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ABSTRACT: To study nonlinear behavior phenomena in a solid propellant rocket motor one should consider both
nonlinear acoustic field and nonlinear interaction between acoustic field and combustion process. The former topic
has been discussed in literature rather fully. The latter is not a new one but is not studied in detail. In the work
presented a new concept of the higher order burning rate response function to acoustic oscillation with several modes
is introduced. Analytical calculations are performed in the framework of Z-N theory. Short introduction in this the-
ory is given. The physical-chemical basis of a very high oscillatory quality of condensed system combustion are dis-
cussed. In connection with wide use of highly metallized propellants the linear response function of such propellants
is calculated. Two most important examples of the first harmonic self-interaction and the first and second modes
interaction are obtained analytically. A relative role of the linear and the higher order response functions is discussed.
It is shown that nonlinear effects in combustion must be included in solving solid rocket nonsteady behavior problem.

* Institute of Chemical Physics, Russian Academy of Sciences, 4, Kosygina St., Moscow, 117977, RUSSIA
** Institute of Space and Astronautical Science, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229, JAPAN
**x Nissan Motor Co., Ltd., 3-5-1, Momoi, Suginami-ku, Tokyo 167, JAPAN

This document is provided by JAXA.



Report No. 661

NOMENCLATURE

specific heat
activation energy
temperature gradient
imaginary unit
dimensionless parameter defining the dependence of the steady-state burning
rate on the initial temperature
mass burning rate
pressure
universal gas constant
dimensionless parameter defining the surface temperature dependence in the
steady-state regime on the initial temperature
temperature
time
linear burning rate
space coordinate
dimensionless pressure
dimensionless surface temperature
dimensionless temperature
thermal diffusivity
dimensionless damping decrement
dimensionless parameter defining the dependencies of surface temperature on
pressure in the steady-state regime
dimensionless parameter defining the dependence of steady-state burning rate
on pressure
dimensionless space coordinate
dimensionless time
dimensionless temperature gradient
dimensionless frequency
density
uperscripts
) complex conjugation
steady state
* boundary of stability
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1. INTRODUCTION

In solid-propellant motors such conditions during which pressure oscillations arise are frequently
realized. The problem of stability of steady-state burning in a combustion chamber was posed as
for back as the early 40’s. Since then it has attracted many workers in this field, and there exist sever-
al extensive reviews on this subject covering experimentally observed combustion instabilities and
theoretical analyses of the problem (see, for example, Refs. 1, 2). Theoretical calculations have been
performed largely with linear behavior, the main purpose being to provide results only for the initial
decay or growth of small perturbations. To find the amplitude of a self-excited oscillation and to
analyze the possibility of triggering an oscillation by finite size disturbances, one should go out of
the framework of the linear analysis. Some recent results for nonlinear acoustics in combustion
chambers are presented in Ref 3.

Most analytical nonlinear calculations performed relate the nonlinearity, as a rule, to gasdynamic
behavior since a propellant is assumed to be linear, although there are some papers*> considering
nonlinear combustion modeling in numerical analyses.

It is evident, nevertheless, that combustion instability is highly dependent on propellant charac-
teristics. To produce the nonlinear phenomena observed in experiments such as limiting amplitudes,
triggering, and a mean pressure shift, the nonlinear burning rate response has to be considered. A
propellant itself is a nonlinear oscillatory system with a definite natural frequency and damping
decrement.

The paper discusses nonlinear oscillatory phenomena in propellant combustion which have a dis-
tinctive features as compared to similar phenomena in systems with a finite number of freedom
degrees.

The lack of a consistent theory of steady-state propellant burning describing facts experimentally
observed makes it difficult to develop theories for nonsteady phenomena. However, a phenomeno-
logical theory of sufficiently slow nonsteady processes can be worked out, even without a detailed
pictures of steady-state processes. In many cases, we can disregard the relaxation time in the regions
of chemical reactions, as well as in the regions of combustion products, compared to the time of
thermal relaxation of the heated condensed layer. The quick-response regions in this approximation
are considered to be quasistationary. They react quickly to changes in external conditions and a tem-
perature gradient in the condensed substance at the interface.

Thus, to calculate a nonsteady process, it is necessary to consider rather slow variations of the tem-
perature profile in the propellant. The theory contains the only value of time scale that determines
the nonsteady processes in a propellant, i.e., thermal layer relaxation time Z.. The basic assumptions
of the #.-approximation are formulated in the second section of the paper.

From those assumptions, it follows that an instantaneous state of a quick-response region is the
function of an instantaneous value of temperature gradient in the condensed phase at the interface
and the instantaneous value of pressure (or some other external parameter). Therefore, we can ex-
press any quantity as functions of the instantaneous pressure and condensed-phase temperature gra-
dient at the interface. Such functions can be obtained from the steady-state burning characteristics
of a given propellant. Such an approach is known as Z-N (Zeldovich-Novozhilov) theory.®®
Western scientists prefer to use detailed models of burning (FM-method). Sufficiently exhaustive
reviews of the papers written up within the framework of the approaches mentioned can be found
in papers.!°~!¥

The third part of this paper deals with the conditions for steady-state combustion stability at cons-
tant pressure. The stability condition for a steady-state regime is obtained through linear approxima-
tion. It includes only two parameters, i.., the derivatives of steady-state burning rate and surface
temperature with respect to initial propellant temperature. The study of the perturbation asymptotic
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over a long period of time makes it possible to introduce an important property of the propellant
(ie., the natural frequency of burning-rate oscillations or other time-dependent parameters).

It is shown that burning solid propellant may be considered as an oscillatory system with a very
high quality. While applying oscillatory pressure to a burning solid propellant we obtain forced oscil-
lations that can be described by a complex response function. This question is discussed in the next
two sections of the paper. Section 4 gives a very well-known expression for the response function
of non-metallized propellant.

Because in the ISAS’ M-V program the newly developed highly aluminized BP-205J propellant is
to be used, we derive in Section 5 the expression for the response function of highly metallized
propellants. In spite of small value of internal radiant flux that response function differs from the
usual response function very strongly.

A new concept of solid propellant burning rate response function of the higher order is introduced
in Section 6. Two examples of those functions are considered in the next two sections. The first con-
cerns nonlinear interaction of the two first harmonics of pressure and burning rate. The second is
devoted to calculation of nonlinear self-interaction of the first mode.

In conclusion we underline the necessity of including nonlinear interaction between acoustic field
and combustion processes in the problem of nonlinear motion in solid-propellant rocket motor.

2. Z-N THEORY

Combustion always involves a number of chemical reactions; in most cases, the burning rate de-
pends on chemical kinetics. Therefore, practically every combustion theory essentially incorporates
the kinetic characteristics of the reactions. With few exceptions, combustion kinetics are not suffi-
ciently understood at present. Little is known, for example, about the kinetics of reactions involved
in the combustion of condensed substances, hence the necessity of introducing certain reaction
models into theoretical calculations that only slightly resemble the real chemical processes. It is com-
mon practice to adopt the Arrhenius dependence of the reaction rate on the temperature and the
power dependence of the reaction rate on the reactant concentrations.

It is obvious that such investigations are only qualitative and hardly suitable for comparison with
experimental data. For instance, the steady-state burning theory for condensed substances has been
developed exclusively for the simplest types of chemical reactions. Although this type of analysis can
supply a qualitative explanation of the dependence of the burning rate (say, on the pressure or the
initial temperature of the propellant), it is practically impossible to compare its results with ex-
perimental results simply because it is associated with a very idealized reaction model. Real phys-
icochemical processes are much more complicated than such theoretical ones. Moreover, it appears
impossible to develop a quantitative steady-state burning theory that would hold good for a broad
class of widely differing propellants.

At first glance, a nonsteady burning theory claiming quantitative agreement with experimental
results should be more complicated than a steady-state theory. This is true when we deal with a the-
ory incorporating real kinetics of chemical reactions. However, it is possible to deduce a rather good
approximation, a phenomenological nonsteady theory in which the kinetics of chemical reactions
and all of the complex physical processes involved in combustion would be automatically included
by the introduction of data obtained from steady-state experiments.

The fundamental concept of the Z-N theory was put forward by Zeldovich in 1942. Reference 6
shows that, if we ignore the gas-phase inertia (relaxation time) compared with the thermal-layer iner-
tia of a propellant, then the quasisteady assumption for the gas phase is applicable for processes
slower than the relaxation of a gas phase. Thus, the problem can be reduced to consideration of a
comparatively slow variation of the temperature profile in the propellant.

A great advantage of this theory is that it permits consideration of nonsteady burning without
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involving a steady-state theory. The theory includes only the dependence of mass burning rate m on
pressure p and the temperature gradient of the condensed phase at the interface f,s, ie., m=m(fcs,
p). This dependence can be introduced into the theory through a known relationship between initial
temperature 7,, pressure, and mass burning rate m®=m%T,, p) (the zero superscript corresponds to
the stationary value). It should be noted that, in Ref. 6, a rather oversimplified model of burning
was used. It was assumed that the interface temperature 7 was independent of the external condi-
tions (pressure and initial temperature). When analyzing nonsteady processes, if we assume the sur-
face temperature 75 to be constant, this would lead to a discrepancy between theoretical and
experimental results; there seems to be no real system by which this condition can be fulfilled.

The author of Refs 7—9 succeeded in generalizing the preceding Zeldovich approach for more
realistic situations and formulated the nonsteady burning theory with allowance for surface-
temperature variations. Under unsteady operations, the surface temperature as well as the burning
rate is determined by the instantaneous values of pressure and temperature gradient at the surface
of the propellant side, i.e., m(f.s, p) and T(fes, p). It will be shown later that these nonsteady depen-
dencies can be deduced from steady-state relationships m®(T, p) and T(7,, D), obtained experimen-
tally or theoretically from consideration of any particular combustion model.

The basic assumptions of the Z-N theory are explained below.

1) Numerous experimental data indicate that, during propellant burning, the interface remains
plane (for a sufficiently large sample diameter). In the text that follows, a space coordinate system
is used to move the unreacted propellant in the positive direction of the x axis with a velocity that
coincides with the linear regression velocity u(¢). The interface surface therefore remains fixed at any
combustion regime.

During combustion, chemical processes accompanied by heat transfer, reactant diffusion, and gas
motion take place in the condensed phase and gas region near the interface. Accordingly, the entire
space can be divided into three regions (Fig. 2.1a).

C region (—o <x<xc): The region in which condensed-phase heating occurs. There is no chemical
transformation whatsoever.

S region (xc<x<xg): Here, the condensed phase is transformed into intermediate gaseous
products. The coordinate x; corresponds to the interface.

G region (x; <x< ): Here, as a result of gas-phase reactions, the intermediate products are trans-
formed into the end products of burning. This transformation is accompanied by heat transfer, mass
diffusion, and gas motion.

Thus, a one-dimensional problem is considered (all values depend on only one spatial variable,
x). We should assume that the propellant is homogeneous and isotropic and that the boundaries be-
tween the zones are planes. These requirements are necessarily fulfilled for homogeneous composi-
tions. For the heterogeneous propellant, such an approach is valid when the size of oxidizer and fuel
particles is much less than the characteristic size of the thermal layer following the steady-state the-
ory, ie., the propellant thermal layer x/u°, where x is the propellant thermal diffusivity.

2) In Z-N theory, the relaxation times of S and G regions (respectively, ¢; and tg) are taken to be
zero. In other words, these regions are considered to respond quickly to changing external conditions.
Experimental investigations of the burning zones in propellants'*'> indicate a good fulfillment of
the inequalities /;<¢ and #;<f.. This result can also be obtained from simple estimates of the
processes occurring in these zones. The first inequality results from the fact that the chemical trans-
formation zone of the condensed phase is narrow. The second one is connected with a small ratio
of gas and propellant densities (for details, see Ref. 12).

3) In order to derive basic relationships of nonsteady burning in the Z-N theory, it is necessary
to consider the S region as infinitely thin. If it is assumed that both x. and X tend to zero (Fig. 2.1b),
instead of as S region, we obtain an interface S plane (x=0), the temperatures T(x.) and T(x;) being
coincident. Henceforth, the temperature of the S plane will be called the “surface temperature)” and
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a)
;//////

Fig. 2.1 Combustion wave structure of a homogeneous propellant.
a) C region (—o<x<x), S region (x.<x<Xxg), and G region (x;<x< ).
b) In the f~-approximation, the S region is replaced by the S plane (x.=x;=0). Here T(x.)=T(xg)=Ts.

will be denoted as Ts. The approximation of an infinitely thin S region does not permit us to consider
in detail physicochemical processes occurring in this region. As a result, it is necessary to provide
the S plane with some definite properties. The properties of the S surface are specified when the the-
ory is supplemented with the steady-state burning characteristics.

4) In Z-N theory, we can consider only rather slow changes of an external parameter (pressure).
If the characteristic time of the changing pressure is #,, the inequalities #,> #; and ,> ¢, should be
fulfilled. In other words, S and G regions should adjust themselves without delay to a changing exter-
nal parameter.

5) In order to build Z-N theory, it is necessary to know the steady-state dependencies of combus-
tion rate and surface temperature on initial temperature and pressure m°(T,, p) and TUT,, p). In
some case, further information about the steady-state regime is also needed; for example, the depen-
dence of the temperature of combustion products on the same parameters T5(7,, p).

6) The preceding major assumptions are essential for the given approximation. In order to simplify
the analysis, minor assumptions are introduced. For example, the model does not consider thermal
losses, energy transfer by radiation, or the influence of external forces. Moreover, it is assumed that
the density of the condensed phase, its specific heat, and the coefficient of thermal conductivity are
temperature-independent.

Under steady-state conditions, the propellant burning rate, surface temperature, and any other
properties depend on initial temperature and pressure. Thus, the variables T, and p are suitable for
studying steady-state burning, and we can deliberately change them to examine the dependence by
systematic variation. The dependence of steady-state burning properties on these parameters, e.g.,
m®T,, p) and TXT,, p), will be considered subsequently as the steady-state laws of burning. In
general, it is difficult to use the steady-state relationships directly in the theory of nonsteady burning.

In fact, the instantaneous state of S and G regions by no means depends on the temperature profile
of the propellant far from these regions. At any given moment, the state of these zones can be deter-
mined only by the neighboring region of the condensed phase. Such a distortion of a temperature
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Solid Propellant Burning Rate Response Functions of Higher Orders 7

profile, as plotted in Fig. 2.1a, has little effect on the burning rate at a given moment. Therefore,
to consider the nonsteady processes, we should introduce, instead of 7, some other parameter of
the condensed phase that would directly affect the processes in S and G regions.

Common variables used in studying steady-state burning are pressure and initial temperature. The
initial temperature in Z-N theory is by no means characteristic of the quasistationary state of a quick-
response zone in the nonsteady process. From that value of temperature, we should pass to another
value that directly affects the state of these zones. Such a transition was realized by Zeldovich® at
constant surface temperatures. That value was demonstrated to be a temperature gradient at the sur-
face on the condensed-phase side.

Surface temperature being variable, the nontrivial moment of this procedure is that this value be-
longs to the inertial condensed phase on the one hand and to the region considered to be without
inertia on the other hand. However it has been found” that not only the burning rate but also the
surface temperature are determined by instant values of the pressure and temperature gradient at the
surface on the condensed-phase side. Thus, a new concept of non-steady burning laws is introduced.
Those connect the burning rate and surface temperature from one side and the pressure and tempera-
ture gradient f at the interface from the other side.

These nonsteady laws of burning u(f, p) and Ti(f, p) can be obtained from the steady-state com-
bustion laws «°(T,, p) and TXT,, p) by eliminating the initial temperature with the aid of the steady
state relation

SO=u%T?-To)/x Q.1
which follows from the Michelson temperature distribution in the steady-state regime
T°()=T.+ (T2~ To)exp(u°x/x) (2.2)

The proof of this statement has been done in Ref. 13.

Two aspects must be considered in the theory of nonsteady burning. The first is associated with
determining the burning rate with given external conditions (pressure or tangential flow velocity).
Let us call this an “internal” problem of the nonsteady burning theory. Solution of problems in non-
steady burning with given external conditions opens a way to study combustion with a variable burn-
ing rate in combustion chambers. In investigating the second class of problems, the pressure-time
relationship should be replaced by equations relating the pressure and temperature in the combustion
chamber to the nonsteady burning rate and the temperature of the gases formed. As a result, we must
find both the burning rate and pressure, besides the temperature inside the combustion chamber.
This problem (let us call it “external”) can be solved only if the internal problem has been investigat-
ed. Solution of the internal problem, which is basic for all kinds of applied problems, should be con-
sidered the main problem in the nonsteady combustion theory. Therefore, we will restrict the
following to consideration of the internal problem only.

The problem of finding the nonsteady burning rate in Z-N theory is reduced to accounting for
the thermal inertia of the propellant by solving the heat-conduction equation:

0T __3*T aT

S22 _,0! 2.

o el ox @3)
with boundary conditions:

x> —oo, T=Ty,; x=0, T=T; (2.4)
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at the given initial state and pressure in time:
t=0, T(x, 0)=Ti(x);  p=p(). (2.5)

The laws of nonsteady combustion are known, i.e., the relationships between the mass burning rate,
surface temperature, temperature gradient, and pressure:

m=m(f, p), T; =Ts(f, p) (2.6)

where

_ (3T
r= (ax>x=o. Q.7

Dimensionless variables are used in successive developments. In any problem, it is possible to de-
termine a basic steady-state regime. Let #° be the linear rate of the steady-state combustion at pres-
sure p°, and introduce a dimensionless space coordinate, time, pressure, and burning rate with the
help of the following definitions:

t=1%/x, r=@%t/x, n=p/p’ v=u/u’. (2.8)

The dimensionless space coordinate and time are expressed in terms of characteristic length and
characteristic time of the propellant.

The temperature in the condensed phase, the gradient, and the temperature at the surface can be
conveniently expressed in the form of

0=T/A, 0,=Ts/A, o=f/f°% A=T{-T.. (2.9)
The internal problem, in terms of these variables, is formulated in the following manner. Find the

burning rate v(s) from the heat-conduction equation, which takes into account the thermal inertia
of the propellant:

g—i= g—zg - v%% (2.10)
with initial and boundary conditions
0(&, 0)=0:(%), 6(—o0, 7)=104, 6(0, )=20; (2.11)
where 0,=T,/(T - Ta).
The following relationships are also given:
v=u(p, ),  0s=0s(e, M) (2.12)

where

e
&/ ¢=0
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and the pressure dependence on time 7(7).
At the steady-state regime, for n=1, we have

v=1, o=1, 6=0,+¢t, 3=0%=1+9,. (2.13)
3. BURNING SOLID PROPELLANT AS AN OSCILLATORY SYSTEM

A heat-conduction equation (2.10), with boundary conditions (2.11), at constant pressure leads to
the steady-state regime (2.13). Such a solution has to be valid for any external steady-state conditions,
for the given values of pressure and initial temperature. However, not every steady-state regime can
be realized in practice. The solution should not only satisfy the equation and the boundary condi-
tions but should also be stable relative to small random perturbations. The stability of the regime
means that, once small perturbations appear, they should attenuate in time. Conversely, the regime
is unstable if the perturbations increase in time. Thus, the problem of the combustion stability is
connected to investigation of small perturbations in time. Of course, this problem can be solved only
in terms of the theory of nonsteady phenomena.

Because of the mathematical difficulties of studying the nonlinear equations, stability is often in-
vestigated in the case of small-amplitude perturbations. This makes it possible to linearize the initial
problem and to obtain an analytical expression for the stability boundary. Note that linear approxi-
mation is also effective in solving other interesting and important problems of the nonsteady burning
theory (e.g., combustion at oscillatory varying pressure that will be considered in the next section).

When considering problems of the nonsteady combustion theory, in the linear approximation one
needs only the four dimensionless parameters

=(55), ()
T, /,, 0T/, G.1)
_ <6lnu°> 1 (ar?)
v= n=—
olnp /1, , A\dInp /71,.
These derivatives fully characterize the behavior of propellant at small deviations from the steady-
state regime.

The stability of a steady-state regime in the linear approximation is usually investigated by super-
posing small perturbations to the steady-state solution and subsequently analyzing their behavior in
time. The right way to investigate stability of a system is to see how an initial disturbance depends
on time. If at 1~ o it disappears, the regime is stable and vice versa. This may leads even in a linear
approximation to very complex expressions and it was applied in a few articles (for example, see Refs.
16, 17). A much simpler way is to presume the asymptotic behavior of a disturbance by a special
form exp(Q7), where Q is the dimensionless complex frequency. If these perturbations increase in time
for, at least, one value @ (ReQ>0), the combustion process would be unstable. The stability bound-
ary is determined by the condition ReQ=0.

The stability conditions for the steady-state regime of propellant combustion at constant pressure
are formulated in the following way:”

at k<1, the regime is always stable
at k>1, the regime is stable only if
2
r> (k-1) 3.2)
k+1
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Fig. 3.1 Boundary of steady-state combustion stability at constatnt pressure.
) r=(k*=1? 2) r=1-k, 3) r=(k—1)*/(k+1).

and are illustrated in Fig. 3.1, where three curves are shown. The first curve (r= (Vk —1)?) corresponds
to the bounding curve whether the disturbance varies oscillatory or monotonously. The second one
(r=1—k) corresponds to the boundary of possibility of considering the perturbations of the present
special form. The third one (r=(k— 1)2/(k +1)) is the stability boundary, but the inequality r>1—-k
means that we can consider only the right branch of the function r=(k— 1)%/(k +1) as the stability
boundary. Below the line r=1—k we are not able to consider the perturbations with exp(§27) depen-
dence on time.
From the characteristic equations for the frequency, we obtain a value of frequency at the stability
boundary. Denote w=Im{2; then,
w*=(k+Dk"?/(k—1)*. (3.3)

The real part of @ is zero. Outside the stability boundary, the frequency has both imaginary and real
parts Q= —\,tiws, Where

A= [r(k+1)— (k—1)?1/2r3, wn=(k/r?=\p"2. (3.4)

By analogy with the oscillations of a system with one degree of freedom, we call A\, a damping
decrement. In the region of stability, \»>0; i.e., the oscillations are damped, and conversely, A»<0
in the region of instability. The value wy is called a natural frequency of oscillation.

In the unstable region, \, <0 and, with decreasing r apart from the stability boundary, the imagi-
nary part of frequency decreases. At r=(k'?— 1)?, curve 1 in Fig. 3.1, it becomes zero. If r is less
than this value, the perturbations increase exponentially in time without oscillations. The asymptotic
change in time in different parts of plane (k, r) is shown in Fig. 3.1

A very important question is in what region of the (k, r) plane real systems are. From experimental
data given in Refs. 14, 15, 18, and 19, one can find

k=13-2.0 r=0.15-0.3.
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Fig. 3.2 The parameters k and r of real systems lie in the hatched region.
From the other side the burning rate u usually depends on the surface temperature very strongly
u~exp(—E/RT;).
From this relation we find

0y2
r= RS,
EA

For combustion processes, the value of RT'Y/E usually is very small, RT?/E<1. In Fig. 3.2 region
1 represents the place where any real system is. We see that this region is close to the stability bound-
ary. In this region

)\n<wn
and the propellant may be considered as an oscillatory system with a very high quality.
4. BURNING RATE RESPONSE FUNCTION TO OSCILLATORY PRESSURE

In the framework of the Z-N approach, the solid-propellant burning rate response function has
been found in Ref. 20. Before that several investigations (see, for example, Refs. 16, 21, 22) were per-
formed in the framework of F-M method. Those studies were reviewed in Ref. 23.

If the pressure changes in harmonic way

p=p°+p,coswr

the burning rate in linear approximation will be

u=u"+u,cos(wr+ ).

This document is provided by JAXA.



12 Report No. 661

Using the complex amplitude method we have

n=1+ne+1,é, v=1+v e +v € 4.1)
where
N
1 2p0
Uy iy
v, =—te 4.2)
bl ¢
elzele

and 7,, U,, and & are the complex conjugations of 5,, v,, and e,.
From the solution of the heat-conduction equation (2.10) we have two relations between the ampli-
tudes of &,, v;, and ¢,.
v

i
9,=C+, g =Cz,+2. 4.3)
w w

The additional two relations follow from the nonsteady burning laws

k o—v r 6+
"phtTp ™ YT b

D=k+r-1, b6=vr—pk.

g (4.4)

The set of Egs. (4.3) — (4.4) contains four unknown values: v, #,, ¢,, and C,, and four equations.
So we can find any of these four unknown values. The most interesting is of course the burning rate
amplitude®®

)= v+(vr—pk)(z,—1) .
L4z - —k(z—1)/z,

At this point the definition of the burning rate response function to oscillatory pressure is in-
troduced

v=21, (4.6)
LR

Therefore, in the framework of Z—N linear theory we have

_ v+(vr—pk)(z,—1) @7
1+r(z,~ ) —k(z,—D/z, '

Fig. 4.1 illustrates the real and imaginary parts of this function. The parameters k, 7, v, and p are
taken as in Ref. 3.

One can see that the real part of U may reach values much greater than its steady-state value
ReU(0)=v. It is a consequence of the high quality of our oscillatory system. The maximum of ReU
is at a frequency close to the natural frequency wn,~ Vk/r. In this frequency region the denominator
of Eq. (4.7) is much less than unity. So any small perturbation of the system can strongly influence
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ReU,ImU

2F

Fig. 4.1 Solid propellant burning rate response function.
v=0.3, k=1.82, r=0.303, vr—pk =0.

the response function.
As an example of such a change we consider in the next section the burning rate response function
of highly metallized propellants.

5. RESPONSE FUNCTION OF HIGHLY METALLIZED SOLID PROPELLANTS

Metallized solid propellants are widely used in rocket motors2*2% because of their high density
and high heat of reaction. A peculiar feature of metallized propellant is the intensive internal radiant
flux. The densities of radiant fluxes directed toward the combustion surface are given in Ref. 14.
Though the values of radiant flux are small in comparison to the conductive heat flux, it may be
seen that its presence significantly changes the burning rate response function.

The aim of this section is to obtain the burning rate response function of highly metallized solid
propellant. Note that there are a large number of papers (see, for example, Refs. 11, 26 — 29) devoted
to solid propellant combustion under external radiation flux.

To obtain the response function by use of Z-N theory, we should consider the heat conduction
equation in the condensed phase with the radiant flux source as well as the thermal inertia,

2
oT xﬂ—uﬂ+ 1(r) o*/L
a T ax cCeL

(5.1)

where T is the temperature, u the burning rate, x the thermal diffusivity, oc the mass density, C, the
specific heat, /() the internal radiant flux that may change in time at oscillatory pressure, and L the
absorption length of the condensed phase. The space coordinate system is taken so that it moves the
unreacted propellant in the positive direction of the x axis with a velocity that coincides with the
linear regression velocity, that is, u(?). The interface surface therefore remains fixed at any combus-
tion regime.

Boundary conditions are

X— —co, T=T, ; x=0, T=T; (5.2)
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where T, and T are the initial and the surface temperatures, respectively, at the given initial state
and the pressure

t=0, T(x, 0)=Ti(x) ;  p=p(). (5.3)

The laws of nonsteady combustion are known, i.e., the relationships between the mass burning rate,
surface temperature, temperature gradient, and pressure:

m=m(f, p), T; =T(f, p) 5.4

_(oT
f_ <ax>x:0-

We assume the law of nonsteady internal radiant flux is known in the form of I=I(f, p).

Dimensionless variables are used in successive developments. In any problem, it is possible to de-
termine a basic steady-state regime. Let 4° be the linear rate of the steady-state combustion at pres-
sure p°, and introduce a dimensionless space coordinate, time, pressure, and burning rate with the
help of the following definitions:

where

t=10x/x, 1=@%/x, n=p/p°  v=u/u’. (5.5
The dimensionless space coordinate and time are expressed in terms of characteristic length and
characteristic time of the propellant.
The temperature in the condensed phase, the gradient, and the temperature at the surface can be
conveniently expressed in the form of
9=T/A, 0,=T./A, o=f/f°% A=T{-T,. (5.6)
The internal radiant flux and the absorption length are expressed in the following form,
S@O=It)/(0.Ccu®s),  I=Lu’/x. 5.7

Using the above nondimensionalization, Eq. (5.1) is written in the following non-dimensional form,

2
9_0%_ 00, S0
ar 0¢ at (5.8)

§= —o0, =104; £=0, =19
where
.=Ta/A,  9=09=1+0,.
The following relationships are also given:
v=u(g, M),  Os=0(e, M),  S=S(p, M) (5.9

where
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e
9t/ =0

and the pressure dependence on time 7(7).
The steady-state solution of Eq. (5.8) has the form

8(8)=0.+(1 —a)ef+ae*’,  a=S%/(-1) (5.10)

where S° is the nondimensional radiant heat flux at the steady-state combustion. Note that the tem-
perature gradient at the surface decreases in comparison with the non-radiant case.

FO=ulA/x—1%(0.Cex),  °=1-S°. (5.11)

Using the method of complex amplitude, let us represent any value in the form X=X°+ X, ",
where | X°|>|X,e™"| for all 7. That is,

§=6°+6,e"
v=1"+v, e (5.12)
5=8°+S,e"".

Substituting these into Eq. (5.8), we have the following linear equation.

0~ 0, —iwd, = v,(1 ~@)et + 1 (v,a—S,)e". (5.13)
with its solution
b,=Crent+ 10D e, @@=SH___ en (5.14)
w (1—Iz)[1 +1(z, - )]

A root of the characteristic equation z, is connected with the frequency by the following correlations:
2z, =1+(1+4iw)"?,  iw=z,(z,-1). (5.15)

We should neglect the second solution of the homogeneous equation, which corresponds to another
value of the root, because it increases infinity at {¢— —co.

The first order corrections to the steady-state condition for the surface temperature and tempera-
ture gradient from Eq. (5.14) are

iv (1 —a)+ (v,a—S))
(A=Iz)[1+U(z,—1)]

_ (9%, _ iv,(1-a) (v,a-§))
“ (35>£=o Cat—g +(l—lzl)[l+l(z1—l)]'

8,=0,]e=0=C, +
(5.16)

With no radiation (=0, S, =0) Egs. (5.16) coincide with those for the non-radiant case.
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IMO=C +
(5.17)

PP C 2, +

Now we must obtain three additional relations for v, #,, S,, ¢,, and 5, from the nonsteady com-

bustion laws v(e, 1), #(e, 1), and S(e, 1). Using the chain rule, the perturbation terms may be written
as

vy = U, F Uy,
3, =00, + (5.18)
S, =S,0,+85m,.

The derivatives v,, vy, 94, 3, S,, and S, can be represented in the following form (see Appendix A).

k 65— v+S°ock —s»)
TD-ss° " D-ss®
D=k+r—1
r —6—p+S8%or—sp)
= , 3, = 5.19
* D—sS° ! D—sS° (.19)
o=wvr—upk
__ss° 5 _SleD—s(r+p)]
* D—sS°’ ! D—sS°

where

0 0 0
k=A<alnu> ’ r=<aT‘> ’ S=A<aln1 >
T, » 0T, » o7, »
<6lnu°> 1 < ar?) (amﬂ’)
V= s n=— , ag= .
dlnp /1, A\dInp /7, dlnp /1,

Again with no radiation (§°=0, 0=0, s=0), equations (5.18, 5.19) coincides with those for the non-
radiant case.

The set of equations (5.16, 5.18) contains five unknown values; v,, ¢, ¢,, C,, and S, and five

equations. So we can find any of these five unknown values. The most interesting is, of course, the
burning rate amplitude

v+8(z, —1)— S%0k —sv)F(l, w)
U =
V4 rG, — 1) —k(z,— 1)/z, + SFU, o)s—k/z)

(5.20)
where
F{, )=z, -D/[1 +I(z, - 1)].

At this point the definition of the burning rate response function to oscillatory pressure with radiant
flux is introduced
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U=-L, (5.21)

Therefore, in the framework of Z-N linear theory, we have

U= 1/+6(z1—1)—SO(0k-SV)F(I, w)
T 14r@, =)~ k(z,— 1)/z, + S°F(, w)s—k/z,)’

(5.22)

In the case of combustion of propellants with low transparency (/—0, F—0), the response function
is the same as without radiation (Eq. (4.7)).
For a highly transparent propellants (/— o0, F—1) we have

U< v+06(Z,— 1)~ S°ok —sv)
T 14z =)~ k(z,~1)/z,+ 8% —k/z)

(5.23)

The experimental data give the maximum value of S° at about ten percent.'® In regard to values
o and s, there are no experimental results for those. We may only suppose that they are too small
to affect response function. They are connected with changing of internal heat flux when the pressure
and initial temperature vary. Because the internal heat flux is linked to burning particle radiation,
it is too much to expect that p and T, can greatly change the particle temperature. For this reason
in our calculation we put =0, s=0.

In Figs. 5.1 and 5.2 the dependencies of the real and imaginary parts of the burning rate response
function on frequency are illustrated for various S° at /= . The parameters X, r, v, and p are taken
as in Ref. 3. One can see that consideration of the internal radiant heat flux gives only a slight shift
of the resonant frequency but greatly changes the response function. For the set of the parameters
considered, the peak value becomes more than twice as large as that of the non-radiant case. In Figs.
5.3 and 5.4, ReU, and ImU;, are illustrated for various / at S°=0.1. The dependencies of ReU, on the
absorption length / at several frequencies are depicted in Fig. 5.5, where we can see two types of tran-
sition from the left half to the right. One is monotone decrease which occurs at higher frequencies,
and the other is non-monotone increase which occurs at lower frequencies. Near the resonant fre-
quency (w=4) overshoot is observed at around /=1. Figure 5.6 illustrates the contours of constant
log,, ReU, in w -1 plane. The resonant frequency slightly decreases as / increases. These figures show
that the major change of the response function occurs in the region between /=10"! and 10.
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- | — $°=0.000

Re U,

o 10

Fig. 5.1 Real part of burning-rate response function with radiant heat flux.
r=0.3, k=1.82, r=0.303, 6=0, /> 0.

i — $%=0.000
I A T s $°=0.025
o o [ ——-8%=0.050
= [ —-= §%=0.075
= i i — §%=0.100
f'/r
=
=+
—4+

Fig. 5.2 Imaginary part of burning-rate response function with radiant heat flux.
v=0.3, k=182, r=0.303, 6=0, /> oo.
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Re U,

Fig. 5.3 Real part of burning-rate response function with radiant heat flux.
v=0.3, k=1.82, r=0.303, 6=0, $°=0.10.

Im U,

Fig. 5.4 Imaginary part of burning-rate response function with radiant heat flux.
»=0.3, k=1.82, r=0.303, =0, $°=0.10.
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6. RESPONSE FUNCTION OF THE HIGHER ORDERS

Suppose that the acoustic field contains several (or all) harmonics so the pressure can be represent-
ed as

P=p"+P,c0sw, T+ p,cos(w,7+ V) + D408 (W, 7+ ¥3) + ... (6.1

where w, =kw,.
The burning rate in this case should be written as

u=u’+ U,€08 (w0, 7+ Yu,) + U,c08 (0,7 + Yu,) + U3COS(wyT + Yuy) + ... . (6.2)

We introduce here the definition of response function of the higher orders. Nonlinearity of com-
bustion process can give the oscillation of the burning rate with frequency, for example, w, by inter-
action of two (or several) other modes. The simplest examples are:

1) self-interaction of the first harmonic may give the second harmonic, because the product
COsw, 7 X cosw, 7 contains the oscillation with 2w, frequency,

2) interaction of the first and second modes give the second order correction to the linear response
function for the first or third modes because the product cosw, 7 x cos2w, 7 contains the oscillations
with w; and 3w, frequencies.

Such nonlinear interaction may produce a large effect if one of interacting harmonics are close
to the natural frequency w,.

Fig. 6.1 illustrates the two examples above pointed. In the case of Fig. 6.1a the first mode is near
the natural frequency so it may produce a large effect to w, response function. In the case of Fig.
6.1b the second mode is close to w, , SO its interaction with the first mode can give not a small correc-
tion to the w, linear response function.

Let us introduce nondimensional complex amplitude of the pressure and the burning rate

Py i Uy i
T)kzgj{oe‘llk, Uk:-zﬁe‘&uk. (63)

The Eqgs. (6.1)—(6.2) have the following forms

©
n=1+ anek+c.c
k=1 (6.4)

o]
v=1+ kaek+c.c
k=1

where e, =exp(iw,7) and c.c. denotes the complex conjugation.
To distinguish the linear and nonlinear response function we shall supply the former to one sub-
script and the latters to several subscripts.
So the linear response function for the first mode is
U=v,/n,, U,=U(w,))

where U(w,) is given by Eq. (4.7). The linear response function of the second mode is
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a) cosw(T coswWT = cos2wiT

Re U

e

2_
7
- g e
e

0 T T | — W
i 4 8
Wy W3
b) COSW] T COS2W T =p» COSW T
)
O —
&
2 —

Fig. 6.1 Second order interactions of the pressure harmonics.
a) First harmonic self-interaction. The first harmonic is close to the natural frequency.
b) Interaction of the first and second harmonics. The second harmonic is close to the natural frequency.
v=0.3, k=1.82, r=0.303, vr—pk=0.

U,=v,/n,
so that U,=U(Q2w,) and

_ v+6(z,—1)
2 14r(z,-D—k@z,—D/z,

6.5)
where z,=2,(2w) or

z2=%[1+,[‘—1+sm]. (6.6)

In common case the linear response function for k-th mode is
Ue=v, /1 U,=U(kw)

or
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a)

Re U2 Re U1

-2 -

Fig. 6.2 Response functions U (v) and Uy(w).
a) real parts, b) imaginary parts. »=0.3, k=1.82, r=0.303, vr—uk=0.

_ 11+5(Zk—"1)
K l+r(z - 1) - k(z,~1)/z,

6.7)

where z, =z, (kw).

Fig. 6.2 illustrates the linear response function of the first and second modes. To go from U, (w)
to U,(w) we should only remember U,(w)=U,Quw).

Now we pass to nonlinear interaction of different modes. Note that some nonlinear effects of solid
propellant combustion near the steady-state stability boundary were considered before in Refs. 12,
30, 31.

Let us consider the second order nonlinear correction to the first harmonic response function. The
oscillation of the frequency of w, may be obtained by interaction of two neighboring harmonics w,
and w,, ,, because the product of cosw,r and cosw,, 7 has two components cos(w,, ; —w,)7 and
€os(w; ., +w,)7. In our complex notations it means

—lwgT

e TR T Kl
So the first harmonic of the burning rate will have the following form

v =Upn, + U—1,2’71’72 + U-z,s Nn3+...
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or
o0
v =Upm+ ZU—k,k-H MMk (6.8)
k=1
We may say that the second order interaction to give the nonlinear addition to burning rate

W) e ks1= U_k, ket Miks 1

due to the interaction of k and k+1 modes is proportional to the product of #,7,,,. Thus, the
proportionality coefficient

(vy)

_ -k, k+1
U—k,k+1“ —
MMk +1

as the response function of the second order. Note that the sum of its subscripts is equal to the num-
ber of the harmonics in question.

Another example. The second harmonic of the burning rate may be obtained by self-interaction
of the first harmonic or harmonics with frequencies w, and w, , because

iwyT, fwyT_

e =yle

iwyT

n.€

and

IwpT,

5 oo~ vk fog427_ =
M€ Ngs2€ = MMi+2€

iwz‘r.
The burning rate complex amplitude of the second mode, therefore, has the following form

o0
2 _
v, =Um,+ U, | ni+ ZU—k,k+2 MMk+2. (6.9)
k=1

The functions U, , and U_, ,,, are the second order response functions for the second harmonic.

It is easy to understand that we can consider the interaction of higher than the second order. For
example the self-interaction of the first mode in the third order gives the correction to the response
function of the first harmonic

v =Um+U_, mln | (6.10)
because
nleiwlrﬁle—iwlrnleiwl-r:nl‘n]|2eiw1‘r.
The value
U_1,1,1=(~11L)L§’1 (6.11)
0

can be named as the third order solid propellant burning rate response function for the first mode.
In the two following sections we show how to calculate the response function of the second order.
As examples we take the most important cases of U_, , and U, , functions.
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7. THE SECOND ORDER INTERACTION OF THE FIRST AND SECOND HARMONICS

As it has been shown in the previous section, the interaction of the first two harmonics with fre-
quencies w,; and 2w, may give the oscillations with frequency w,. In this section the second order
response function

(Ul)-1,2 (7 1)
"—717’2 '

U_jyw)=

will be obtained.
The pressure p(w) and burning rate u(w)

p=p"+p,coswr + p,cos(2wr + ¥,)
u=1+ u,cos(w7+ Yu,) + U,c08 Rt + Yiu,)

are represented in the form

n=1+ne+ n,é,+n,e,+ 1,86,

e B (7.2)
v=1+ve + 70,8 +v,e,+ 1,8,
where
P, Py iy, Uy i U iy
=— =—=-¢ , vV, =——¢ ul, VU, = —=-"Yuy
L 27° Lp) 27° 175,0 2750
el =eim'r’ ez =62iw1
and the 5,, v,, and &, are the complex conjugations of N, VU,, and e,.
To solve the heat-conduction equation in the condensed phase
2
% .39 _,%8 (7.3)
ar 0¢ a¢

the space-time temperature distribution should also be represented as a set of different modes
05, N=6%&)+6,(He, + 6,(D)e, +0,(8)e, + 6,(He, (7.4)
where
0%(8)=0,+ef

is the steady-state solution.
The derivatives 36/3d7 and 8%6/3%* are

%: iwf e, +2iwb,e, +c.c.

0

=0°+0"e +0.e, +cc.
aEZ i+1 2%2
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where c.c. are corresponding complex conjugate values.
The second term in the right-hand side of Eq. (7.3) is nonlinear. In the product

- véq =—(l+ve +tv,e,+ cc)(0°+ B;el + 02'e2 +cc)

i3

we should keep only the terms that oscillate with frequency of w. After multiplying two series in the
previous expression and using the expression for 36/97 and 9%0/90%* we have the following equation
for the first mode

”

00, —iw, = v,0°+ 5,6, +v,0, (1.5)

which contains the nonlinear terms o6, + v,8,.
In the linear approximation there are two equations for the first and second harmonics

"

0, —0,—iwh, = v, e* (7.6)

0, -0, — 2iwb, = v,e*. 1.7

The solutions of Eqgs. (7.6) and (7.7) are

8, =C et + Ly et (7.8)
w

6, =C,e2t + i v, et (7.9)

with

z1=—;-[1+m1, z2=%[1+,/1+8iw]. (7.10)

Using Eqs. (7.8) and (7.9) we can write Eq. (7.5) in the form:

”n

0,—6,—iwh, = <v1 —ia%)ef +5,C,z,e%25 + C,v,Z,e 15 (7.11)

It is easy to solve this equation to obtain

i i i i = . oz
6, =D,e“¥+ L (v, —=—0,v,)et —=7,C,2,6 + —C,v,z,e 7. (7.12)
w 2w w 2w

From this expression we can find the surface temperature ¢, and gradient of the temperature at

the interface ¢, corrections to the steady-state conditions 9°=0, and o=1:

iv 1 _ i_ i =
01=D1+-—1+a, a'=——2vlvz-——v1C222+———Clv2zl (7.13)
w 1) w 2w
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i 1 i i =
0=Dyz,+=14b,  b=——0,0,—~5,C,zt + —C,v, 7. (7.14)
w 2w w 2w

The additional two relationships for vy, 9;, and ¢, are known from the nonsteady burning laws
v(e, 1) and ¥(p, ) written to the second order perturbations.
From Appendix B (See Egs. (B.3) ) we have

V= ve@ tugm +N_ |,

N-1,2= Voo P15+ vwn(¢1n2 + 'ﬁlﬂaz)"‘ Upy 771772
19] = l9¢¢p1 + 197,111 "I-M_l’2

M—l,z = l"P‘P Pyt 0¢ﬂ(‘p1772 + "71‘»92) + 07171 MmN,

(7.15)

(7.16)

From Egs. (7.13) - (7.16) one can obtain the burning rate amplitude v, as a function of frequency
and, therefore, the response function U _1,2().
Substitution of Eq. (7.13) into Eq. (7.14) gives

o= (9, 2-a)+ s,
w [6)
Take ¢, from Eq. (7.16) and put it in this expression. That gives

v
o (1 —dpz)=dyzn, + z—‘+ yM_ ,—a)+b.
1

Multiplying Eq. (7.15) by (1 —9,z,) and using the previous relationship we have

1%
vl(l - 0¢Z1 _Z_‘o) =(v‘p01,zl + U-q - O‘OU”ZI)TII +
1

(7.17)
+ uw[zl(M_l,2 —a)+bl+(1-9,2)N_ 1.2

For any propellant model v, v,, ¥,, and &, may be expressed through parameters &, u, v, and
r given by equations

k r
=——, 0 = ——
“=D "D
o—vp O+u
= , g, =-2TF
“"="D "D
where D=k +r—1.
Now one can write Eq. (7.17) in the form:
v+6(z,—1) g_12

- + 7, 7.18
TG D=k D7z, " TG~ D)~ kG, 1)z, T2 (7.18)

The first item of Eq. (7.18) represents the well-known linear response of the burning rate to oscilla-
tory pressure and the second term gives us the second order response function
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8_12
U= . (7.19)
b2 1 4r(z, - D) —k(z, - 1)/z,

where g _, , has the following expression

&_12=8t8&
g, =k(z,a—b)/ 1, (7.20)
g=DIz,(d,N_, ,— ”wM—l,z)—N—Lz]/ﬁl’?z'

Here g, is connected with nonlinearity of the heat-conduction equation, and g, with nonlinearity of
the nonsteady burning laws.
To calculate g, we write using Egs. (7.13) - (7.14)

1 - i_ I =~ = =
z,a—bzﬁ(zl—l)uluz—;ulczzz(z,—z2)+ZC1v2zl(zl—zl).

Equations (7.8) and (7.9) give

= _ _ i_ i
CZi=¢t—vy, Gty =0 =50,
) 2w

The corrections ¢, and ¢, to the steady-state temperature gradient can be expressed in terms of the
corrections of the pressure and velocity (see App. B)

_ 1
§01=_(v1—vﬂ7]1)’ €02=—(U2“Un’12)-

Vo Ve
Thus
1 _ [ Upyim- _ _
za—b= ﬁ(h —Duj,+ ZU—Z[Z U2, =) — vy iz — 21+ (.21
| 1 _ i _
+-L U,U, {—[ -2(z,-2,) +(z, - I+ (2, —2) + (=, — zl)]} .
2w Vo w
Denote
v, =U(w), U,=UQuw)
so that

and Eq. (7.21) may be written as

2za-b) - (1 L
i.z_l—a_‘_lz UIUZ{_[(ZZ—ZI) + (zz - Zl)] +i(zl — 3,73 + 1)} +
i, Vo w

+ 21 [2U,(z, — 2,) — Uy(z, — Z))).

Ve
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As

3@ - D=lw,  Z(Z-D=-iv, z,(z,~1)=2iw

one can represent g, term in the following form

g,,=ﬂauz[(z2—zl)(l>—£> +a-2)(D-2) |+
%2 1%2

(7.22)
+(V=8)[2z,~2)U, +(z, - Zl)Uzl} :

Now we pass to calculation of the g, terms. From App. B we can obtain using the linear rela-
tionship

$1_ViT UM,y $2_Va 7 UMy
M Uty P Ve,
or
17 1 1) 1
——1=—(U1—-v,,), ~2=—(U2—v,1).
1 Ve ur) ¢

We obtain the next expressions for N pand M,

—=L2 =211 U, — 0 (T, + Uy) + 02+ 22T, + U, = 20,) + vy
"4

e Ve v (1.23)
M Dpp . - e~
—12=—F[U,U, — v,(U, + U,) + v3] + =2(U, + U, — 20,) + Oy .

mn, Vo Vo

The complex (3,N _ 1,2~ VoM _, ,)/ 7, that exists in the expression for g, may be represented us-
ing Eq. (7.23) as

— oM _ _
0¢N—1,2_ VoM _, 5 =IL;U1 U, + <lﬂ_ B;LW>(U1 +U,)+
17, Ve Ve  Up (7.24)
2
+v—;Lw— 2ﬁLwn +Lnn
Uy Ve
where
Lop=3pvpp — oy,
Loy=0pvpn— Upen
Lyy=90pvpy — Vel .
As an example we choose the simplest model of a propellant whose steady-state laws are
u’=Ap"eTa,  u°=Bexp(— E/RTY). (7.25)
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For this model App. C gives the next expressions

k*r kry rv?
L¢¢=B_3(1 —€), LWJ:F(E_I)» Lvmzﬁi(l_e) (7.26)
where
(_2RTS
R
Thus we can obtain
_ r -

(17«=N_1,2—UwM_l,z)/ﬂmz:B(l'€)U1Uz (7.27)
and

N 1 — —

Nor2 21— r(1 + 910U, — (U, + Uy). (7.28)

nm, D D

Combining Egs. (7.27) and (7.28) to obtain g, (See Eq. (7.20)) we have the final expression for g,
g=U,Ulz,r(—9—1+r(1+0] = (U, + U,) (7.29)

and from Egs. (7.22) and (7.29) the final expression for g _, ,=g,t§,

8 127 UIUZ{; (Zz—z1)<D— k >+(Zz_ 21)(D_—_L> +
' 2w 2122 212,

(7.30)
+z,r1—e—1+r1 +e)} +
+v{U,[2(z,— )~ 11+ U, (2, - Z, - D]}
Now we can calculate the response function U_, ,
8-
U_i2= L2
L4r(z, - 1)_k(z1 1) (7.31)

Zy

with g_, , given by Eq. (7.30).

Figures 7.1 and 7.2 are the real and imaginary parts of the burning rate response function U _, ,,
which describes the second order interaction of the first and second harmonics. As it was noted in
Section 6 we can see a great change of response function close to w=w,/2.

The burning rate up to the second order may be written as

U1=U17’1+U-1,2V_’1’72

and the response function that includes both a linear term and nonlinear one is
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V,=U+U_, 72, (1.32)
2
To calculate V| we notice that
7_’1’72=_£2_ i
m 2}70

To show the influence of the nonlinear effect Figs. 7.3 and 7.4 are pictured for the real and imagi-
nary part of the response function V. The necessary parameters are taken from Ref. 3 and given
in the figure captions. A new aspect of the problem should be noticed. The response function V,
depends on the phase shift y, between the first and the second harmonics. Figures 7.5 and 7.6 illus-
trate that.
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20

Re U_112

ook

=20
Real part of second order burning rate response function

Fig. 7.1
v=0.3, k=1.82, r=0.303, 6=0, ¢=0.2.

Im U_1’2
=

20

I— 1 '
w

Fig. 7.2 Imaginary part of second order burning rate response function.
v=0.3, k=1.82, r=0.303, =0, ¢=0.2.
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Re V1

Fig. 7.3 Real part of burning rate response function V..
v=03, k=1.82, r=0.303, 6=0, p,/p"=0.048, e=0.2.

b
T

Im V1

Fig. 7.4 Imaginary part of burning rate response function V,.
v=0.3, k=1.82, r=0.303, 6=0, pz/p°==0.048, e=0.2.
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Fig. 7.5 Real part of ¥, as a function of phase shift y,.
v=0.3, k=182, r=0.303, 6=0, pz/p°=0.048, e=0.2.

-2

Fig. 7.6 Imaginary part of ¥, as a function of phase shift y,.
»=0.3, k=1.82, r=0.303, 6=0, pz/p°=0.048, e=0.2.
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8. THE SECOND ORDER SELF-INTERACTION OF THE FIRST HARMONIC

The second order interaction of the first harmonic with the frequency of w may give the oscillation
of 2w frequency. In this section the second order solid propellant burning rate response function

(vy)
U= 221 : (8.1)
L
will be obtained.
The pressure p(w) and burning rate u(w)
p=p"+p,coswt+ p,cos 2wt + )
u=u"+u,cos(wr + Yu;) + 1,08 Qw7 + Yu,)
are represented in the form
n=1+ne+ 1€ +ne,+17,8e, 8.2)
v=1+v,e + 1,8 +v,e,+1,8e, '
where
pl pz i¢2
= — =—=-0
L 20" M2 27°
Uy iy U v
UV, =—5e ¥, v,=—=e"H2
1 2u0 2 2u0
e _eiw'r e __eZin
1=€ 2= .
and the #,, v, and e, are the complex conjugations of 7,, v,, and e,.
To solve the heat conduction equation for the condensed phase
(8.3)

2
0 O 8 Dlem—a=bs 00, D=8,(1)

ar 08 of

the space-time temperature distribution should be also represented as a set of two modes
(¢, N=0(8) +0,(He, + 0,(5)2, +0,(D)e, + 6,(D) e, (8.4)

where
6%(%) =0, +ef

is the steady-state solution.
The derivatives 36/97 and 3%0/9%* are
%_ iwd e, +2iwb,e, + c.c.

620 0” " ”
§?=0 +0,e,+0,e,+cc.
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where c.c. are corresponding complex conjugate values.
The second term in the right-hand side of Eq. (8.3) is nonlinear. In the product

- v—z-g = —(L+v,e +v,e,+cc)B°+0 e, +6,e,+cc)

we should keep only the terms that oscillate with frequency of 2w. After multiplying the two series

of the previous expression and using the expression for 36/97 and 3%6/3£* we have the following equa-
tion for the second mode

6, — 0, —2iw, = v,0°+v,0, (8.5)

which contains the nonlinear term ulﬁ; .
In the linear approximation there are two equations for the first and second harmonics

”

-0, —iwd, =v,et (8.6)
0, -8, —2iwh, = v,et. 8.7)

The solutions of Eqgs. (8.6) and (8.7) are

6, =C,e1f+Ly et (8.8)
w

0,=C,e + EIZ v,et (8.9)

with

f=o[leyTHa], 2=+ T+, (8.10)
Using Eq. (8.8) we can write Eq. (8.5) in the form
0, -0, —2iwb, = <v2 +iu‘;->ef+ C,v,z,€%". (8.11)
w

It is easy to solve this equation to obtain

i

02=Dzezzf+_2_f;<vz+:Uf)é_,_éclvlzlezli. 8.12)

From this expression we can find the surface temperature ¢, and gradient of the temperature at
the interface ¢, corrections to the steady-state conditions 3°=6, and ¢=1

9,=D,+—v,+a, a=-—L+lCugz, (8.13)
2w w
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i i
0,=Dyty+5-v,+b, b= ———2+;clu1z§. (8.14)

The additional two relationships for v,, J,, and ¢, are known from the nonsteady burning laws
v(¢, n) and d(p, u) written to the second order perturbations.
From Appendix B (see Egs. (B.4)) we have

1 1

Uy = Vet ugm, + N 4, N1,1=5vw¢’f+“¢n¢’1’71+zvnnﬂ% (8.15)
1 1

3, =0ppy t &+ M, |, M, = 2 Do} + Sy, + 2 Sy’ (8.16)

Equations (8.13 —16) permit to obtain the burning rate amplitude v, as a function of frequency
and, therefore, the second order response function U,
Substitution of Eq. (8.13) into Eq. (8.14) gives

i i
=(d,—7——a)z,+ —v,+b.
2 <2 2w >2 ZmU2
Take &, from Eq. (8.16) and put it in this expression that gives
v
p,(1 —=8p2))=0m,2, + z_2+ Z,(M; ,—a)+b.

2

Multiplying Eq. (8.15) by (I —¥,2,) and using the previous relationship we have

U2<1 - 19(,022 - ?) =(U¢01’ZZ + Uy — 19¢U1122)7]2 +

) 8.17)
+ U¢[Z2(M1’1 - a) + b] + (l - 19¢Z2)N1,1 .

For any propellant model v, v,, J,, and &, may be expressed through parameters &, u, v, and
r given by equations:

u¢=7§—, z9¢=%
where D=k +r—1.
Now one can write Eq. (8.17) in the form
v+6(z,—1) 811 2

L

Uy = n
2 14r@-D-k(z,-1)/z, 2 1+r(z2-1)—k(z2—1) (8.18)

23
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The first term of Eq. (8.18) represents the well-known linear response of the burning rate to oscilla-
tory pressure and the second term gives us the second order response function

U = 811
14 r(z,— D - k(z,— /2,

(8.19)

where g, | has the following expression

Ein=&te s (8.20)
g;,:k(zza'"b)/"lp g,=D[Z2(0¢N1|1 - U¢M1,1)_N1,1]/"71

Here g, is connected with nonlinearity of the heat-conduction equation, and g, with nonlinearity of
the nonsteady burning laws.
To calculate g, we write using Egs. (8.13 —14)

UZ

i
Zza— b= _5;1_2' (ZZ— 1)+; CIUIZI(ZZ_"ZI) .
Equation (8.8) gives
]
Cizi=¢——v,.
W

The correction ¢, to the steady-state temperature gradient can be expressed in terms of the correc-
tions of the pressure and velocity ( see App. B)

1
o, =— (v, —vymy).
Ve

Thus

2 . 1 .
20 —b= =L (5, ~ 1)+ 2,2, — 2)| — (v, = vm) = v, |- (8.21)
2w w Uy w

Because v, = U,n, we can rewrite Eq. (8.21) in the following form
1 171

, z,—1 1 i v
w(zza—b)/mf=Uf[— Zziw +(z2—zl)<v——;>}——"—(zz—zl)Ul-

® Vo
As
2,(z,— D =iw, 2,(z, —1)=2iw
one can represent g, term in the form

k

1%2

o= 2o (0 Yo -0

The same procedure as in previous section gives
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D

&=5 34 LeeUT+20pLen = v Lpp)Uy + (U3 Loy = 20003 Ly + VL)) = 623)
@ .
- [waU% +2(vpvpn — UnUe)U| + (U7zlu¢‘ﬁ — 20Uy vy + Uivrm)] }.
For the propellant model introduced in Section 7 we have
g,=%[zlr(1 —O=1+r(e+ 1)U+ vU, (8.29)
and for 8,,1=8,+ g, the following expression
2i k u?
g .= {_(Zz_zl)@———) +rlz,+1—e(z, = 1)] - 1} 14 (8.25)
' w 122 2
i
+ u[ 1 +a(z2—z1)}U1.
Now we can calculate the response function U, ,
811 (8.26)

U =
M4 (g, = 1) - k(z,— 1)/z,

with g,, given by Eq. (8.25).

The real and imaginary part of the burning response function U, ;,» which describes the second
order self-interaction of the first harmonic, are pictured in Fig. 8.1 and 8.2.

The burning rate up to the second order may be written as

2
v,=Uym, + U1,1’71

and the response function has the form

2

V,=U,+U, (8.27)
Ly
It is easy to show that
2 2
h — p] e” ivy
7, 20°p,

Figures 8.3 and 8.4 are pictured for the real and imaginary parts of V,. This response function
also depends on the phase shift y,. Figures 8.5 and 8.6 illustrate this dependency.
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Fig. 8.1 Real part of second order burning rate response function.
y=0.3, k=182, r=0.303, =0, ¢=0.2.

Im U1’1

1
0\/ 4
w

Fig. 8.2 Imaginary part of second order burning rate response function
v=0.3, k=1.82, r=0.303, =0, ¢=0.2.
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Fig. 8.3 Real part of burning rate response function v,.
v=0.3, k=1.82, r=0.303, 6=0, pf/2p°p2=0.24, e=0.2.

— ¢2=0
...... (/)2=7Z'/2
W |m—— Yo=7
2r A & o=
I\ f——— =37/2
> 2
E |
0
-2
-4k
1 1 1 ]
4 8
w

Fig. 8.4 Imaginary part of burning rate response function v,.
v=0.3, k=182, r=0.303, 6=0, pf/2p°p2=0.24, e=0.2.
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Re V2

0 4 ([)2

Fig. 8.5 Real part of V, as a function of phase shift ¢,.
»=0.3, k=1.82, r=0.303, 6=0, p3/2p°p,=0.24, €=0.2.

-4
1 |
0 Vs 27r
¢

Fig. 8.6 Imaginary part of V, as a function of phase shift y,.
»=0.3, k=1.82, r=0.303, 6=0, pf/2p°p2=0.24, e=0.2.

This document is provided by JAXA.



Solid Propellant Burning Rate Response Functions of Higher Orders 43

9. CONCLUSION

Research on the phenomena called combustion instabilities in a solid propellant rocket motor has
been developed since 40’s. At present there exist both analytical and numerical approaches to predict
stability of solid motors and describe nonlinear nonsteady motions if steady-state combustion regime
is unstable. Some computing programs, especially in the USA, pretend to be quantitative. The aim
of this paper is to show that there are some aspects that should be investigated in this problem.

The primary, and the most complicated, cause of combustion instability is the propellant burning
response to the pressure oscillations. It is enough for prediction of the stability condition to describe
the burning response in the linear approximation. One should remember, however, that a burning
propellant is an oscillator with a very high quality. So, any small perturbation in its parameters can
greatly change the burning response to oscillatory pressure. As an example, we investigated in Section
5 the influence of internal radiant flux on the oscillatory behavior of a solid propellant. To describe
a nonsteady gas motion and propellant combustion while the steady-state regime is unstable the non-
linear approach must be considered. As a rule, in the programs above mentioned only nonlinear
acoustics is considered. In Sections 7 and 8 we show that the nonlinear effects in propellant combus-
tion are of great importance. They cannot be neglected in the problem of nonsteady motion descrip-
tion. Only the simplest examples of nonlinear interactions between combustion and pressure
oscillations are considered. They show, however, that there are a large number of problems to be
solved in this field.

APPENDIX A
The relationships between derivatives with respect to the initial temperature from the one side and

with respect to the temperature gradient are derived in this Appendix.
The steady-state relation Eq. (5.11)

0 0
fo=Lai-ry)-1 (A.D)
x 0cCex
should be used.
From Eq. (A.l1) we have
(af°> _(T3- T,,)( ou° ) +u_°<< aT‘;)_l)_ 1 <61°>
oTa /, x 0T, b, X 0T, ; ecCex \ 0T, »
and introducing
0 0
S=A<aln1 ) R <61n1 ) A2)
0T, » dlnp T,
we obtain
0 0
<a—f—> =Y (D-58%, D=k+r-1. (A3)
07, b X

The derivatives of f° with respect to the pressure is
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0
<af0> =L AW +p—0S). (A4)
dlnp T, *

Because

au’\ (0u’/3Tu),
<6f°>,, /8Ty,

from Eq. (A.3) we have

0
For
<a_r_s _(dT3/3Tw),
of°), (f°/9Tw),
we obtain

6T?> x r

=— . (A.6)
0 0 0

<8f , u D—sS

Similarly, because

A\ _(I°/93Ty),
(af°>,,' ar°/9T,),

we obtain

"\ xsS%-.C:
(30) 5 (A7
p

To calculate the derivatives with respect to the pressure at constant temperature gradient, it is use-
ful to apply Jacobian-method. We write the set of equations

<6u°> _ 8 s0) _ a0 f0)/a(np, Te) _
dnp /o (lnp,f % a(np,f°)/d(np, Ta)

_(u®/dlnp);. (3f°/3Ta), — 9’/ Ta) (0f °/3Inp)

(0f°/8Ta),
Using Egs. (A.3, A.4) we have
0 Ors _ 0 _
<au > _ulo=v+ Sok—sv)] (A%)
dlnp 0 D-sS

The same procedure gives
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0 QO
< aT s ) =—A [b+6-S (az sp)] (A.9)
dinp 0 D—-sS
and for the radiation intensity
oI° 0 05 OD—5s(v+p)
=80 Cot’ A —————L7 A.10
< dlnp >/0 Qeleld D—sS° (A-10)

From Egs. (A.5—10) in nondimensional form we have the relationships Eq. (5.19) used in Section 5.
APPENDIX B
The relations between complex amplitude of burning rate, temperature gradient, and pressure are
obtained to second order terms in this appendix.

Expanding the nonsteady combustion laws v(e, 1) and 9(¢p, 1) in a Taylor series up to second order
terms we have

1 1
Ve= Up®e + UyTle + 5 Vous + Ugn@ene + 2 Vg
1 1
Be=Dopet Duttet —- Db+ Ionpene + — St (B.1)
where subscript e denotes extra-terms to the steady-state conditions:

n=1+7., o=1+¢.
v=1+ve, =0+ 9..

Subscripts ¢ and 7 relate to derivatives with respect to temperature gradient and pressure for any

function Y
Y Y
— ) =Y,, — ) =Y,
<3go>,, ‘ <a"7)«: !
’Y Y ’Y
JuS—— :Y , —-——=Y N —_— =Y .
<3<P2>7, T dpdm T (3772 e

In Section 7 the interaction between first and second modes is investigated. In that case

Me=m€+ 1,8 +n,8,+ 1,8 (B.2)
ve=¢e,t+ ¢ € +p,e,+ p,8,.
It is very easy to obtain for the first mode oscillation

¢§:2¢1¢231’ ’73’:2’771’725'1
ﬁaene=(‘t—01772 + 77ll‘pz)e1 .

Thus Egs. (B.1) can be written as

This document is provided by JAXA.



46 Report No. 661
Uy = Ve, F oy +N_
3, =0, + % +M_, ,

where

N_ = Voo, + ven(@11m, + 1,0,) + van 1y,

_ _ Z b B.3
M_1,2=0¢w¢1¢2+19¢n(€01772+ "I1‘P2)+0nn’717’2 (B3)

are nonlinear corrections that were used in calculation of the burning rate response function U_, ,.
In Section 8 the self-interaction of the first mode is investigated. In this case

Ne=1,€,+ 1€
Ye=p € T ﬁ_alél

and
ﬁog:‘P%eZ’ ngﬁn?fez’ PeNle= @ 11M,6;.
Therefore, Egs. (B.1) may be written in the form

Uy = Uy + Uty +N
3, =0pp, + Oy, + M, |

where

1 1

Nl, = _waﬁof + Ve My +_‘Unn7ﬁ
2 2

1

s 1 X (B.4)
='2‘0¢¢‘P1 + denemy +‘2—‘9nn771

1
Ml,l
are nonlinear corrections that were used in calculation of the burning rate response function U, ;.
APPENDIX C
Let a model of a propellant is defined by the next steady-state laws
u=Ap"e®Ta, u=Be ~E/RTs (C.)

where A, B, n, 8, and E are constant values, and R is the universal gas constant.
The first derivatives Eqgs. (3.1) with respect to pressure and initial temperature are easily calculated:

0\2
k=pA, r:B—————(T‘) R
E
042
p=n, y= VR(T’) . (C.2)
EA
Note that for this model
vr—uk=0.
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In this appendix we obtain the second order derivatives of the burning rate and surface tempera-

ture with respect to pressure and surface gradient.
Using steady-state relationship

20
fO="(T3-To)
x
we obtain the nonsteady laws of combustion
u=Ap”expB<Ts—ﬁ>, u=Bexp(— E/RT5)
u

Denoting /=Inp we have

Inu=InA +nl+B(Ts—xf/u)

1nu=lnB+£<Lo—i>.
R\T{ T;

The first derivatives of these expression with respect to the gradient f are
() o] (22) -20(2)
u \df/, aof /, u wu\of/,
L(3) £ (o)
u \of), RT\of ),

From Eqgs. (C.5) it follows

(Qz) _x k (aTs> _x T
o), A D’ of ), ¥ D’

The first derivatives of Egs. (C.4) with respect to I=Inp are
H(8) ] )5
u \adl/ al j, u”\al ;
)7 (%)
=—(=).
u\al/), RT;\ al &
From Egs. (C.7) we have

(3) -0z, () --ax.
) "D a), D

To obtain the second derivatives we rewrite Egs. (C.5) in the form

(C.3)

(C4

(C.5)

(C.6)

(o))

(C.8)
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560, (5), v (5),
B \of of of
() F &) o
of ), E ul\df p'
The second derivatives with respect to the gradient may be obtained from Eqgs. (C.9)
s3G5 - () (), ()
*37) T2\ Gp f 2 2
af? af ) _\ af u\of/, u of of af*/,
(('JZTS) _2T,R <6T5> <6u> RT? 1 <8u>2 T: 1 <32 >
2 )]~ — )\ % 2\ o) TRE 2/
aprafpuapruafp E ul\df</,

That leads
<32_”> __u’ Kl=r(e+1)]
), (f°y D}
<32Ts> __A kr20-n-k+e(k-1)] (C.10)
), % D? '
Denoting
_ 0 _ 0T,
alof laf

we have from Egs. (C.9)

ou 0T auau
ﬂ(al o Y oy uf>

2 2
Y= 2RT; 0T 1 ou RT5 16u6u+RT 1

E 3l udf E ualaof E u

That leads
Fu W kv
—(er—k)
afal f D
asz A (C.ll)

afal=75%[e(l—k)+r—l].

To obtain the second derivatives with respect to the pressure we rewrite Egs. (C.7) in the form

2
au—nu+6<u§z"—’+xfau> T, _RT 1 du
al al 3l E u al

Denoting
’u T
X==—, Y=
al? al*
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we have
ou du T, x [ou\ «x
=n= =y - () + Xpx
al 6[01 al u2f<al> uf}
_2RT; | 9T, 0u_RT: 1 (uY RT3 1,
E u al 3 E u*\al E u
That gives

2 0
<‘9—‘2‘> =2 Qk+r—1—r¢)
). D

62T,> A
=wulk+e(k—-1)].
<312 /. D?

Here is the full list of the derivatives

(@>= U K[ =r(e+1)
afZ A (fO)Z D3
(62T,>= A krl2(0—n—k+e(k=1)]
afZ a (fO)Z D3

Fu__u kv(er—k)

FTs _ A rv[el=k)+r—1]

afal  f° D3 ofal ~ f° D?

), D’}

(azu> _ 0P Rk+r—1-re) <§2_T> _abrlk+ek=1)]

72 3
6lf D

In nondimensional form we have

k
=g =g
Up= —71;—, 19,,=——g—

K[l —r(e+ 1)) krl2(1—r)—k+e(k—1)]

Uw’:——Dg—_’ 0¢¢= D3

v =£CV_(EI_"—_/Q P _rle-k)+r—1]

on D3 ’ en D3
o LQkHr=1-r9 o plk+etk—1)
L] D3 ’ L] D3 .

Let us introduce the complexes

49

(C.12)

(C.13)

(C.149)
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L'P‘P: 0¢U¢¢ - Uwﬁww
Loy =000y — VpUen (C.15)
Ly = 9oy = Vol .

It is easy to calculate them using Eqgs. (C.14). They are

k2

.
Ly,= -D—g(l —€)

kr
L¢W=D—§(f ~1) (C.16)

2
rv
L-,m:E(l —‘6).
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