+l)
=-‘—4LDi+l/2.j+l/2{(Ci+lh_i_Ci.‘i)2+(Ci+l,j+ 1 gi,j+l)2_(Ci.j+l_Ci.j)z_(CHl.j+1_Ci+l.j)2}.

This equation is a finite difference approximation to the quantity

£ -3

2 oxoy L ox ay (3-31)

calculated at the point (i+1/2, j+1/2). Whether the total square vorticity in the whole
domain increases or decreases depends, therefore, on the sign of the term (3-31).

The general form of the finite difference approximation to the Jacobian at the grid
point (i, j), Eq. (3-9) may also be rewritten as

Ji i(E, W)=§ Bijivivj+iWisij+im (3-32)

where
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Bi,j;i+i",j+j”=izj14 Cijiir oo jrGivir - (3-33)

For quite the same reason as has been already mentioned in Eq. (3-12), the following
relation must be valid;

2 Bijiarj+y=0. (3-34)

Furthermore, corresponding to Eq. (3-14), the integral constraint, y J(§, y)=0,
which results in conservation of the kinetic energy in a closed domain, is satisfied by
the requirement

Biji+ir j+i=—Bivirj+jni (3-35)

in the finite difference scheme. However, it is evident that the conventional difference
scheme given by Eq. (3-1) does not satisfy this requirement and, consequently, it does
not conserve kinetic energy.

For simplicity, consider the following four basic second-order finite difference
approximations for a square grid, which are given by the following equations:

1
J++=“4*A—2{(Ci+1,j—§i~1.j)(‘l’i,j+1—U)i,j—l)‘(Ci,j+1—Ci.j~1)(1/’i+1,j_1l’i—1,j)},

1 (3-36)
J+*=W{Ci+1,j(%+1.j+l—’Pi+1,j—l)'Ci—l,j('l’i—l,jﬂ—V’i-l.j—l)
=Giir1(Wisrjrr=Vic1j+ )81 (Wi jm 1~ Vicrj= D)
1 (3-37)
J*+=ﬁ2’{§i+1,j+1(¢1,j+1“¢i+1,j)_Ci—l.j—l(%—],j—il’i,j—l)
=Gt i1 = Vic )G (Wi — Y- 0 )
1 (3-38)
J**=W{(Ci+l.j+|‘Ci—1.j~1)(‘/’i—1.j+I“U’iﬂ.j—l)
—(Gicr =G - D)W 1~ Wi -1}
(3-39)

All of these approximations to the Jacobian have not only the integral constraint given
by Eq. (3-2) but also the same order of accuracy, as will be seen in the next section. A
more general finite difference approximation to the Jacobian may be obtained by a

linear combination of these four basic Jacobians. Therefore, it will be reasonable to
assume

Jii(G w)=a B +B Ny B +0 B (3-40)

where a+p+y+6=1. Thus, Eq. (3-40) turns out the relations
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1
Ai,j;i+1,jzw{a(wu+l'_Wi,j~1)+ﬂ(u’i+l,j+I_Wi+l,j—-l)}v (341.1)
-1
Ai,j;i—l,ﬁm{“(’/fi,ﬁ1‘¢i,j—1)+/3(1l’i—1,j+1_1/’i—1,j-l)} , (3-41.2)
-1
A i+ =W{O{(IPH—IJ_wi-l,j)+ﬁ(wi+l,j+l_wi——l,j+l)}7 (3-41.3)
1
Ai,j;i,j—1:W{0/(Wi+1,j—1/)i—1,j)‘*'ﬁ(#’iﬂ,j—1“'/’1—1,,'—1)}» (3-42.4)
1 fo)
Ai.j;i+1.j+1=W‘{YWL,’+1”U’i+1.j)+7(¢’i-1.j+1"Wm.j— 0} (3-41.5)
-1 o)
Ai,j;i~1.j~1=W{}’(Wi—1,j—llfi,j—l)+7(¢i~1.j+1—T/)i+1.j—1)}, (3-41.6)
-1 %)
Ai,j;i—l,j+1=W{Y(U’i,j+1‘%—1,;’)"'7(%“,j+1‘¢i—1.j—1)}a (3-41.7)
1 o}
Ai.,’;i+1.j~1=‘4A7‘{}’(Wi+1._i—‘l}i,jq)'*’?(‘/}iﬂ,j+1“1Pi—1,j—1)}' (3-41.8)

Analogously to Egs. (3-41.2), (3-41.4), (3-41.6), and (3-41.8), the following
relations may be obtained

-1
Ai+1,j;i,j=W{a(wi+l,j+l_wi+1,j—l)+ﬁ(w1,j+l_wi.j—l)}a (3-41.2")
1
Ai._i+1;i.j=zA—z{“(Wi+1.j+1“1//i—1.j+|)+/3(1Pi+1.j”1l’i-—1.j)}’ (3-41.4")
-1 S ,
Ai+l,_i+l:i.j:74A2 {Y(w:'.j+l-1/)i+1,j)+7(Wi.j+2_Wi+2.j)}» (3-41.6')
1 S ,
Ai—l,j+|;L_F‘ZZT{Y(WL,'H—‘/fi—1,j)+§”(1/)i.j+z'Wiwzz.j)}- (3-41.8")

Comparison of Eq. (3-41.2") with Eq. (3-41.1), Eq. (3-41.4") with Eq. (3-41.3), Eq.
(341.6") with Eq. (341.5) and Eq. (3-41.8") with Eq. (3-41.7) reveals that the
conditions

a=p, 5=0 (3-42)
are necessary to satisfy Eq. (3-16). Thus, the scheme aof(Ji';*+Ji')+vJi together

with an additional condition of 2a+y=1 gives the conservation of square vorticity.
In a similar way, it can be shown that the conditions

a=y, o=0 (3—43)

are necessary to satisfy Eq. (3-35) and, consequently, the scheme o(J;;" + J; ) +BJ
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with 2a+f=1 confirms the energy conservation.
The consistent choice of the coefficients which satisty the conservation of both
square vorticity and energy simultaneously is given by

a=P=y=1/3, 6=0. (3-44)

This choice determines distinctly the forms of the Jacobian, and it may be easily
known that only the linear combination expressed by (J* " +J"*+J*7)/3 will satisfy
J(&, v)=—J(y, ) and conservation of the quadratic quantitites.

3-4 Accuracy and error isotropy

Since the finite difference approximation for the Jacobian, given by Eq. (3—40) and
Eq. (3-44), consists of a linear combination of the basic second-order finite difference
schemes given by Egs. (3-36), (3-37) and (3-38), it may be expected that the
approximation has an accuracy of the same order as that of the basic schemes.
Expanding { and y into taylor series around the point (i, j), then, gives

o¢ @’y 9¢ a3w+a~‘§ oy 3¢ oy
ox a3y’ 9y ox® ox’ 9y 9y ox

A2
JTE=T (6, w)+ +0 (4%,
6 { } 3 5)

. R (3t 'y 9t 3y L oy 'L oy
IS S 5 oy e Tad ay oy o

3 3 2 2 oy
3(8@48111_3@ 9’/’) (agﬂac) u}+0 (A%, (3-40)

ax ooy oy axay' T\ ax oy axay

A (ot &y ot Dy Loy L oy
k*+ __ _ _o¢dy
e 6 {8x gy’ 9y ox’ HE dy 9y’ ox
oy O°C 2y 2L\ 9y Py 9% 4 e
_3( ox ox’dy 9y 8x8y2) 3( x> ay2) 8x8y}+0 (4%, (347

where the subscripts i, j are omitted for simplicity. Since the finite difference
approximation to the Jacobian denoted by J, (&, ) has been assumed in the present
approach as (J**+J7*+J**)/3, it can be reduced to

_ A (3t Dy 3t Py 'L oy 9L oy

R 3y oy ox 'ox’ ay oy ox

+(az; Py ¢ a%p)_(aw ¢ oy 835)
ox Ox%dy Oy oxay’) \ox ox’dy dy oOxdy*
oL 'L Py (’y 'y ’

+(ax2_ay2) oxdy _( %2 8y2) 8x8y}+0 (4%

_ AP dy_o(7YH oy

=1 & U))+{ ox 9y 9y X
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o’ %%\ o*y [Py *y\ % 4
+( ox% ayz) ox9y _( x> ayz) ox9y }+0 (4%. (3-48)

A simples stream function defined by the equation
Yy=—UY+A sin (k X) (3-49)

is introduced to examine the phase error, where (X, Y) are rectangular coordinates
obtained by rotation of the original coordinates axes by an angle 6. This is,

X= x cosf+y sine}

Y=-x sinf+y cosf (3-50)
and the vorticity is given by
E=—A k? sin(k X). (3-51)

The error in the conventional scheme J** (&, y), given by Eq. (3-1), is written as

2L (kay

U8X 6

(cos*6+sin*0)+0(A%). (3-52)
In contrast with Eq. (3-52), the error in the scheme J;(¢, ), Eq. (3-48), can be

expressed as

¢ (kAy
Uax 6

(cos?0+sin?6)>+0(A%). (3-53)

In the range 0=6=n7/2, the factor (cos*6+sin*6) in Eq. (3-52) has the maximum value
equal to 1 at 6=0 and 6=7/2 and the minimum value equal to 1/2 at =x/4. On the
other hand, the factor (cos?6+sin’6)? in Eq. (3-53) is always equal to 1, indicating
that the orientation error is removed in this case. Therefore, this nature of J, is to be
called as error isotropy of the second order.

3-5 Extension of Arakawa’s method

As orszag et al. [10] pointed out in their simulation of the 2-dimensional isotropic
turbulence, Arakawa’s method is certainly inferior to the spectral method in the space
resolution, and this inferiority becomes more remarkable in case the coarse grid
points are used in the calculation. The reason for present improvement of the
resolution of Arakawa’s method may be laid on this point.

Consider the Jacobian in another coordinates system, which is given in the form

(%, ¥ _o(&, 9 ax,y) (3-54)

Ixx(& )= o(X,Y) a(x, y) oX,Y)

If the Jacobian is evaluated in the new grid system obtained through rotation of the
original coordinate by n/4 radian (it has grid spacing of V2 A), and, moreover, if it
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is formulated in the same way as J; in the original coordinates, the leading term of the
phase error in the Jacobian will have the same form as J; has in the original
coordinates because of its error isotropy of the second order. If the Jacobian is
assumed to be given by the equation

B W= WG WHITE W), (3-55)

where the subscript 7174 denotes the values in the new coordinates obtained through
7/4 rotation of the original ones in the clockwise, then, all of the total vorticity, the
square of vorticity and the energy can also be conserved through the rotation because
the origin of the error involved in these constraints consists in the relative position of
the points used to evaluated the Jacobian. Since it is obvious that I35 (£, ) equals to
J**(&, y) defined by Eq. (3-39) and
J;/Zz8;2{§i+2,j(wi+1,j+1—U)i+1,j—1)"Ci—2.j(wi——I.j+l_1Pi-l.j~l)

=& oW1 Vi e 0 G2 (Wi o1~ Y- D)) (3-56)

. 1
JﬁFW{ Givrjri(Wijra—Vivzj) — Gimt =1 (Wi = Wi j-2)
=G 1 (Wi jer=Wic2 ) F G o1 (W2 = Wi -2) ) » (3-57)

the accuracy of J,(£, ¥) can be, therefore, expressed as

B Aot Dy or Py ¢ oy 2’ oy

L=JE v+ 3 {8x oy 9y ox’ o oy oy’ ox

+(ag Iy ¢ a3w)_(aw L oy a3§)
ox ox’0y OJy Ooxoy’ ox ox’dy QJy Oxoy’
L %L Py (Py Py ¢ 4

+( ox> ayz) ox9y _( ox> oy? ) oxay }+O(A )-

(3-58)

From Eqs. (3-48) and (3-58) it will be easily found that 2J,(&, y)—J»(C, ) is a fourth
order approximation of the Jacobian; that is,

201(8, )= To(E, ¥)=I(L, ¥)+0(AY). (3-59)

However, this Jacobian does not have the fourth-order error isotropy, which will be
shown in the later arguments.

It must be noted that it is necessary to estimate several higher-order cross-
derivatives in order to get the Jacobian having the error isotropy of the fourth-order.
For this purpose it will be convenient to introduce the two other coordinates that can
be obtained through rotation of the original coordinates by arctan(1/2) in the
clockwise and in the anti-clockwise (they have grid spacing of V' 5 A), respectively,
and the evaluation of the Jacobian in these coordinates can be made in the similar way
(the components of these finite difference approximation of Jacobians are shown in
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Appendix B.). The phase error involved in the scheme Jo=2J,6—J>0 is given as

o¢ (k A)“
X

(—cos®6—sin®0)+0(A°), (3-60)

where subscript O denotes the values in the original coordinates. The error involved
in the scheme, Jcw=2Jcw—J>cw, may be written as

oL (k A)4
X

{—13(cos®+s5in%0) +36(cos*6—sin*@)cosBsin
—60(cos?0+sin’6)cos>Osin?0} +0(A®), (3-61)

where subscript cw denotes the values in the new coordinates obtained through
rotation of the original coordinates in the clockwise by arctan(1/2). The error involved
in the scheme, Jaw=2J,aw—J2aw, may be expressed as

o¢ (k 4)4
X

{—13(cos®0+sin®0) —36(cos*H—sin*H)cosHsin@
—60(cos?0+sin’6)cos>Osin0}) +0(A®), (3-62)

where subscript aw denotes the values in the new coordinates obtained through
anti-clockwise rotation of the original coordinates by arctan(1/2). Thus, in view of
Egs. (3-60), (3-61) and (3-62), the finite difference approximation of the Jacobian
with error isotropy of the forth-order can be formulated as;

J(&, v)=(14Jo+Jcw+Iac)/16, (3-63)

and the phase error may be reduced to

4
§>§ e~ (cos?0+5in%6)~3(cos?0-+sin’6)cos 6sin’6} +0(A°)
8;‘ (kA)4

X

———2—{—(cos?0+sin%6)>} +0(A®). (3-64)

In the same way, the 6th-order scheme with error isotropy will be obtained by use of
54 basic finite difference approximations of the Jacobian.

A comparison of the resolution between the conventional Arakawa’s method and
the present one is made in the case of the same intensity merging (see 4-3) and the
result is shown in Fig. 1. In the present result, there can be seen a remarkable
improvement in resolution of the flow field. The numerical results obtained by use of
the conventional scheme having no error isotropy are also compared with the ones
obtained by the present method. In Fig. 3, it is obvious that the vortex sheet gradually
loses its regularity in the result obtained by Kawamura’s method, whereas it is still
regular in the result obtained by the present method, as is seen in Fig. 2.

3-6 The method for prevention of alias error

As has been already pointed out by Orszag et al. (see Appendix A.), aliasing occurs
if there exist disturbances having the maximum wavenumber that can be resolved by
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Fig. 1. Vorticity contours of merging vortices in the case of same intensity merging at t=140.
(a) conventional Arakawa’s method
(b) present method.

discrete points. Moreover, in case a finite difference scheme is used to simulate
nonlinear phenomenon, aliasing also occurs before the disturbance reaches the
maximum wave number, because the resolution of the finite idfference scheme is not
accurate enough in the region near the maximum wave number (comparison between
either the second or the fourth-order finite difference scheme and the Fourier analysis
in a linear problem reveals that the former group requires typically 8 to 20 points per
wavelength depending on the order of the accuracy of the finite difference scheme,
whereas the latter requires only 2 points [11, 12]). Because of this, it is necessary to
keep the energy contained in the region near the maximum wave number small
enough to avoid the aliasing. Physically speaking, this implies that an energy sink must
be set up in this wave number range (see Ref. [13]). If there is no energy sink in the
higher range of wave number, the flow pattern will be enveloped with fine wrinkles
(see Fig. 4).

It must be noted that, in the present study, the diffusion terms of the 8th- and
6th-orders are employed as energy sinks. The reason for this may be laid on the
following statements. The higher diffusion term suppresses disturbance components
of very high wave number, so that there remains very weak oscillation in the middle
wave number range. This can be interpreted into that the 8th-order diffusion plays a
main role as an energy sink, whereas the 6th-order diffusion attenuates such a very
weak oscillation that the 8th-order cannot remove. The coefficients of these terms are
determined empirically, those are, — 10~* for the 6th-order diffusion and 10~2 for the
8th-order one. Detailed discussion on the foregoing procedure should be referred to
Appendix D.

3-7 Finite difference approximation of the Jacobian and Poison equation in general
coordinates

In view of Eq. (3—44), the finite difference approximation of the Jacobian in general
coordinates can be expressed as

Loty _ a5y AEN
Yol M=30 ) = a€.n) ax, )
ZJE,U(Cv W) (gxny_gynx)’ (3—65)
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Fig. 2. Temporal evolution of the vorticity contours on the
coarse grid system with step 0.04 obtained by the
present method from t=0 to 120 (continued).
(monochronic initial disturbance and cyclic boundary
condition are adopted)

where &, n are the Cartesian coordinates in the computational plane. The left hand

side of Poison equation for the stream function can be written in the general
coordinates as
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1=200
0 15,

Fig. 2. Temporal evolution of the vorticity contours on the
coarse grid system with step 0.04 obtained by the
present method from t=140 to 200.
(monochronic initial disturbance and cyclic boundary
condition are adopted)

V2 y U= 0Pee+2BYen+ Y+ oYt 1Y, (3-66)
where

a=EHE, B=Emt+EN,, Y=t
0=‘§xx+§yys ‘C:nxx+nyy-

Since the stream function v is-obtained by integrating vorticity distribution in the
computational domain, the resolution that is necessary for calculating the stream
function is not so serious as vorticity convection equation. For this reason, the three
points conventional finite difference approximations are utilized in Eq. (3-66), and
P2¢ is given in the same way as Eq. (3-66).

3-8 Time integration

Lilly [14] used Arakawa’s method in his numerical simulation of 2-dimensional
isotropic turbulence, in which the second-order Adames-Bashforce scheme was
employed in integrating Eq. (2-1). The results of the calculation indicate that, if the
Courant number is small enough (about 0.2), the accuracy of the first-order time
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Fig. 3. Temporal evolution of the vorticity contours with
step 0.04 obtained by Kawamura’s method from t=0
to 120 (continued).

(monochronic initial disturbance and cyclic boundary
condition are adopted)

integration seems to be satisfactory in view of the comparison of the growth rate
between linear theory and the numerical simulation. Therefore, the first-order time
integration is adopted in the present study.
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Fig. 3. Temporal evolution of the vorticity contours on the
coarse grid system with step 0.04 obtained by
Kawamura’s method from t=140 to 200.
(monochronic initial disturbance and cyclic boundary
condition are adopted)

Q 4Am

Fig. 4. Vorticity contours of the simulation with aliasing obtained by the present
method.
(monochronic initial disturbance and cyclic boundary condition are adopted)

4. NUMERICAL SIMULATIONS

4-1 Assumptions and grid system

The typical behavior of the shear layer clearly results from the nonlinearity of the
governing equation, whereas the viscosity mainly affects the short waves caused by
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nonlinear effects. For this reason, it will be reasonable in this study to assume that the
diffusion coefficient is negligible and, consequently, the simulations may presumably
be made satisfactorily by solving Euler equation numerically. The hyperbolic-tangent
velocity profile is particularly adopted to compare the present results on growth rate
and vortex contour in the linear regime with those obtained by Michalke [15].
The grid system utilized in the present computation is generated by the equation;

x=p &
, (4-1)

y=q n’+rn

where the constants p, q, r and the number of utilized grid points are chosen
adequately in each simulation.

4-2 Simulation with monochronic disturbance

First of all, consider the shear layer generated by two uniform flows having the same
speed but opposite direction, where a hyperbolic-tangent velocity profile (see Fig.
5(a)) is assumed for simplicity. The grid system used in this simulation is 128X 65
(0=5=127, -32=n=32) and the coefficients in Eq. (4-1) are p=(2a/a) (3/128),
q=.1248 and r=.0002, where a denotes the wavenumber of the initial disturbance.
The time increment A, was taken to be .025 and the Courant number was preserved
less than .2 throughout the computation. The slab symmetry condition was imposed
on the upper and lower boundaries and the cyclic boundary condition was imposed on
the inflow and out flow boundaries.

The initial conditions were given as follows;

Y=1,+(A/a)cos(ax)exp(—ay?), (4-2-1)
£=Co+aA(dy’—cos(ax)exp(—ay?), (4-2-2)
where
Yy (b YA ‘
(3) 3 ) 3 ;‘
2 : 2 7[:
4
1 : 1 — :
o ] 0 " / 1
0.5 05 Uly) 0.5 _— 1.5 U(y)
: » B —
' R
-9 -2 3
—3 R E—

Fig. 5. Sketches of the velocity profile
(a) used in cyclic boundary condition case
(b) used in flow out boundary condition case.
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Yo=—log(cosh(y))/2,

Co= —sechz(y)/2,

and where A is the amplitude coefficient equal to 10~ ° and « is the wavenumber of the
disturbance.

In Fig. 6, the growth rate of vy’ in the linear regime is plotted for three
wavenumbers «,,, (4/5)a,, and (6/5)a;,, where a,,=.4446 indicates the wavenumber
for the maximum growth rate that can be expected from the calculation of Mickalke
[15]. It must be noted that the growth rate obtained by the present computation agrees
quite well with the one calculated by small disturbance theory (see Fig. 6, 7). Since the
cyclic boundary condition has a trend to suppress the generation of high wavenumber
disturbance and, consequently, the nonlinear effect is decayed, the linear region is
kept to the the disturbance intensity of the order of 10 ~'. Fig. 8 (t=60 to 80) show the
vorticity contours at several early stage of the present simulation, indicating that the
results agree qualitatively with those obtained by Michalket [15] (see Fig. 9).

Examination of validity of the present simulation in the later stage can be made in
comparison between the numerical results of asymptotic behavior of the vortex roll
ups obtained by vortex method by Kransny [16] and those obtained by the present
method. Fig. 8 (t=120 to 180) and Fig. 10 indicate qualitatively good agreement in the
roll-up pettern of vortex sheet.

From these results, it may be concluded that the present algorithm can predict the
transient process of the shear layer more accurately than the existing scheme, if
realistic boundary condition is prescribed.

2 In(y)
'] t

01 |

Uam o

0.06 -

0.4

0.02

0 1 —1 1 1
0 0.2 0.4 0.6 0.8 10 «

Fig. 6. Linear growth rate us. wavenumber.
—: Small disturbance theory, O: present method, A: Kawamura’s
method.
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Fig. 7. Typical temporal evolution of the
amplitude of the disturbance to the
stream function in the linear regime
(a=0.4446).

4-3 Simulation of typical merging process

It will be easily known from the foregoing statement that the vortex generated by
the shear layer can be controlled without difficulty by the initial disturbance. From
this viewpoint, two typical types of merging process of vortices are to be considered,
i.e. the merging of the vortices having the same magnitude of vorticity and the
merging of the vortices having different magnitude of vorticity. It must be noted that
the same computational conditions are used for simulations to the former.

The computation for the first merging process was carried out with the assumption
that the initial disturbance involved in the flow field is given by the equation

Y=Y+ (Al )cos(a;X)exp(— tmy?)
+(A/ay)cos(ax)exp(—amy?), (4-3-1)

E=Co+ (A/a)(daqy’—ai)cos(ax)exp(— amy>)
+ (A/ a’m)(4a’r2ny2_' (YZZ)COS((sz)GXp(‘ amyz) ’ (4_3—2)

where vy, and {, are the same as in Eqs. (4-2), and where a;=(4/5)a,, and
&, =(6/5)a,,. The coefficients of grid system were taken to be p=(27/a,,)(5/6)(3/128),
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Fig. 8. Temporal evolution of the vorticity contours
obtained by the present method with step 0.04 from
t=0 to 60 (continued).

(monochronic initial disturbance and cyclic boundary
condition are adopted)

q=.1248 and r=.0002, and the same number of grid points were used as the former
simulation.

Fig. 11 shows that, at an early stage of the time, three roll-ups of vortex sheet make
their appearance in the shear layer, and, meanwhile, the Fourier analysis applied in
the x-direction reveals the existence of the components originated from the nonlinear
interaction between a; and a,. With the time elapsed these components enhance the
trend to merge neighboring vortices of the same intensity. Moreover, it can be
observed obviously in the inner structure of the merged vortex that the small scale
vortices resulting from the merging process are gradually integrated into larger ones.
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t=140

Fig. 8. Temporal evolution of the vorticity contours
obtained by the presemt method with step 0.04 from
t=80 to 140 (continued).

(monochronic initial disturbance and cyclic boundary
condition are adopted)

On the other hand, the vortex intensified by the merging process tears the vortex sheet
to spread the shear layer. From now on, the merging process of this kind is called as
“the same intensity merging.”

The other one can be simulated with the initial condition given by Egs. (4-3), where
a1=(3/2)a,, a,=(3/4)a, and the amplitude A=10"* have been employed. The
coefficients of grid system were set to be p=(2x/a,)(2/3)(4/128), q=.1248 and
r=.0002, and the same number of grid points were used as the former simulation.

The results shown in Fig. 12 clearly indicate a temporary existence of a regular
alternate disposition of weak and strong vortices at an early stage of the time.
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Fig. 8. Temporal evolution of the vorticity contours
obtained by the present method with step 0.04 from
t=160 to 180.
(monochronic initial disturbance and cyclic boundary
condition are adopted)
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Fig. 9. Vorticity contours obtained by small disturbance
theory (from Ref. [15]).

However, as the time elapses, the weak vortices are gradually stretched by the strong
ones on both sides, and, finally, they are entirely rolled up into the strong vortices.
Therefore, it seems that there can be observed only two strong roll-ups of vortex sheet
that resemble the asymptotic state of the simulation made with the monochronic
disturbance. From now on, this type of merging process is called as “the weak-strong
merging.”

4-4 Simulations with random disturbances

In this section, the simulation is made using either a cyclic or a flow-out boundary
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Fig. 10. asymptotic behavior of the rolled up vortex sheet by
vortex method (from Ref. [16]).

condition with a random disturbance in order to examine the change in the flow field
involving the merging vortices due to the disturbances.

In case of simulation under the cyclic boundary condition, the calculation
conditions were the same as those for the former simulation, and the initial condition
for vorticity was given by

E=Co+A(R—.5)exp(—amy?), (4-4-1)

where R is uniform random number in (0, 1) and , is the same as given in Egs. (4-2).
The initial condition for y was given by

Y=ty (4-4-2)
where ¢’ was obtained by solving the equation
72y’ =A(R=.5)exp(—amy’),

Yo is the same as in Eqgs. (4-2), and the amplitude A was set equal to 1072,

In the case of the cyclic boundary condition with a random disturbance, the flow
field undergoes very complicated modifications in the transient process of merging
vortices, as is seen in Fig. 13. In the early stage, detailed examination of the numerical
results reveals a fact that only the disturbances having wavenumbers near «,, are so
intensified as to play the main role in determining the intermediate regime of the shear
layer, whereas the disturbances having higher or lower wavenumbers are not so
developed enough as to have significant effect on the flow field. The flow pattern
observed in existing experiments seems presumably to be shaped in this way. As the
time elapses, even the disturbances with rather small growth rate have grown up to be
strong enough to affect the intermediate regime of the vortex merging. Finally, the
intensified vortex thus formed through the merging process staggers back and forth in
the shear layer and fills the flow field with torn vortex sheet.

The simulation starting with a random disturbance under the flow-out boundary
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Fig. 11. (a) vorticity contours of merging vorticies obtained
by the present method with interval 0.04.
(b) its Fourier analysis in x-direction. t=0 to 20

(continued).

(cyclic boundary condition is adopted)
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Fig. 11. (a) Vorticity contours of merging vorticies obtained
by the present method with interval 0.04.
(b) its Fourier analysis in x-direction. t=40 to 60
(continued).
(cyclic boundary condition is adopted)
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Fig. 11. (a) Vorticity contours of merging vorticies obtained

by the present method with interval 0.04.

(b) its Fourier analysis in x-direction. t=80 to 100
(continued).
(cyclic boundary condition is adopted)
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Fig. 11. (a) Vorticity contours of merging vorticies obtained
by the present method with interval 0.04.
(b) its Fourier analysis in x-direction. t=120 to 140
(continued).
(cyclic boundary condition is adopted)
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(a) Vorticity contours of merging vorticies obtained

by the present method with interval 0.04.

(b) its Fourier analysis in x-direction. t=160 to 180

(continued).

(cyclic boundary condition is adopted)
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Fig. 11. (a) Vorticity contours of merging vorticies obtained
by the present method with interval 0.04.
(b) its Fourier analysis in x-direction. t=200 to 220.
(cyclic boundary condition is adopted)
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Fig. 12. (a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=0 to 20

(continued).

(cyclic boundary condition is adopted)
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Fig. 12. (a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=40 to 60
(continued).
(cyclic boundary condition is adopted)
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Fig. 12. (a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=80 to 100
(continued).
(cyclic boundary condition is adopted)
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Fig. 12. (a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=120 to 140
(continued).
(cyclic boundary condition is adopted)
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(a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=160 to 180
(continued).
(cyclic boundary condition is adopted)
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Fig. 12. (a) Vorticity contours of stretching vorticies
obtained by the present method with interval 0.04.
(b) its fourier analysis in x-direction. t=200.
(cyclic boundary condition is adopted)

condition (see Fig. 5(b)) was made to demonstrate the total image of the shear layer.
The random disturbance was imposed on the initial conditions and boundary
conditions along the entrance region throughout the simulation. The grid system
utilized in this simulation is 256 X 101(0=£=255, —50=7=50) and the coefficients in
Egs. (4-1) were set to p=(27/a,,)(20/256), q=.2497 and r=.0003. The time increment
A was .015 and the Courant number was preserved less than .2 throughout the
simulation. The initial condition for shear layer was given by

Yy=1yYoty’, (4-2-3)
&=Co+A(R-.5)exp(—amy?), (4-2-4)
where R is a uniform random number in (0, 1), and {, is the same as Egs. (4-2),

Wo=—(y-+log(cosh(y))12),

where y' is given in the same way as the former simulation. The amplitude A was set
to 1072. The entrance condition was determined in the same way as for the shear layer
at every time step.

Fig. 14 shows that the only disturbances having the wave number near a,, appear,
and the weak-strong merging takes place in the very early stage of the transition,
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Fig. 13. Vorticity contours obtained by the present method
with interval 0.04 from t=0 to 60 (continued).
(random initial disturbance and cyclic boundary
condition are adopted)

whereas it did not appear in the simulations obtained with cyclic boundary condition.
The same intensity merging occurs intermittently in the downstream to make a
intensified vortex and affects whole shear layer. Around this vortex, the torn vortex
sheet is spread and the shear layer with filamented shapes are observed. This pattern

is same qualitatively as can be seen in the picture proposed by Frymuth [17] (see Fig.
15).
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3.
Vorticity contours obtained by the present method

with interval 0.04 from t=80 to 140 (continued)

(random initial disturbance and cyclic boundary
condition are adopted)

Fig. 13.
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Fig. 13.
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Vorticity contours obtained by the present method
with interval 0.04 from t=160 to 220 (continued).
(random initial disturbance and cyclic boundary
condition are adopted)
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Vorticity contours obtained by the pre-
sent method with interval 0.04 from
t=320 to 340 (continued).

(random initial disturbance and cyclic
boundary condition are adopted)

1 =300

Q s

Fig. 13. Vorticity contours obtained by the pre-

sent method with interval 0.04 from
t=240 to 300 (continued).

(random initial disturbance and cyclic
boundary condition are adopted)
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Fig. 14. Vorticity contours obtained by the present method
with interval 0.04 from t=0 to 75 (continued).
(flow out boundary condition and random inflow
disturbance are adopted)
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Fig. 14. Vorticity contours obtained by the present method with interval 0.04 from
t=90 to 165 (continued).
(flow out boundary condition and random inflow disturbance are adopted)
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Fig. 14. Vorticity contours obtained by the present method with interval 0.04 from
t=180 to 255 (continued).
(flow out boundary condition and random inflow disturbance are adopted)
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Fig. 14. Vorticity contours obtained by the present method
with interval 0.04 from t=270 to 300 .
(flow out boundary condition and random inflow
disturbance are adopted)
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Fig. 15. A sequence of stroboscopic pictures (from Ref.

[171).
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5. CONCLUDING REMARKS

With emphasis on applicability to the long term integration, an improvement of
higher order accuracy algorithm has been made for numerical simulation of transient
shear layer for linear to nonlinear regimes. In the linear regime, the present results
associated with the growth rate and vorticity contour agree well with the existing
theoretical ones. Moreover, it has been shown that, in the nonlinear regime, the
asymptotic behavior of vortex sheet obtained by the present simulation also indicates
satisfactory agreement with the results obtained by the vortex method with the same
boundary condition.

Taking the transient behavior of the shear layer from the linear to the nonlinear
regimes into account, the numerical computation is carried out further to clarify the
characteristic behavior of the merging vortices in the shear layer.

Finally, it is emphasized that the present algorithm proposed in view of both
numerical accuracy and error isotropy is clearly superior to the existing schemes in
order to predict such highly nonlinear phenomena as can be observed in the shear
layer transition, etc.
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Appendix A. The mechanism of aliasing (from Ref. [5])

Consider an evaluation of sum of the one-dimensional convolution expressed by the
equation

w(k)= ¥ u(p)v(a). (AD)
plJal<k

where k, p, q are integers and u(p), v(q) are in general complex. Let’s define the
discrete Fourier transform of a set of N complex numbers z(k) in the region|k|=
(1/2)N, where N is assumed to have no special relation to the cutoff K in Eq. (A-1).
Since z(k) indicates a field in “wave-vector” space, its Fourier transform exists in
“physical” space. The grid points are defined by the equation

x;=27j/N, (A-2)

where j=0, 1,.., N—1. If the discrete Fourier transform Z; of z(k) is defined as
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4= 4 t, 200exp(ik), (=0, 1,...N=1). (A-3)

Then, it follows from the nature of roots of unity that

if k=p(mod N
Ze"p(‘(k P)X))= {0 c:fh:rw?:? o4 ) (A-4)

Therefore, the inverse transform to Eq. (A-3) is given as

z(k):% > Z; exp (—ikx;) (kaé%« N). (A-5)

=0

It is evident that Eq. (A-3) is algebraically equivalent to Eq. (A-5).

The most obvious way to try to get a discrete convolution theorem for calculation of
Eq. (A-1) is to introduce the physical-space transform Uj, Vj of the spectral fields
u(k), v(k), respectively, by means of the discrete Fourier transform, Eq. (A-3),
together with the condition N=2K. Here ﬁj, Vj are defined at the 2K points of
x;=2mj/(2K) for j=0, 1,.., 2K~1, and the domains of the definition for u(k) and v(k)
are extended to lk'<K where u(—K)=v(- K) 0 has been required to validate Eq.
(A-3). If W is defined as the local product U V of the transformed fields for j=0, 1,.
2K~1 and Eq (A-5) is used with N=2K to compute the inverse transform Ww; of W for
|k|=K, then, it gives

W9= {53 u(plexplipy) 3 v(@explian,) Jexp(=ikx)
- z a5 explitpra—ion). (A6)

which can be further reduced by application of Eq. (A-4) to
w(k)=w(k)+w(k+2K)+w(k—2K) (]k|=K), (A-6")

where w(k) has been given by Eq. (A-1). The last two terms of Eq. (A-6') result from
the cyclic relation expressed by exp(i(k+N)x;)=exp(ikx;) for all integers j and k, and
the discrete grid points x; do not distinguish the wave-vector k from its “aliases” k=N
and k*2N, etc. It must be noted that one of the two terms in Eq. (A-6), which result
from the aliasing, cannot at least be zero for any |k|=K.

In the conventional finite difference shcemes, aliasing will presumably occur in the
wave numbers less than N/2, because they cannot be distinguished from the wave
numbers in the higher range than N/2. Because of this, the cut off wave number
should be set less than N/2 in order to evade aliasing.

Appendix B. Components of finite difference approximation for the Jacobian
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Components of the finite difference approximation for the Jacobian used in the
present method are given as follows:

J&w= 20A2{(§,+2J 1= Gica e ) (Wit je2— Vi1 j—2)
—(Givrjrr=Ci1j—2) Wiz jm 1= Y2+ 1)}

1
Jowv= 20A2 {Ci+2,j—1(¢i+3,j+1‘1/’1+1,j—3)—Ci—2,j+1(1l’i—1,j+3—1/’1—3,1‘—1)
"Ci+1,j+2(¢i+3,j+1"Wi—1,j+3)+Ci—1,j—2(¢i+1.jv3—1//if3,j—1)}’

JCW 20A2{C|+’)]+I(UJI+1;+7 UJH—ZJ l) Cl 34— 1(1.01 2.0+1 lP: 1.)— 2)
_Civl,j+3(Wi+l,j+2""¢i—2,j+1)+.ci+l,j—3(7~/}i+2.j—I_I.Ui—l.j-2)}*

++

CWn/a= 4OA2{(CI+%.+| Cima i DWWzt j+3— Vir1j-3)
—(Gicr 3= G- (Wissjr1— Yicai— D}

_E‘TNJIM 40A2{C|+?1+1(w|+°|+4 11U|+4J 2) Cn 3.j— 1(”4’, 4.9+27 WI 2.j— 4)
“Cif1,j+3(‘l’i+z,j+4—Wi—4,,i+2)+§i+1.j«3(U’i+4.i~2—U’i‘z.j—4)}o

JeWnn= 4022{Cl+4| A Virsjrr— Wierj-3) ~Giajra(Wim1jea—Yios - 1)
_Ci+2,i+4(ww3.j+l_Wi—l.j+3)+Ci—2.j—4(qu+l.j73_U)i43,j—l)}’

Jaw= ZOAz{(C+2J+1 G- (Wis1 jr2— Wis1,j—2)
—(Gio1jr2=Gir1j—2) (Wit i1~ Vi2j- 1}

Jav= 20A2{Cl+2)+1(wl+1]+3 Yies j—1)— G2 j—1(Wiz3 je1— Wim1,j-3)
= Gioie2(Wie e Vica g+ ) o j—2(Wika o1~ Yisj-3) )

1
Jw= 2002 (G j43(Wictjra— Ve j+ 1)~ Gicj-3(Vic2j— 1= Yir1,j-2)
=& 1(Wist jr2— Ve -0 T G3 -1 (Wis2jr 1~ Yir1j-2) )

1
JAWn/a= A0A2 (G jr3=Gimrj—3)(Wissjr1— Virsj-1)
"(Ci—3.j+l_Ci+3,j—1)(Wi+1,j+3—'1/f’i—l‘j—3)}a
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+ 5 1
AWn/4=W{Ci+l,j+3('l}i—2.j+4— Vivaj+2)~Gi1i-3(Vicaj—2—Vis2j-a)
—Gajr1(Wicajra—Wicaj—2)+Giva i {(Vizajra—Vie2j-a)}

1
Ji—'\-)Vn/4=W{Ci+4,j+2(Wi+l,j+3_Wi+3,j—1)_Ci—4,j—-2(’lpi——3,j+1 —YPi—1,j-3)
_Ci—z,j+4(wi+1,j+3—wi—3,j+1)+Ci+2,]—4(1pi+3,j—l —Yi-1,j-3)},

where subscripts CW and AW denote the value in the new coordinates obtained
through rotation of the original coordinates in either clockwise or anti-clockwise by
arctan(1/2) radian, respectively, and the subscript 77/4 indicates the rotation angle in
radian.

Appendix C. Equivalence of energy conservation to the third Jacobian constraint.
The third Jacobian constraint is expressed as
vo=y Iy, §)=0, (C-1)

where the barred quantities denote the average over the domain. The left hand side of
Eq. (C-1) is transformed into Eq. (C-2) given by

YE=w0)—(d). (C2)

The first term in the right hand side of Eq. (C-2) will be re-expressed as,

YE=P( W) + Py = (WPt (Y1), — (Y3+¥3). (C3)
The second term of the right hand side of Eq. (C-3) will be interpreted as two times of
kinetic energy, and Gauss’ divergent theorem will be applied to the first term of the

right hand side of Eq. (C-3). Thus, Eq. (C-3) becomes
yi=-2E. (C-9)

Substitution of Eq. (C-4) into Eq. (C-2) lead to

Yi=—-2E—yL. (C-5)
Application of Green’s theorem to v and y,, together with additional assumption that

there is neither inflow nor out-flow of the invariants through the boundary, gives the
following relation

[, vy rrpgav=] [nor-y(5Y)Jas=o. (©6)
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From Eq. (C-6), it follows that
fv Y, qu;dv=fv Y P2y dv. (C-7)
Thus, yE=0 is equivalent to E,=0
Appendix D. 9-points finite difference approximation

Finite difference approximation of the differential coefficients can be formulated as
follows;

O - —1 4 -1 4 —4 | -4 1 D - 3
qu 280° 105° 5 ° 5 ° 5 ° 5 > 105 280 R

i -1 8 -1 8 8 -1 8 -1
AT 560° 315> 5 ° S5 5 5 315 560 £ 5fo
240° 107 120° 30 ° 30 ° 120 10" 240 270
A4 7 -2 169 122 -122 169 -2 7 .
240° 5 60 15 ° 15 ° 60 ° 5 240 170

= X

Sy -1 3 —13 29 -29 13 -3 1
A 6’ 2 3 > 6 ° 6 ° 3 27 6 SR

6pvi -1 -1
A — 3, —13, 29, 29, —13, 3, 7 f_,-f,

7 gvii 1 -1
A fV T) —33 7’ —7 5 7, —75 33 T f—3-f()
ABfil 1, -8, 28, -56, —-56, 28, -8, 1 f_,f,
\ J L J \ J

where f, represents the value of f((i+n)A) and A is grid spacing.
Appendix E. Some comments on Kawamura’s method

There are several reasons why Kawamura’s method [17] is not employed in this
paper, which may be summarized as follows.

1) Conservation of vorticity
Kawamura’s method utilizes u, v and p as fundamental variables, for which the
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governing equations are written, respectively, as follows (viscosity term is omitted),

ut+uux+vuy+px+7}fu[uxxxx+%!v|uyyyy=0, (E-1-a)
1 1

vt+uvx+vvy+py+~4—|u|vxxxx+z|v]vyyyy=0, (E-1-b)

7p=—V-(u- Pu). (E-1-¢)

If a finite difference approximation is applied to Eq. (E-1-a) and Eq. (E-1-b) (fourth
order filtering terms are omitted), then, the above equations are reduced to

u[+u2 Xi,jui,j-i-vz Yi’jui,j+ ‘2 Xi,jpi,j=0’ (E-Z—a)

vﬁ-uZ Xi,jvi,j+v2 Yi‘jvi,j+ _Z‘, Yi,jpi,j=03 (E-Z-b)

where X; ; and Y, ; represent coefficients of finite difference approximations of x- and
y-derivatives, respectively. In the case of 2-dimensional incompressible flow, the
convection equation is prescribed in the vorticity conservative form, so that Eq. (E-1)
must conserve the vorticity. To examine this circumstance, differentiation of Eq.
(E-2-a) with respect to y and Eq. (E-2-b) with respect to x, and, then, combining both
equations gives the following relation

G+udl X ;6 +v Y8+ 20 Xi.i(P)y— 22 Yi;(p)x
Fuds X vi v Y Vi a2 X = vy 37 Y ju=0. (E-3)

The above equation can be further reduced to
Ct+u§x+VCy+§(ux+vy)=0. (E-4)

From the result shown by Eq. (E-4), it is clearly known that Eq. (E-1) conserves
vorticity only in the case the flow field satisfies the divergent free condition strictly.

ii) Conservation of enstrophy and energy

As has been already mentioned in chapter 3, the conventional finite difference
approximation to the Jacobian does not conserve the energy and the enstrophy. Since
Eq. (E-3) takes the form that is equivalent to the conventional finite difference
approximation to the Jacobian, it does not conserve enstrophy and energy. In this
case, if the long-term integration of 2-dimensional flow is made by use of this method,
vortices with physically unreasonable value appear and the flow field gradually loses
its reality (see Fig. 16).
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Fig. 16. Temporal evolution of the vorticity contours
obtained by Kawamura’s method with step 0.04
from t=0 to 60 (continued).

(monochronic initial disturbance and cyclic bound-
ary condition are adopted)

iii) Effect of fourth order diffusion .

The peculiar formulation of Kawamura’s method consists in 4th-order diffusion
term that is controlled by absolute value of contravaliant velocity. For this reason, if
the different flow fields which are made of two different grid systems but have same
convection speed, i.e. fine one and coarse one, are simulated by use of Kawamura’s
method, then, strong diffusion is augmented in the fine grid system, whereas weak
diffusion is enhanced in the coarse grid system. Therefore, if an outer flow is
computed using the conventional grid system, i.e. fine grid near the body surface and
coarse grid in the far field, the strong diffusion is augmented in the fiow field near the
body surface, while the very weak diffusion is enhanced in the fiow field far from the
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Fig. 16. Temporal evolution of the vorticity contours
obtained by Kawamura’s method with step 0.04
from t=80 to 140 (continued).

(monochronic initial disturbance and cyclic bound-
ary condition are adopted)

body surface. Thus, the strong nonlinear phenomena near the body surface is
stabilized by this strong diffusion and the long-term integration can be, therefore,
continued without nonlinear instability. The comparison between the simulation with
the fourth-order diffusion and 6th-8th order diffusion, that is same as used in present
method, is shown in Fig. 17. It is obvious that the fourth-order diffusion smear the
sharp roll up of the vortex sheet and suppresses the nonlinearity.

iv) Simulation in linear region

Simulation in the linear region can be done in the same condition as chapter 4.
Comparison between the computational results obtained by Kawamura’s method and
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Fig. 16. Temporal evolution of the vorticity contours
obtained by Kawamura’s method with step 0.04
from t=160 to 180 (continued).
(monochronic initial disturbance and cyclic bound-
ary condition are adopted)

Fig. 17. Vorticity contours with step 0.04.
(a) Conventional Kawamura’s method.
(b) Kawamura’s method with 6th-8th diffusion in
place of 4th diffusion.
(monochronic initial disturbance and cyclic bound-
ary condition are adopted)

results obtained by the linear theory of Michalke [29], seems to be quite good in the
sense of both growth rate and the contour pattern of vorticity. However, it must be
noted that the growth rate obtained by Kawamura’s one is larger by 5% than the
linear theory (see Fig. 8).
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v) Simulation in nonlinear regime in two grid system; fine one and coarse one

If the flow phenomena in the nonlinear regime, where strong roll up due to vortices
occurs, are simulated by Kawamura’s method using a fine grid system (about 22 points
par wave length), in the same way as mentioned in chapter 4, the strong vorticity
region that has no physical meaning takes place, thus resulting in violation of the
simulation (see Fig. 16). The reason for this is in that the Kawamura’s method does
not simulates two cascade processes, indicating that it may be inadequate to predict
the strong nonlinear phenomena accurately.

If a coarse grid system (about 8 points par wave length) is used to simulate the same
phenomena as mentioned above, there appears no such strong vortex roll up, because
the grid system can not resolve them (see Fig. 3). Therefore, the results obtained in
the early stage of the simulation seems to be very reasonable because of nonexistence
of the physically unreasonable vorticity. However, the present results indicate a trend
to lose gradually its regularity, and vortex sheet will be deformed finally, whereas the
simulation by the present method still preserves its regular vortex sheet (see Fig. 2).
This clearly indicates that Kawamura’s method does not have error isotropy, so that
the accumulation of non-isotropic error distorts vortex sheet.
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