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ABSTRACT: A control system for the azimuth control of the balloon gondola using a simple
actuator (motor and coupling ring) is presented. Three mathematical models of the system
are reviewed first. Classical continuous time compensators and robust optimal continuous
time and discrete time controllers are designed and compared in frequency and time domain.
The rejection of typical disturbances (a ramp type disturbance due to the turning of the entire
balloon and a sinusoidal disturbance due to the pendulum motion of the suspended gondola)
is investigated by simulations. A feedforward velocity controller applicable in scanning mis-
sions and a feedforward position controller for large changes of the azimuth are designed
and tested by simulations. A selftuning procedure for the automatic adjustment of the pa-
rameters of the controller to the dominant dynamic characteristics of the gondola is given.
Finally a comparison between the adaptive notch filter and adaptive Butterworth low pass
filter with respect to the elimination of instabilities of pendulum motion around a horizontal
axis is presented. The performances of the selftuning and adaptive algorithms are proven by
simulations.

1. INTRODUCTION

Typical tasks for a balloon mission [7] are fine pointing to a specified object, (corresponding to
the servo problem in terms of control engineering), changing the objects (corresponding to the step
response problem in terms of control engineering) and raster scanning of the celestial sphere (cor-
responding to the tracking problem in terms of control engineering). In Fig. 1 the balloon gondola
with typical loading is shown. It should be noted however that even the pointing to a specific ob-
ject represents a tracking due to the rotation of the earth and this term will be used in the report for
the pointing task. Some of the parameters of the system to be controlled are unknown (e.g. spring
constant of the suspension rope) or changed between the missions (e.g. moment of the inertia of the
gondola) or changed during the mission (e.g. motor electrical parameters due to the environmental
temperature). This is the reason for the application of the adaptive and self tuning control respec-
tively.

The authors gratefully acknowledge the support of Prof. Ryojiro Axisa, former director general of ISAS.

This document is provided by JAXA.



(8]

Report No. 665

Fig. 1. The balloon gondola with typical loading.

The report is organised as follows: First the mathematical models used for simulation are re-
viewed, then some preliminary studies of the continuous time compensator are given. The discrete
time controller to be used in the on board computer is designed next using optimisation of the third
order state space controller and observer while taking into account small uncertainties in the pro-
cess parameters. The resulting controller can be reduced to the second order controller. Next the
self tuning of the controller due to the unknown spring constant of the suspension rope and moment
of the inertia of the gondola is designed. Finally an adaptive control strategy for elimination of in-
stabilities in the motion around a horizontal axis which is caused by the torque due to unsymmetric
loading of the gondola is proposed. Two strategies are compared. In the first one an adaptive notch
filter is used to eliminate the oscillations in the control signal by adjusting its central frequency, i.e.
to make the closed loop gain at the unknown frequency of oscillations very small. The undesired
oscillations decrease by natural damping. In the second approach the adaptive notch filter is used
to detect the frequency and amplitude of undesired oscillations and an adjustable Butterworth filter
is applied to change the phase of the control loop in the corresponding frequency range. In this ap-
proach the damping of undesired oscillations is controlled. All algorithms were tested by simulations
using MATLAB SIMULINK design tool.
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2. SIMULATION MODELS

The balloon gondola to be controlled is shown schematically in Fig. 2. The balloon is
supposed to be a fixed point due to its large
moment of inertia. The suspension rope is mod-
elled as a torsion spring with the spring con- Balloon
stant k;. The coupling ring has a small mo- (Fixed point)
ment of inertia I,,,, so the differential equation
of its rotation (its rotation angle is denoted by
O,) is
6, = ___Ti_lks_@’” e} ‘
m Suspension Rope
where T is the motor torque which drives the
gondola to turn. It is generated by a DC mo- e~
tor with the torque constant kr, back gener- AN [_’l_g Coupling Ring
ating voltage kr, coil resistance R and input
voltage (control input) U according to Motor

P N
8, v T

r -t U=rks(6s =0

where n is the gear ratio and O the azimuth
of the gondola. The motor torque turns the
gondola (moment of inertia /) according to

) M;g%g;ﬁc Gondola

= | Magnetic Sensor

@8 T €)) Fig. 2. The scheme of the balloon gondola system.
g

The simulation scheme is depicted in Fig. 3. The corresponding transfer function is

1, L+
T nkpl, | Ry 2 2rkg > . Rk k
F gs["szsz (s+"ng )+(s +"7krkﬁs+7;)]

G(s) 4)

The moment of inertia (/,,) of the coupling ring is small, so the term in brackets can be neglected
yielding the following transfer function

k
! A

- nk Rk, k
Fs (sz + n2krke® 7;)

G(s) &)

and the simulation scheme shown in Fig. 4. If the gear ratio n is large the simulation model depicted
in Fig. 5 is obtained having the transfer function

G(s)=—~———) 0f=— (6)
0
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Fig. 3. Simulation scheme for Model 1.
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Fig. 4. Simulation scheme for Model 2.
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Fig. 5. Simulation scheme for Model 3.
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The following nominal values of the physical parameters are used
R=10Q k =50-10"3Nm/A k;=5.5V/1000 rpm = 0.9167 mV /degps
n=3000 I,=50kgm?  I,=0.1kgm?
To=100s  wy=2-7/Ty k=] I

However the moments of inertia of the coupling ring and gondola and the spring constant of the sus-
pension rope are supposed to vary in such a way that the period of the dominant dynamics of the
controlled system 2 - 1t/ varies between 50 s and 150 s. The nominal values of physical param-
eters are chosen conservatively, so that the transfer function (4) represents the worst case deviation
from the simple model (Eq.6). Robustness studies were made by varying the eigenfrequency @y for
+30%.

At some missions an undesired motion of the gondola was observed. This motion occurs around
the axis, which is perpendicular to the rotational axis and is denoted here by x. The motion around
this axis is influenced by the moment of inertia of the gondola around it (Ig,), the mass of the gondola
(Myg), gravity (g =9.81 m/s?) and a torque T which is due to the unsymmetric loading of the gondola.
This torque is very small but its sign is unknown. The gondola is equipped with a simple magnetic
sensor which however in some positions detects not only the desired rotation of the gondola but also
its movement around the x axis due to the vertical component of the earth magnetic field (52 © in
the latitudes around Sanriku). Due to the unknown sign of the torque which is driving the gondola
around the x axis, positive feedback can occur, which makes the system unstable. The differential
equation of this undesired motion is

T, — Mgl

O, =
X ng

Q)
where [, is the distance between the driving motor and the mass centre of the gondola. The corre-
sponding simulation scheme is shown in Fig. 6 where also a small damping { is modelled. Its value
is estimated by observations that the settling time for this motion is 5 to 10 minutes. The complete
model used in simulation is shown in Fig. 7.

Theta_x

Natural damping

M_G*g*l_2 }q___

Gravity

Fig. 6. Simulation scheme for the movement around the x axis.

This document is provided by JAXA.



6 Report No. 665

k_unsymet

| o
1 - N o - ! ‘
g’_"_DQ L{\/ {>¢ sin(Pmﬁum Theta_s
oot~

Model_1 T_x = k_unsymet'T i
Model_x Vertical comp. of magn.f

Fig. 7. Simulation scheme for the complete model.

3. PRELIMINARY STUDIES IN CONTINUOUS TIME

First some preliminary studies in continuous time using the Model 1 were performed. Classical
compensator design is given in Subsection 3.1, optimal compensator in Subsection 3.2 and optimal
state variable controller and observer in Subsection 3.3.

3.1 CLASSICAL COMPENSATOR DESIGN

Classical controller to feedback stabilise a process with three poles very close to the origin is a
double lead lag compensator in the form

(s+a1)(s+a2)

Cels) = Ke B ) (51 82)

®)

Fig. 8 shows the simulation scheme of the closed loop. The influence of the b parameters on the
closed loop behaviour was studied first by choosing a; = a; = 0.1 and increasing b; = b, from 1
over 2.5 to 5. The corresponding gains for these three cases determined by root locus plots are 280,
2200 and 9900 respectively. Fig. 9 shows the corresponding root locus plots with the most left curve
corresponding to the largest b parameter (pole of the lag part). The open loop poles are denoted by x,
the open loop zeros by o and the closed loop poles with chosen (used in simulation) controller gain
by +. In Fig. 10 the Nyquist plots are shown for all three cases with the solid line corresponding to
the b = by = 1, dotted line corresponding to the b; = b, = 2.5 and dashed line corresponding to the
by = by = 5. It can be observed that for the linear model the increase of the b parameters increases
the classical performance criteria such as high and low gain and phase margin.

However the controller gains are very-high and increase with the increaéing b parameters. Some

Saturation

time ——»{ uout
Clock To Workspace1 To Workspace2
H K_regut*conv([1 a_1]{1 a_2])(s) 7/{/
Step Input conv([1 b_1],{1 b_2])(s) i

“ Transter Fen
S yout |

To Workspace

Fig. 8. Simulation scheme of the closed loop.
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Fig. 9. Root locus plots fora; = a; = 0.1and b; = by = 1, 2.5 and 5 (the most left curve corresponds to the largest
b parameter).

100

i i i i ;
5(-’800 ~250 -200 -150 -100 -50 0 50 100 150 -2 -1.5 -1 0.5 0 05 1
Real Real

Fig. 10. Nyquist plots for a; = a; = 0.1 and b) = by = 1 (solid line), b; = b = 2.5 (dotted line) and by = b =5
(dashed line).
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Gond. angl. deg]

o 10 20 30 40 50 [-1e] 70 80 20 100
Time [s]

Fig. I1. Rotation angles of the gondola for a; = a; = 0.1 and b = b, = 1 (solid line), b; = b, = 2.5 (dotted line)
and b; = by = 5 (dashed line).

simulations of the closed loop behaviour with the motor voltage limited to 10 V and a position ref-
erence changed from 0 © to 10 © were performed. The response (rotation angle of the gondola) for
all three cases is shown in Fig. 11 with the same line type notation as used in the Nyquist diagram
(Fig. 10). Fig. 12 depicts the corresponding control signal (motor voltage). It can be observed that

Contlsgnal V]

S0
Time [s]

Fig. 12. Control signal for a; = a; = 0.1 and b; = b, = 1 (solid line), b, = b, = 2.5 (dotted line) and by=by=5
(dashed line).

the non-linear effect of the saturation results in a response of the closed loop which is similar to the
non minimal phase response. The simulations have shown that the increase of the b parameters has
positive effect on the closed loop behaviour in the time domain with the non-linear model.

Theoretically there is no limit on the high gain, since the relative degree of the Model 1 is two.
For the estimation of the high gain boundary the Model 3 seemes to be suitable since it has relative
degree 3 and two purely complex poles. However no significant differerice in time domain can be
observed while the root locus and Nyquist diagrams, depicted in Figs. 13 and 14 respectively, show
little differences at high frequencies.

One drawback of the high gain is small proportional band, i.e. small rotation angle of the gondola
which saturates the driving motor. The static gains for the three investigated cases are 2.80, 3.52 and
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Fig. 13. Root locus plots for the Model 3.
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Fig. 14. Nyquist plots for the Model 3.
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200
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Fig. 15. Rotation angle of the gondola for the 100 0 reference change and a; = a; = 0.1, b) = by = 1 (solid line),
by = by = 2.5 (dotted line) and by = b, = 5 (dashed line).

3.96 yielding saturating rotation angles 3.57 9, 2.84 © and 2.53 © respectively.

The saturation, which makes the closed loop system non-linear requires also a study of the global
(large rotational angle) stability. This study shows that the closed loop becomes unstable for large
reference angles changes. Fig. 15 shows the rotation angle of the gondola response for the 100 0
change of the reference angle. It can be seen that the closed loop system becomes unstable for small
b parameters.

Next study which has been made is the study of the influence of the a parameters. Larger a pa-
rameters mean smaller dominant time constant and faster response. This is true for the linear case
while in the non- linear case the allowable reference position change becomes smaller and smaller.
With increasing a parameters the high frequency gain and the static gain, which in the linear case
stabilise the closed loop system become very high. The highest still acceptable a parameters are
a; = ap = 0.15. Figs. 16, 17, 18 and 19 show the results for these values of the a parameters and
by = by = 5, 10 and 100 respectively. The corresponding gains were 14000, 58400 and 6.25 x 106
respectively.  The simulation results in Figs. 18 and 19 correspond to the 10 0 reference position
change. With increasing reference position change the closed loop system becomes oscillatory (as
shown in Fig. 20 for the reference position change 15 0) and for greater changes unstable.

A study of robustness was made for the parameters of the gondola not equal to those used for
the controller design. There are only two parameters which significantly influence the closed loop
behaviour, namely the eigen frequency @, (influenced by I, and k;) and the gain 1/(nks). The eigen
radial frequency is expected to vary significantly, so in the study it was supposed to vary between
21t/50 and 27t/ 150 with 27t/ 100 the nominal case.

First the controller with the parameters a; = ay = 0.15, b; = by = 10 and gain 58400 was ex-
amined. In the linear case there seems to be no dangerous influence even for so drastic change in
the eigen frequency, as demonstrated in Fig 21, which depicts the closed loop poles for varying wy
over the specified range. The poles location for the nominal parameter (wy = 21t/ 100) is denoted
by an asterisk (*). However the simulation with the constrained input due to the saturation of the
actuator changes the situation dramatically. Fig 22 shows the closed loop response for the nom-
inal (wy = 2m/100 depicted by solid line) and two extreme cases (g = 21/50 - dotted line and
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Fig. 16. Root locus plots fora; =a; =0.15and by = by =5, by = by = 10 and by = b, = 100 respectively.

Fig. 17. Nyquist plots for a; = a; = 0.15 and by = b, = 5 (solid line), b; = b, = 10 (dotted line) and by = by, =100
(dashed line).
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Fig. 18. Rotation angles of the gondola for a; = a; = 0.15 and by = b, = 1 (solid line), b; = b, = 2.5 (dotted line)
and by = by = 5 (dashed line) - 10 © step change.
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Fig. 19. Control signal for a; = a; = 0.15 and by = b, = 1 (solid line), by = by = 2.5 (dotted line) and b = by =5
(solid line).

Le] 10 20 30 40 [-1e] 70 80 20 100

50
Time [s]

Fig. 20. Rotation angles of the gondola for a; = a; = 0.15 and b; = b, = 1 (solid line), b; = b, = 2.5 (dotted line)
and b, = by = 5 (dashed line) - 15 9 step change.
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Fig. 21. The closed loop poles for a; = a; = 0.15 and @y varying from 27t/150 to 27/50.

g = 21/ 150 - dashed line respectively). It can be observed that for small wq (large periods) the

fc1-3
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Fig. 22. The closed loop response for the nominal ((g = 27t/ 100 - solid line) and two extreme cases (wp = 21/50 -
dotted line and wg = 21t/150 - dashed line with the controller parameters a; = a; = 0.15, by = b, = 10 and
gain 58400.

closed loop becomes unstable. The controller with the parameters a; = a; = 0.1, b; = by = 2.5 and
gain 2200 has a better robustness. The corresponding closed loop poles are shown in Fig. 23, the
closed loop responses in Fig. 24 and the the corresponding control signals in Figure 25. This con-
troller has better robustness, so the old dilemma between good control and good robustness has to
be solved. One solution to avoid the problem of varying eigen frequency is to apply the selftunning
procedure for the initial estimate of the eigenfrequency and to adjust the controller to it. This will be
done later in Section 8.. However also the tuned controller must posess some robustness. It will be
supoosed that the eigenfrequency of the gondola can alter for + 30 % and that the moment of inertia
of the coupling ring, which is supposed to be small, can lie in the range between 0 and 0.1 kg m?.
Using this superpositions an optimal compensator will be designed in the next Section.
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Fig. 23. The closed loop poles for a; = a; = 0.1 and @y varying from 21t/150 to 21/50
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Fig. 24. The closed loop response for the nominal (wy = 27t/ 100 - solid line) and two extreme cases (g = 21/50 -
dotted line and wy = 21/150 - dashed line for controller parameters a; = a; = 0.1, b; = b, = 2.5 and gain
2200.

10
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b oo m

70 80 20 100

Fig. 25. The control signal for the nominal (wy = 27t/100 - solid line) and two extreme cases (wy = 21/50 - dotted
line and @y = 27/ 150 - dashed line for controller parameters a, = a; = 0.1, by = by = 2.5 and gain 2200.
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3.2 OpPTIMAL COMPENSATOR

The five parameters of the compensator (K, ay, a;, b; and b,) were optimised in order to get an
optimal and robust controller. The performance criteria was

PC= /0 Te?-(t)dt )

where e(#) is the control error and T is the integration time, which is larger than the transition time
of the closed loop (200 s were chosen). As inputa 10° step change in the reference azimuth position
was chosen. The performance criteria evaluation scheme is shown in Fig. 26. Actual optimisation

2] 1

Product integrator PK

S » K_reguiconv([t a_1](1 a_2])(s) Tl
S— bl conv([1 b_1],[1 b_2])(s)
um Satt

x' = Ax+Bu
y = Cx+Du

Step Input

Process

Compensator

Fig. 26. The performance criteria evaluation scheme.

criteria (cost function) was the sum of the performance criteria for the nominal and +30% disturbed
eigenfrequencies of the gondola. Also the most accurate Model 1 with worst case parameters and
the saturation of the actuator at 10 V were used in optimisation. In such way the robustness of the
controller was achieved.

The resulting optimal parameters of the controller are:

K. = 249290 (10)
a; =0.12077  ay=0.16195
by =37.497  b,=43.578

The resulting cost function value for the optimal compensator parameters is 3856.4.

3.3 OPTIMAL STATE VARIABLE CONTROLLER AND OBSERVER

Next an optimal state controller and observer was designed for simple Model 3. The observer and
controller poles were placed to minimise the same cost function as used in the optimal compensator
design. Actually the state controller and observer for the Model 3 is a compensator of the third order.
The poles were placed as real and also as conjugate complex, however real poles gave better results.
The optimal (using the same cost function as in Subsection 3.2) closed loop pole locations for the
controller part are (-0.1471 -26.7399 -12.8960) and for the observer part (-0.1530-14.9725 - 6.3615)
respectively. The corresponding state feedback equation is

u=—Kx K = [109.403 35225.2 244266.8) (11)
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and the corresponding observer equation
% =Af+bu+L(y—c’%) LT =[3691.35 21.487 98.508] (12)
yielding the controller transfer function

s2 +0.2779s + 0.020415

Gel(s) = 2.52 x 107
c(s) x 10 (s+31.458)(s2 +29.8125+ 366.17)

(13)

The resulting cost function value for the optimal state controller and observer (third order com-
pensator) is 3796.7. This is a little bit better than the optimal second order compensator; a compar-
ison of control algorithms will be given in Section 5..

4. DISCRETE TIME CONTROLLERS

Discrete time controllers will be reviewed in this Section. First a third order controller, which
is an equivalent of the continuous state space controller - observer will be designed. Due to a notch
filter or Butterworth filter application for the elimination of undesired oscillations it will be modified
to stabilise the closed loop in the presence of the fourth order Butterworth filter for the nominal and
for +30% deviated eigenfrequencies of the gondola. The modified controller has one zero pole pair
in the high frequency region of the applied filter, so the controller can be reduced to a second order
controller.

4.1 THIRD ORDER CONTROLLER

Third order discrete time controller, interpreted here as state variable controller and observer was
designed by optimisation for sampling frequency f;s = 1 /T; = 25 Hz, where T is the sampling period.
The performance criteria was the discrete time equivalent of Eq. )

LT
PC=T, Y (k) (14)
k=0

However a long term instability, which could be detected only by using large values of obser-
vation time T, occurs in the discrete case, so a constrained optimisation with the constraints that
the closed loop is stable for the nominal and for £30 % disturbed eigenfrequencies of the gondola
was applied. Also the constraint that the resulting controller should be stable was added. The state
controller vector K and observer feedback vector L were optimised rather than the desired pole lo-
cations. This is due to better numerical properties of the algorithm and also due to the simplicity of
handling real and conjugate complex poles. The resulting optimal state feedback equation is

u(k) = —Kx(k) K = [54.598 671.48 6966.9] (15)
and the resulting optimal observer equation

R(k+1) = AX(K)+bu(k)+Lly(k) — c"&(k)] (16)
%(k) = %(k)+L(y(k)—c™%) LT =[21.122 0.14408 0.31144]
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yielding the closed loop poles of the controller part (0.2183, 0.9854, 0.9942) and for the observer
part (0.9878, 0.9341+0.0811j ) respectively. The resulting controller transfer function is

Geld) = 3419.7 — 6807.977! +3388.3272+ 1.2433 x 1079273
o= 1—2.04132-1 + 1236522 — 0.1830z3

a7

The resulting cost function value for the optimal state controller and observer (third order com-
pen..tor) is 4397.8. This is not as good as the continuous time compensators; a comparison of the
controllers will be given in Section 5..

4.2 DISCRETE CONTROLLERS SUITABLE FOR BUTTERWORTH FILTER APPLICATION

The fourth order low pass Butterworth filter will be used to change the phase of the signals at the
eigenfrequency of the undesired motion around the x axis. Fourth order is chosen to change the phase
for 180 © at the cut - off frequency. The phase shift is controlled by moving the cut - off frequency
of the filter between 0.3 and 3 Hz. This is the frequency range of undesired oscillations. The con-
troller was optimised with the fourth order Butterworth low pass filter with the worst case cut - off
frequency (0.3 Hz). The constraint used in optimisation was the request for the closed loop stability
to be assured for all filters with cut - off frequencies between 0.3 and 3 Hz (during the optimisation
only filters with cut - off frequencies 0.3, 1 and 3 Hz were tested, however the resulting controller
was tested for other frequencies as well). The resulting controller and observer gain vectors were

K = [6.8316 708.66 3277.8]
LT = [2.6895 0.39448 0.095339) (18)

yielding the closed loop poles of the controller and observer part (0.9902, 0.9533 +0.0671j) and
(0.6154 , 0.9951+0.0045 and the controlier transfer function

610.4 — 1217.0~! + 606.6772 — 7.3328 x 10~1%273
1—2.49867~1 +2.0496z~2 — 0.5476272

Ge(z) = 19

The resulting cost function is 4927.1. The cost functions for cut - off frequencies 1, 3 and « =
no Butterworth filter are 4837.2, 4963.5 and 4985.5 respectively.

The resulting controller has one zero practically in the origin of the complex z plane, and one pole
at high frequencies (z=0.6110 which corresponds to s=—12.3165). Since this is in the frequency range
of the Butterworth filter, the controller can be reduced to a second order compensator with dominant
poles at 0.9438 4+ 0.0745j) and zeros at 0.9968 £ 0.0031 j which practically (with the neglecting of
imaginary parts) corresponds to the lead lag compensator with two zeros at s = —0.0819 and poles
at s = 1.45. The gain of the controller is 610.4 which yields its transfer function

Geld) = 1569.2 — 3128.47”! +1559.2z72
C\%) = "1 _1.88767-1 +0.8963z2

(20)

The resulting cost function is 4948.8. The cost functions for cut - off frequencies 1, 3 and o =
no Butterworth filter are 4847.3, 5007.7 and 5032.1 respectively.
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5. COMPARISON OF THE CONTROLLERS

All controllers (continuous second order compensator, continuous third order compensator - state
variable controller with observer, discrete third order discrete compensator (discrete state variable
controller with observer) and discrete second order compensator suitable for Butterworth filter ap-
plication were compared in frequency and time domain. Figs. 27, 28 and 29 depict the frequency
responses of all controllers. Continuous controllers have higher gain at high frequencies. In Fig. 29

g

3

Amplitude response [dB]
»
3

]
. 100}
g s
i o .
& i
10° 10! 107" u‘)" 1;)‘ S t(;" u;" 12:“ v;)‘
Frequency [Hz] Frequency [Hz]
Fig. 27: Frequency response of optimal controllers: sec- Fig. 28: Frequency response of discrete controllers: opti-
ond order compensator (dashed line), third order compen- mal third order (solid line), optimal third order suitable for
sator - state variable controller with observer (dotted line) the Butterworth filter application (dotted line) and second
and third order discrete compensator - state variable con- order (dashed line).

troller with observer (solid line).

also the mechanism to change the phase of the controller and Butterworth filter in the frequency range
of undesired oscillations around a horizontal axis can be seen.

Fig. 30 shows the Bode diagram for the most precise Model 1 and continuous second order com-
pensator, continuous third order compensator (state variable controller with observer) and third order
discrete compensator (state variable controller with observer) respectively. The peak at 0.01 Hz is
due to the nominal eigenfrequency of the gondola (its moment of inertia and suspension rope as a
spring); the low and change of the phase at 0.3 Hz is due to the zero of the coupling ring (its moment
of inertia and suspension rope as a spring - see Eq. 4). From the Nyquist diagram shown in Fig. 31 the
gain, phase and stability margins can be evaluated. It can be seen that the continuous state variable
controller with observer has the lowest stability margin.

The characteristics of the controllers in the time domain can be seen in Figs. 32,33 and 34. A
10 © change in the reference position was applied and the closed loop was simulated with the most
precise Model 1 taking into account also the saturation of the actuator. It can be seen again that the
continuous controllers are superior to the discrete ones. This is due to the high frequencies which oc-
cur if the actuator is saturated and can destabilise the closed loop especially if the actual parameters
(e.g. eigenfrequency of the gondola) are apart from the nominal ones (that ones for which the con-
troller was designed). So the digital controllers with relative low sampling rate (25 Hz) have lower
gain at high frequencies to make them more robust.
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Frequency response of the controller

10 10 107 10° 10'
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Fig. 29: Frequency response of the second order discrete
controller (solid line) and of the discrete controller and
fourth order Butterworth filter with cut - off frequencies
from 0.3 Hz (dotted line) to 3 Hz (dashed line).
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Fig. 30: Bode diagram using: second order compensator
(dashed line), third order compensator - state variable
controller with observer (dotted line) and third order dis-
crete compensator - state variable controller with observer
(solid line).

Imag

Fig. 31. Nyquist diagram using: second order compensator (dashed line), third order compensator - state variable
controller with observer (dotted line) and third order discrete compensator - state variable controller with

observer (solid line).
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Fig. 32. Step responses using: second order compensator (dashed line), third order compensator - state variable con-
troller with observer (dotted line) and third order discrete compensator - state variable controller with ob-
server (solid line).

Gond.ang g

[e] 10 20 30 40 50 80 70 80 90 100
Time [s]

Fig. 33. Step response of the closed loop with the discrete controllers: optimal third order (solid line), optimal third
and second order suitable for the Butterworth filter application (dotted and dashed line overlapped).
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Fig. 34. Step response of the closed loop with the discrete controller only (solid line) and with the discrete controller
and fourth order Butterworth filter with cut - off frequencies from 0.3 Hz (dotted line) to 3 Hz (dashed line).
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6. DISTURBANCE REJECTION

There are two kinds of disturbances which should be rejected by the controller:

o A ramp type disturbance due to the turning of the balloon

o A sinusoidal disturbance due to the pendulum motion of the suspended gondola.

The rejection of both type disturbances (worst case amplitudes were appiled) by the digital controller
was tested by simulations.

To simulate the impact of the turning balloon, a ramp signal with the slope of 360 ° in 30 minutes
was added to the position of the gondolla. The results of the simulation are shown in Fig. 35 which
depicts the position error (in arc *) and in Fig. (36) showing the correspondig control signal. Itcanbe
seen that the controller does not reject the applied ramp disturbance entirely, a steady state position
error of 10 arc ’ remains. This is due to the proportional character of the controller. An integral
type controller would reject this type of disturbances entirely, but with the integral type process in
the control loop it would produce huge overshoots for step responses and other stability problems.
Other measure to reduce the error is to increase the controller gain.

The results for the sinusoidal disturbance due to the pendulum motion of the suspended gondola
are shown in Fig. 37 (the position error) and in Fig. 38 (the corresponding control signal). It can
be observed again that the applied controller does not reject the disturbance, a oscillation with the
amplitude of 40 arc ’ remains. This is again due to the unsufficient gain of the controller. The dis-
turbance rejections could be improved by the costs of the controller’s robustness.

7. FEEDFORWARD CONTROLLERS

For tracking a ramp position reference signal and for big changes in the position (where closed
loop goes unstable as shown in the section 3.), the velocity and the position feedforward controllers

80 120 140 180 180 200

100
Time (=]

Fig. 35. The position error for the ramp disturbance.
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Fig. 36. The control signal for the ramp disturbance.
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Fig. 37. The position error for the sinusoidal disturbance.
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Fig. 38. The control signal for the sinusoidal disturbance.
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were designed.

7.1 FEEDFORWARD VELOCITY CONTROLLER

The time optimal velocity controller is based on the simple Model 3. Its principle is shown in
Fig. 39. Time optimal control of the second order velocity model (an oscillator) is obtained by a

in_1 Saturation

out_1 } ~ Gairi )
timeopt Mux
S-Function Mux
— _ - B
Sum integrator Integrator1
Gain Gain1
| out_2 T -
—Pty = » 1/s} > 3|
Integrator2 out_3
Gain4

Fig. 39. The time optimal velocity controller.

bang - bang control law. The switching curve is shown in Fig. 40 and is in Fig. 39indicated as an
MATLAB S-function. Actual realisation however was done as an S function of the entire controller

as a discrete block and is given in Appendix 1. The form of the S-function is suitable to be translated
into a C code for actual realisation in an on board computer.

A
v
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Uppag tREf YU o, -Ref

£ v-Ref
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Fig. 40. The switching curve

For smooth behaviour in the vicinity of the desired velocity the bang - bang switching is termi-
nated and a linear control with the damping 0.707 is applied. The input to the time optimal velocity
controller is the desired velocity, the outputs are the feedforward control signal which is added to
the feedback control signal, the velocity of the model, which is not used for control purposes and the
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Fig. 41. The simulation scheme for the scanning application of the feedforward velocity controller.

position of the model, which is applied as the reference signal for the classical feedback loop. The
complete control configuration for the application of 5 ¢ scanning is shown in Fig. 41 The control
scheme consists of the feedforward velocity controller and the feedback controller. Second order
discrete compensator suitable for the application of the Butterworth filter was used as the feedback
controller. The feedforward control signal is the signal, which would drive the simplified model of
the gondola in shortest time to the desired (reference) velocity. The actual control signal however
differs from the feedforward one because the actual system to be controlled differs from the ideal one.
The difference is due to the simple Model 3 used for the feedforward controller design and due to
non exact parameters of the gondola (mainly its eigenfrequency) used for the feedforward controller
design. For this reason the magnitude of the bang - bang control signal should be smaller than the
maximum applicable control signal (determined by the saturation of the actuator); only 50% of it
(5 V) were used in the simulation.

Fig. 42 depicts the velocity of the gondola response for step change in the velocity reference from
0% to1%s. In Fig. 43 the corresponding feedforward and actual control signals are shown. It can
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Fig. 42. The angular velocity response of the gondola to the step velocity reference signal of 1 %/s.

be seen that the change of the velocity is smooth and that the control signal does not saturate which
would be the case if only the position feedback controller would be used. The examples shown in
Figs. 42 and 43 illustrate the principle of the feedforward velocity controller, actual application of it
is the scanning mission.
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Fig. 43. The feedforward (dotted line) and actual (solid line) control signal of the velocity feedforward control
scheme due to the step velocity reference change of 1 %/s.

The simulation scheme for a typical scanning mission (between 0 © and 5 ?; period 2 minutes)
is shown in Fig. 41. The scanning movement of the gondola is achieved by a relay with hysteresis
which toggles the velocity reference between +5/60 = 0.0833 %/s. The time course of the azimuth
of the gondola with 30 % increased parameters and the corresponding control signals are shown in
Figs. 44 and 45 respectively. It can be seen that the actual scanning range is bigger than 5 0 and that

Gond.ang [deg]

(o] 50 100 150 200 260
Time (=]

Fig. 44. The azimuth of the gondola using feedforward velocity controller in a typical scanning mission; the actual
parameters of the gondola are +30 % increased to the nominal values.

the period is bigger than 2 minutes. This is due to the time lag of the controlled system. An other
possibility to realise the scanning reference signal is to apply a square wave (+5/60 = 0.0833 %s)
velocity reference with the period 2 minutes. In this case the period would be exact but the azimuth
range would be biased.

Fig. 46 depicts the azimuth errors (in arc ) to the extrapolated position using feedforward control
scheme (Fig. 41) for the nominal and 30 % deviated parameters (eigenfrequency) of the gondola.
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Fig. 45. The feedforward (solid line) and actual control signal of the velocity feedforward control scheme in a typical
scanning mission; the actual parameters of the gondola are +30 % increased to the nominal values.

15

Postion emor [are. |

o 80 1 150 200 250
Time [s]

Fig. 46. The azimuth errors (in arc *) to the extrapolated position using feedforward control scheme in a typical scan-

ning mission; the nominal parameters (solid line), 30 % increased eigenfrequency (dotted line) and 30 %
decreased eigenfrequency (dashed line).
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Fig. 47. Simulation scheme of the feedforward position controller.

7.2 FEEDFORWARD POSITION CONTROLLER

Due to the saturation of the actuator the designed controllers become unstable for large changes
of the reference position signal. The controllers designed in Sections 3. and 4. were optimised for
maximal +30 % deviations in gondola eigenfrequency and a maximum 10 © reference change. So a
feedforward position controller was designed to be used if larger changes in the reference position are
performed. The controller produces a sequence of positive - negative - positive or negative - positive
- negative feedforward control signals, which would transfer the simple model of the gondola with
nominal parameters from one to another position and a position reference signal, which corresponds
to the current position of the simple model. This is not an optimal closed loop position control, it
is an open loop point to point transfer. As shown in Fig. 47 the feedback controller corrects the ac-
tual control signal due to the deviations of the actual gondola azimuth from the position reference
signal of the feedforward controller. The mechanism of the feedforward controller is illustrated in
Figs. 48 and 49, which show the position reference signals and the corresponding feedforward con-
trol signals respectively, for maximum feedforward signals 10 V, 5 V and 2 V. To allow the feedback
controller to be able to compensate the deviations due to non exact model and parameters, the mag-
nitude of the feedforward signal should be smaller than the maximum allowable control signal. The
consequence of this is slower amplitude change response but higher robustness against changes in
the model structure and parameters.
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Fig. 48. The position reference signal (ideal response) of the feedforward controller for maximum feedforward con-
trol signals 10 V (solid line), 5 V (dashed line) and 2 V (dotted line) respectively.
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Fig. 49. The feedforward control signal for maximum feedforward control signals 10 V (solid line), 5 V (dashed line)
and 2 V (dotted line) respectively.

Figs. 50 and 51 depict the azimuth of the gondola and the corresponding control signals respec-
tively for the nominal and £30 % deviated eigenfrequency of the gondola and for a 10 0 change in
the reference position.
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Fig. 50. The closed loop responses to 10 © reference change with the feedforward controller for the nominal (wy =
21/100 - solid line), 30 % decreased (wy = 27/ 130 - dotted line) and 30 % increased (wp = 2r/70 - dashed
line) eigenfrequency respectively.

In Figs. 52 and 53 the same signals for a 100 ° change in the reference position are shown. It can
be seen that the signals for a 10 © change in the reference position are smoother than the correspond-
ing signals without feedforward controllers, while in the case of the 100 0 change in the reference
position the closed loop remains stable. There is again a trade-off between the duration of the tran-
sition (which may be decreased by increasing the feedforward control signal’s magnitude) and the
robustness of the control scheme.

8. SELFTUNING

The parameters of the gondola as system to be controlled are not exactly known and change be-
tween missions. The dominant dynamics of the gondola is influenced mainly by the moment of iner-
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Fig. 51. The control signals for 10 © reference change (feedforward + feedback controller’s signals for the nominal
(o = 21/100 - solid line), 30 % decreased (wp = 27/130 - dotted line) and 30 % increased (ty = 21/70 -
dashed line) eigenfrequency respectively.
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Fig. 52. The closed loop responses to 100 © reference change with the feedforward controller for the nominal and
+30 % disturbed eigenfrequency respectively (all signals overlapped).
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Fig. 53. The control signals for 100 9 reference change (feedforward + feedback controller’s signals for the nominal
(wp = 21/100 - solid line), 30 % decreased (g = 21t/130 - dotted line) and 30 % increased (W = 21/70 -
dashed line) eigenfrequency respectively.
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tia of the gondola and by the spring constant of the rope, which may change significantly. The gain
of the controlled system depends mainly on the gear ratio, which is fixed, and on the back generating
voltage constant, which may change with the temperature, but not significantly. So the designed con-
troller should be (self)adjustable to the dominant dynamic parameter i.e. eigenfrequency of the gon-
dola around vertical axis, (g, see Eq. (6) and robust against unknown dynamics in higher frequency
range (due to unknown moment of inertia of the coupling ring, coil resistance, torque constant), see

Eq. (4).

A selftuning feature was added to the controller, and was realised with the MATLAB - SIMULINK
design tools as two S functions; the identification part of the selftuning controller which is given in
the Appendix 3 and the adjustable controller, which is given in the Appendix 4.

The identification procedure (Appendix 3) starts after applying a O to 1 step change at the input 1
of the controller and excites the system by a maximum allowable voltage pulse of a duration, which
can be set by procedure’s parameters (2 seconds were used in simulation studies). The gondola starts
to oscillate due to this pulse and an estimation of the turning rate (provided by the Butterworth filter,
which yields in the interesting low frequency band quite good estimation of the turning rate; only
the angle of the gondola is measured!) is fed to the second input of the procedure. Maximum and
minimum of the gondola angle are detected by zero crossings of the turning rate. For safety reasons
two successive extremes are evaluated and the oscillation period is given as result if the estimated
half periods do not differ for more than a threshold, specified as a parameter of the procedure. After
successful estimation the procedure deexcitates the system (not completely, but to a certain degree)
by applying a pulse in inverse direction at the appropriate moment. For the time of estimation the
procedure serves a “busy" signal which opens the control loop and switches the actuator input to the
estimation procedure’s control signal output. Other outputs of the procedure are the estimated period
and the “data valid” signal. The estimated period is also available in the global area of variables.

The parameter determination of the adjustable controller (Appendix 4) starts after applying a 0
to 1 step change at its input No. 1. Input No. 2. is the normal input to the controller (filtered control
error signal). The adjustable controller is a time scaled version of the discrete controller designed
in Section 4.. This is possible due to the simple Model 3, which is actually an oscillator plus an
integrator. The eigenfrequency of the oscillator part of the model changes with the changing moment
of inertia of the gondola and with the spring constant of the rope. The integration part of the simple
Model 3 (its gain) does not change with the changing eigefrequency of the gondola. If this would
be the case (i.e. if the gain of the integration part would be proportional to the eigenfrequency),
the simple model would change with the eigenfrequency of the gondola only in time scaling and
the only modification of the controller to be performed would be to scale it in time accordingly. So
the controller must be scaled in time and in gain with respect to the changing eigenfrequency of the
gondola system. The controller designed in Section 4. was optimised with the nominal period of
the gondola oscillations 100 s and with the sampling rate 25 Hz. The time scaling was realised by
transforming the designed discrete controller to the continuous time (continuous time controller’s
parameters are stored in the on board computer) and then transform it back to discrete time with
respect to the sampling time and the scaling (ratio of the estimated period and 100 s). Taylor series
expansion was applied for the discretisation of the system and all terms with degree higher than 2
were neglected. This design was tested by simulations on the most accurate Model 1 and was proven
to be adequate.
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Fig. 54 depicts the simulation scheme for a typical mission. It consists of a selftuning controller,
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Fig. 54. Simulation scheme for a typical mission.

an adjustable feedback controller, a feedforward position controller and a feedforward velocity con-
troller. The sequence of events is as follows: first the selftuning procedure is started ( at ¢ = 1 s after
beginning of the simulation). At ¢ = 500 s the gondola is turned for 50 © and at # = 700 s the scan-
ning (2.5 © amplitude, 1 minute period is started. The results of the simulation are shown in Fig. 55
(azimuth of the gondola) and Fig. 56 (corresponding control signal) for the actual parameter (oscil-
lating period) being 200 s and in Fig. 57 (azimuth of the gondola) and Fig. 58 (corresponding control
signal) for the actual parameter (oscillating period) being 50 s.
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Fig. 55. The time course of the gondola azimuth for a typical mission and the actual period of the gondola oscillations
200 s.
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Fig. 56. The time course of the control signal for a typical mission and the actual period of the gondola oscillations
200 s.
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Fig. 57. The time course of the gondola azimuth for a typical mission and the actual period of the gondola oscillations
50s.
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Fig. 58. The time course of the control signal for a typical mission and the actual period of the gondola oscillations
50s.
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9. ADAPTIVE CONTROL OF OSCILLATIONS

As described in Section 2. an undesired motion around the x axis can occur due to the unsymmet-
ric loading of the gondola. The frequency of these oscillations is unknown but it is supposed to be
between 0.3 and 3 Hz. More critical however is that the sign of the driving torque, which depends
on the relative position of the loading unsymmetry and the current position of the gondola, is not
known. In the root locus diagram the submodel for the oscillations around the x axis corresponds
to a pair of conjugate complex poles (very close to the imaginary axis) and to a pair of conjugate
complex zeros, which in the case of symmetric loading cancels out the poles making the horizontal
oscillation part uncontrollable from the input (motor turning the balloon around the vertical axis). In
the case of unsymmetric loading however, the root locus may pass to the right half of the complex
plane as illustrated in Fig. 59, making the closed loop unstable.
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Fig. 59. Root locus plots for a negative (a) and a positive (b) unsymmetric loading.

Two methods for adaptive elimination of this fast parasite part unstability were realised and com-
pared. The first one is an adaptive notch filter [4, 3] which automatically detects the unknown fre-
quency and correspondingly sets its centre frequency. Second one is a fourth order adaptive But-
terworth filter which sets its cut off frequency to the undesired motion frequency. This changes the
phase of the input signal with this frequency for 180 ©. In this application the notch filter is used as
a frequency identifier only.

9.1 ADAPTIVE OBSERVER - NOTCH FILTER

Continuous time state space description of the observer - notch filter is as follows:
. |0 —ox 280,
= o T[S
y = [-1 0]x+u (21)

where @; is the centre notch frequency and { is the desired damping of the observer error; 2{w,
corresponds to the bandwidth of the notch filter. If the centre notch filter frequency w, is unknown,
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the adaptive notch filter must be applied which automatically adjust its centre frequency according
to

kadapt
knorm + HX”2

where kq44p is the adaptive gain, kyom the normalising gain and ||x|| the Euclid norm of the notch
filter state. The normalised version of adaptation law is used in order to make the adaptation inde-
pendent of the amplitude of the input signal.

0y = Xy X X2 (22)

The discrete version of the adaptive observer - notch filter can be obtained by discretisation of
the continuous time form (Eqns. 21 and 22). For realisation in a small on board computer a Taylor
series expansion is used and only two terms are taken into account yielding

X — 1- ﬁm,%(k) -tsmx(k) X 21;C(l)x(k)
k) ts:)x(k) 1_§m§(k)] (k)+[r3Cw3(k)]y ©
y(k) = [=1 0]x(k)+u(k)

_ tskadapt
oxk+1) = k) + Knorm + |[x(K)|12 x y(k) x xa(k) (23)

Also an “Update Enable ” signal is added which disables the frequency estimation update during
the application of feedforward signals. This is to prevent the estimated frequency drift due to the
non periodic signals, which change the direction of the gondola rotation. The corresponding M file
is given in Appendix 5.

Fig. 60 depicts the simulation scheme for a typical scanning mission with the adaptive observer
- notch filter in the loop. The selftuning and position feedforward controllers are not shown on the
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Fig. 60. Simulation scheme for a typical scanning mission with the adaptive observer - notch filter in the loop.

scheme. The parameters for the pendulum motion around the x axis are chosen to be M, = 200 kg,
I, = 1 m, Iy = 30 kg m? and T; = 0.1T yielding the eigenfrequency f; = @,/2n = 1.3 Hz. The
time course of the identified notch filter frequency is shown in Fig. 61. The drift of the estimated
frequency after the feedforward signal comes to its steady state is not completely eliminated due
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Fig. 61. The time course of the identified notch filter frequency.

to control signal needed to compensate the mismatch of the ideal model used for the velocity feed-
forward controller an the actual process model. Fig. 62 depicts the angle Oy, i.e. the angle of the
gondola with respect to the x axis while in Fig. 63 the corresponding control signal can be seen.
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Fig. 62. The time course of Oy, (the angle of the gondola with respect to the x axis); adaptive observer - notch filter
in the loop.

The notch filter eliminates the undesired oscillations from the input signal by introducing a pair
of zeros which cancels out the pair of conjugate complex poles. The oscillatory submodel becomes
in this way uncontrollable and oscillations decrease by natural (very low) damping. However due
to periodic turn around of the gondola azimuth velocity the undesired oscillations are periodically
excited. Since the frequency tracking is lost during the turn around of the speed of the gondola, the
oscillations increase until the correct notch filter frequency is recovered.

9.2 ADAPTIVE BUTTERWORTH FILTER

An other approach to cope with the undesired oscillations is the fourth order adaptive Butterworth
filter. The idea of this approach is to control the oscillations rather than to cancel them out of the
control signal. The fourth order filter is chosen because it turns the phase of the cut of frequency for
180°. In this approach the adaptive observer - notch filter is used to estimate the unknown undesired
frequency and to detect whether or not the oscillations are increasing. So an oscillation’s detection
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Fig. 63. The control signal; adaptive observer - notch filter in the loop.

algorithm was added to the adaptive notch filter listed in Appendix 5. The algorithm detects the
periods of oscillations by detecting the crossing of the zero value of the filtered signal velocity. A
period is denoted as an oscillatory period if:

o the integrals of positive and negative half periods do not mismatch for more than a threshold
(10 % is used in simulations) and

o the amplitude of oscillations is bigger than a threshold (1V is used in simulations) and

o the estimated frequency is more than a threshold (0.1 rad/s used in simulation) apart from the
frequency range (0.3 Hz to 3 Hz) margins.

If the number of successive oscillatory periods is beyond a threshold (3 is used in simulations) the
output signal “Oscillations Detected” is issued, the amplitude threshold is set to the current amplitude
of oscillations and the threshold for required successive oscillatory periods is doubled. This proce-
dure corresponds to the Nussbaum gain [5, 6] in the adaptive control of systems with an unknown
high frequency gain.

If no zero crossing is detected for more than the longest expected period, or if the amplitude of
the oscillations decreases below 25 % of initial amplitude threshold, all thresholds are reset to the
initial ones.

Initially the adaptive Butterworth filter is turned off. If the oscillations are detected by the adap-
tive observer - notch filter, then the adjustable Butterworth filter, listed in Appendix 6, is turned on
with the cut - off frequency set to the estimated frequency of oscillations. If the Butterworth filter
is on and oscillations are detected, it is turned off. For simple realisation in an on board computer
the discrete time version of the filter is transformed from the continuous time version by the Taylor
expansion ( two terms only).

Fig 64 depicts the simulation scheme for a typical scanning mission with the adaptive Butter-
worth filter in the loop. Fig. 65 depicts the angle Oy, i.e. the angle of the gondola with respect to the
x axis while in Fig. 66 the corresponding control signal can be seen.

The undesired oscillations increase until the adaptive observer - notch filter detects them and
the Butterworth filter is switched on (at approximately 11 seconds). The phase of the control signal
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Fig. 64. Simulation scheme for a typical scanning mission with the adaptive Butterworth filter in the loop.
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Fig. 65. The time course of @, (the angle of the gondola with respect to the x axis); adaptive Butterworth filter in
the loop.
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Fig. 66. The control signal; adaptive Butterworth filter in the loop.
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Fig. 67. The control signal - adaptive Butterworth filter in the loop; a detail.

oscillations is changed for 180 © as shown in Fig. 67, which depicts a detail from the Fig. 66. This
stabilises the system and the oscillations decrease with a higher damping than the natural one.

10. CONCLUSION

A control system for the azimuth control of the balloon gondola using a simple actuator was de-
veloped. After preliminary studies of the continuous time controllers an optimal discrete time con-
troller suitable for the realisation in a small on - board computer was designed. The controllers were
compared in the frequency and in the time domain.

The disturbance rejection of typical disturbances (a ramp signal with the slope 360 0 in half an
hour or so; a sinusoidal disturbance with the period 30 seconds or so do not meet the specifications
for missions where precise tracking is required. This drawback could be improved by the cost of
the controller’s robustness. The controller was designed to be stable for 10 0 step reference change
and +30 % mismatch of the dominant dynamic parameters. Increasing these tolerances improves
the controllers characteristics with respect to the disturbance rejections, however at a risk the closed
loop to become unstable if the actual tolerances are greater or if the Model 1 is not precise enough
and there are some uncertainties in the modelling.

Feedforward position and velocity controllers were designed for application in typical missions
such as scanning, changing targeting objects etc. A selftuning procedure for selfadjusting of the digi-
tal controller to the dominant dynamic characteristics of the controlled balloon gondola is presented.
Finally two adaptive approaches for the elimination of undesired oscillation around a horizontal axis
are given and compared. In the first one an adaptive observer - notch filter is used to eliminate the
undesired oscillations from the control signal and the oscillations of the gondola vanish by natural
damping. The second approach uses the adaptive observer - notch filter as a frequency identifier
only. An algorithm for the detection of the oscillation is added to the filter and an adaptive fourth
order Butterworth filter is used to invert the phase of the undesired high frequency oscillations which
decrease with a higher than the natural damping.
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APPENDIX 1

FEEDFORWARD VELOCITY CONTROLLER

function[sys, x0]=velocco(t,x,u, flag, nxk_£f,U_max_m2, toler, Tsamp)
Feedforward velocity controller:

u is the new velocity reference

x(1) and x(2) are states of the oscillatoty part of the model
x(3) is integrator of the model

X(4) is the storage for the calculated control signal

nxk_f is the product of n and k_f

U_max_m2 is the maximum magnitude of the feedforw.control signal
toler is the tollerance to switch off the bang - bang charact.
Tsamp is the sampling time

00 0P J° O° 0 9P I I O P o

omega_0 is calculated from 2*pi/T _estimated;
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% T estimated is transferred by common block

%

if abs(flag) == 2,

% the discrete states:

Sys=X;

if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps,

% temp is the control signal;

% templ is the velocity in the transient or ref. veloc.elsewhere
% the switching curve

Ref=nxk_f*u;
if abs(Ref)>U_max_m2
Ref=U_max_m2*sign(Ref) ;
end
y=x(2)-Ref;
yd=x(1);
templ=x(2);% valid only out of toler
temp2=0; % this is the damping inside toler, outside=0!
dvaummr=2* (U_max_m2-Ref) ;
dvaumpr=2* (U_max_m2+Ref) ;
if y"2+yd~2<toler”2
temp=min (abs (Ref) ,U_max_m2) *sign(Ref) ;
temp2=-1.414*yd;
templ=Ref;
elseif y>0
if y>dvaummr
temp=-U_max_m2*sign(yd) ;
else
temp=-U_max_m2*sign (yd+sqrt (dvaummr*y-y~2));
end
else
if y<-dvaumpr
temp=-U_max_m2*sign(yd) ;
else
temp=-U_max_m2*sign (yd-sqgrt (-dvaumpr*y-y~2));
end
end
% model for the reference evaluation
global T_estimated Acd Bcd Ccc Dcc
omega_0_m=2*pi/T_ estimated;
sys(1)=x(1)—(omega_O_m*Tsamp)*x(2)+Tsamp*omega_O_m*(temp+temp2);
sys (2)=(omega_0_m*Tsamp) *x(1)+x(2) ;
sys(3)=x(3)+ (Tsamp/ (nxk_£f) ) *templ;
sys (4)=temp;
end
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elseif flag == 3,
% the output ot the M function:
sys(l) = x(4);
sys(2) x(2)/(nxk_£);
sys(3) x(3);
elseif flag == 4,
$ next event (sampling time)
numSamp = floor(t/Tsamp + le+8*eps);
sys = (numSamp + 1) *Tsamp;
elseif flag == 0,
% initialization
% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sys = [0 4 310 1];
% initial conditions
x0 = [0 0O 0 0];

else
% Flags not considered here are treated as unimportant.
sys = [];
end

APPENDIX 2

FEEDFORWARD POSITION CONTROLLER

Look up table:
omxx = [0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20,
0.40, 0.60, 0.80, 1.00, 1.50, 4.00]
omyy = [0, 0.2799, 0.3590, 0.4172, 0.4653, 0.5074, 0.6730
0.9184, 1.1220, 1.3068, 1.4807, 1.8895, 3.7880]
function [sys, x0] = referco(t,x,u,flag,nxk_£f,U_max m2,...
omxx, omyy, Tsamp)
Feedforward position controller;
u is the new position reference
x(l), x(2) & x(3) are times to change output
x(4) is the reference to be reached
x(5) is the sign of the change;
x(6) and x(7) are states of the oscillatoty part of the model
Xx(8) is integrator of the model
nxk_f is the product of n and k_f
U_max_m2 is the maximum magnitude of the feedforw.contr.signal
omxx,omyy is the look up table
Tsamp is the sampling time

90 0P 0P IC 0P 0P d0 P O o oP
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%
% omega_0 is calculated from 2*pi/T estimated;
% T_estimated is transferred by common block

%
if abs(flag) == 2,
% the sates:
SYsS=X;
if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps,
if (x(1)==0)&(x(2)==0)&(x(3)==0) %Contr. is not in transition!
if abs(u-x(4))>0.1 % reference has changed!
sys{4)=u;

% calculate the bang - bang points!
oma=u-x(4) ;

sys(5)=sign{oma) ;

temp=abs (oma) *nxk_f£f/ (2*U_max_m2) ;
global T estimated Acd Bcd Ccc Dcc
omega_0_m=2*pi/T_estimated
templ=temp*omega_0_m;
temp2=fix(templ/pi) ;
temp3=templ-temp2*pi;
xl=interpl (omxx, omyy, temp3) /omega_0_m;
sys (1) =x1l+temp2*2*pi/omega_0_m;
sys(2)=2*(x1-temp3/omega_0_m) ;

sys(3)=x1;
end
sys(6)=0; % transition is finished; reset the model!
sys(7)=0;

sys(8)=x(4)+(x(8)-x(4))*0.96; %$bumpless transfer
else % Transition in progress
temp=x(1l) -Tsamp;
Sys=X;
sys(l)=temp;
if temp<=0
sys(1)=x(2};
sys (2)=x(3);
sys(3)=0;
sys (5)=-x(5);
if x(2)==
sys(5)=0;
end
end
% model for the reference evaluation
global T estimated Acd Bcd Ccc Dcc
omega_0_m=2*pi/T_estimated;
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sys (6)=x(6) - (omega_0_m*Tsamp) *x(7) +. ..
X (5) *U_max_m2* (omega_0_m*Tsamp) ;

sys(7)=(omega_0_m*Tsamp) *x(6) +x(7) ;

sys(8)=x(8)+ (Tsamp/ (nxk_£f)) *x(7);

end
end
elseif flag == 3,
% output:
sys(l) = x(5)*U_max_m2; % delj z 2 zaradi varnosti
sys(2) = x(7)/ (nxk_f);

sys(3)= x(8);
elseif flag == 4,
% next event (sampling time)
numSamp = floor(t/Tsamp + le+8*eps);
sys = (numSamp + 1) *Tsamp;
elseif flag == 0,
% initjalization
% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sizes(6) = 1;
sys=[0 8 31 0 11;
% initial conditions
x0=[0000O0O0O0O0];

else
% Flags not considered here are treated as unimportant.
sys = [1];
end

APPENDIX 3

SELFTUNING CONTROLLER

function [sys, x0] = selftco(t,x,u,flag,imp_dur,waitl_t, ...
wait2_t,n_of_trials, toler,U_max, Tsamp)

selftuning controller;

u(l) is signal to start selftuning 0 to 1 transition

u(2) is the filtered derivative of the azimuth

x(1) is the current state of the selftunning procedure

-2 - waiting for start on beginning

- waiting for start after unsucessful trial

- waiting for start after sucessful trial

- applying positive signal to actuator for imp_dur sec.

- waiting for first maximum

0P J0 0 0 P dO I de P

N R o
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-999
x(2) is
x(3) is
x(4) 1is
imp_dur
waitl_t
wait2_t
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waiting for first minimum
waiting for second maximum
and so on until x(1) = n_of_trials

waiting for a minimum to deexcitate the system

deexitating the system
internal timer for calculating the period
the memory for old input u

the memory: half period if x(1)>0 or period if x(1)=0

is the duration of exitation impulse

is the waiting time to start detection of the next extr.

is the maximum waiting time for an extrem

n_of trials is the maximum number of extrema to be evaluated
toler in % is the allowable tolerance of the time difference

between two succesive extrema
Tsamp is the sampling time

output (1) = busy flag
0 - not busy
1 - selftunning in progress
output (2) = flag of succesful estimation
0 - estimation in progress; data not valid
1 - estimation finished; data valid
-1 - estimation uncussesful; data not valid
output (3) = estimated period
output(4) = control signal
if abs(flag) == 2, %discrete states
Sys=X;

if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps
if x(1)<=0 & u(l)>0.5 & x(3)<0.5
sys(l) = 1;% Start the selftuning
sys(2) = 0;
disp(’Starting selftunning’)
elseif x(1)==1 % exitation phase

if x(2) >= imp_dur;

sys(l) = 2; % excitation phase over,
sys(2) = 0; % reset timer
else
sys(2)=x(2)+Tsamp;
end
elseif x(1) == 2 % looking for first maximum

if x(2) > waitl_t & u(2) <O
disp(’'First maximum detected’)

start phase 2

sys(l) = 3; % detected, go to the next phase

This document is provided by JAXA.



Adaptive Balloon Azimuth Control Using a Simple DC Motor Actuator 45

sys(2) = 0; % reset timer
else
sys(2)=x(2)+Tsamp;
end
elseif x(1) == 3 % looking for the first minimum

if x(2) > waitl_t & u(2) >0
disp(’'First minimum detected’)

sys(l) = 4; % detected, go to the next phase
sys(2) = 0; % reset timer
sys(4) = x(2);
else
sys (2)=x(2) +Tsamp;
end

elseif x(1)>=4 & fix(x(1))-x(1)<0.5 %$looking for next maximum
if x(2) > waitl_t & u(2) <0
disp (’'Next maximum detected’)
if (x(4)-x(2))/x(2)<=toler % OK success!
sys(1)=-998;
sys(2)=0; % reset the timer
sys(4)=x(2)+x(4); % put the estimated period

disp(’'OK’) % to internal memory
else
sys(l) = x(1)+1; % go to the next phase
sys(2) = 0; % reset timer
sys(4) = x(2);
disp(‘'Failed’)
end
else
sys(2)=x(2)+Tsamp;
end

elseif x(1)>=5 & fix(x(1))-x(1)>0.5 % looking for minimum
if x(2) > waitl_t & u(2) >0
if (x(4)-x(2))/x(2)<=toler % OK success!
sys(1)=-999;
sys(2)=0; % reset the timer
sys(4)=x(2)+x(4) % put the estimated period

disp('OK’) % to internal memory
else
sys(l) = x(1)+1; % go to the next phase
sys(2) = 0;
sys(4) = x(2});
disp('Failed’)
end

else
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sys(2)=x(2)+Tsamp;

end
elseif x(1)

==-998 $waiting for the deexcitation of the system
if x(2) > waitl_t & u(2) >0

sys(2) = 0; % reset the timer
sys(l) = -999

disp(’'Starting deexcitate’)

else
sys(2)=x(2)+Tsamp;

end
elseif x(1

==-999 % deexcitate the system

if x(2) >= imp_dur;

else

end
end

if x(1)>=2 & (x(2)>=wait2_t|x(1)>n_of_trials);

sys(l)=-
end
sys(3)=u(l)
end
elseif flag ==
$outputs
if x(1)==0 |
sys(1)=0;
else
sys(l)=1;
end
if x(1)==
sys(2) =
elseif x(1) =
sys(2) =
else
sys(2) =0

sys(3)=0;
end
if x(1)==1

sys(1)=0 % OK finished!!!!
global T_estimated Acd Bcd Ccc Dcc

T estimated=x(4); % put the value to global

sys(2)=x(2)+Tsamp;

1; %$test for time over or No. of trials over

.
7
3,

x(l)== -1 | x(1)== -2

1;
= —1;
_1;
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sys (4) =U_max;
elseif x(1)==-999
sys(4)=-U_max;
else
sys(4)=0;
end
elseif flag == 4,
% next event (sampling time)
numSamp = floor (t/Tsamp + le+8*eps);
sys = (numSamp + 1) *Tsamp;
elseif flag == 0,
% initialization
% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sys = [0 4 420 0]’;
% initial conditions on the states
x0 = [-2 000 ]1;

else
% Flags not considered here are treated as unimportant.
sys = []:

end

APPENDIX 4

ADJUSTABLE DISCRETE CONTROLLER

function [sys, x0] = adjustcl(t,x,u, flag, Tsamp)

% adjustable controller;

% u(l) is signal to set parameters if u(1) goes from 0 to 1
% u(2) is the input of the controller

% x(1,2) is the state of the controller

% x(3) is the memory for old input u

% x(4) is the memory for the scaling value

% x(5) is the memory for the output value (sample and hold)
% Tsamp is the sampling time

%
%

output (1) = control signal
if abs(flag) == 2, % discrrete states
sSys=X;
if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps
scalling=x(4);
if u(l)==1 & x(3)==0 $%set period value
global T_estimated Acd Bed Ccc Dcc
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sys(4)=100/T estimated;
scaling=100/T_estimated;
$ Calculation of controller parameters
Acc=[ 23.579385 25.0259002;
-25.0259002 -26.3170467];
Bce=[-4215.6125;

4073.0102];
Acd=eye(2)+Acc*(Tsamp*scaling)+AccA2/2*(Tsamp*scaling)Az;
Bcd=(Tsamp*scaling*Bcc+(Tsamp*scaling)A2/2*Acc*Bcc)*scaling;
Ccec=[1 0];

Dcc=1569.2313*scaling;
end
% Calculation of the new controller states
global T estimated Acd Bcd Ccc Dcc
sys(1:2)=Acd*x(1:2)+Bcd*u(2);
% Calculation of output
sys(5)=Ccc*x(1:2)+Dcc*u(2);
sys(3)=u(l);
end
lseif flag == 3,
% output
sys(1)=x(5);
lseif flag == 4,
% next event (sampling time)
numSamp = floor(t/Tsamp + le+8*eps);
sys = (numSamp + 1) *Tsamp;
lseif flag == 0,
% initialization
% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sys = [051201]';
% initial conditions
x0 = [0 0 010];
% Initialization : a backup robust controller
Acc=[ 23.579385 25.0259002;
-25.0259002 -26.3170467];
Bcc=[-4215.6125;
4073.0102];
global T_estimated Acd Bcd Ccc Dcc
T _estimated=100;
scaling=100/T estimated;
Acd=eye(2)+Acc*(Tsamp*scaling)+Acc“2/2*(Tsamp*scaling)“2;
Bcd=(Tsamp*sca1ing*Bcc+(Tsamp*scaling)“2/2*Acc*Bcc)*scaling;
Cce=[1 0];
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Dcc=1569.2313*scaling;

else

% Flags not considered here are treated as unimportant.

sys = [];
end

APPENDIX 5

ADAPTIVE OBSERVER - NOTCH FILTER

49

function [sys,x0]=a_no_det(t,x,u,flag,k,1b,ub,Tsamp,zeta,toler)

output (2)
output (3)
output (4)

dePdePdePdPdePdePdePdePdePdePdePdePdePde@d@

I

Adaptive Notch filter + oscillation detector
x(1:2) - states of the filter

x(3) - estimated frequency

x(4) - timer for detecting of nonoscillatory behaviour
x(5) - integral of positive halfperiods
x(6) - integral of negative halfperiods
x(7) - counter of detected oscillation periods
x(8) - flag for detected oscillations

x(9) - treshold of numbers of detected osc. periods.
x(10) - treshold for amplitude of oscillations

u(l) - noth filter input
u(2) - adaptation disable signal (u(2)=0 for adaptation)
k - constant for adaptation of the notch filter(-0.2 recomm.)
lb - lower bound of oscillations (2*pi*0.3)
ub - upper bound on oscillations (2*pi*3)
Tsamp - sampling time (1/25)
zeta - width of the notch filter,

also damping of transition (0.7 recomm.)

estimated oscillations
estimated radial frequency
"oscillations detected" signal

toler_amp=toler(1l);
toler_succ_osc=toler(2) ;
toler_band=toler(3);

if abs(flag)==

toler(l) - treshold on the amplitude of oscill. (0.1 recomm)

toler(2) - initial treshold of nubers of detected oscillatori
periods for rising the output (3 recomm.)

toler(3) - tollerance on frequency bounds (0.05 recomm.)

output (1) - filtered output of the notch filter
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% the discrete states:
Sys=X;
if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps,
% Notch filter parameters
a=[1-1/2*Tsamp"2*x(3) "2, -Tsamp*x(3) ;...
Tsamp*x(3), 1-1/2*Tsamp”2*x(3)"2];
k_notch=[2*Tsamp*zeta*x(3);...
Tsamp”2*zeta*x(3)"2];
sys(1l:2)=a*x(1:2)+k_notch*(u(l)-x(1));
% frequency update
if abs(u(2))<1
omg_new=x(3)+k*x(2) * (u(1)-x(1))/(0.01+x(1)"2+x(2)"2);
if omg new <= 1b
sys (3)=1b;
elseif omg_new >= ub
sys (3} =ub;
else
sys(3)=omg_new;
end
end
% Oscillation detector
if x(1)>0 % integrate positive and negative halfperiods
sys (5)=x(5)+x(1);
else
sys (6)=x(6)-x(1);
end
if sys(1)>=0 & x(1)<0 % detect positive crossing of 0
if abs ((x(5)-x(6)+x(1))/max(x(6),toler_amp/4))<0.1 &
(x(5)+x(6)-x(1))*x(3) *Tsamp/4>x(10) &
x(3)>(1b* (l+toler_band)) & x(3)<(ub*(l-toler_band))
sys(7)=x(7)+1; %increase counter of succesf. periods
else % reset

sys(7)=0;
sys(8)=0;
end
sys(4)=0; $ reset watchdog for oscillations
sys(5)=0; % Reset integrals of halfperiods
sys(6)=0;
if sys(7)>=x(9); % oscillation detected
sys (7)=0; % reset the counter
sys(8)=1; % set flag for detected oscillations

sys(9)=2*x(9); % double the treshold
sys(10)=(x(5)+x(6)-x(1))*x(3) *Tsamp/4; % set ampl. tr.
end
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if x(4)>2*pi/lb|(x(5)+x(6)—x(1))*x(3)*Tsamp/4<toler_amp/4
sys(4)=0; % no oscillations; reset everything
sys(5)=0;
sys(6)=0;
sys(7)=0;
sys(8)=0;
sys(9)=toler_succ_osc;
sys(10)=toler_amp
end
end
end
elseif flag==3
% the output ot the M function:
sys=[u(l)-x(1); x(1); x(3); x(8)];
elseif flag==
% next event (sampling time)
numSamp = floor(t/Tsamp + le+8*eps);
sys = (numSamp + 1)*Tsamp;
elseif flag==
% initialization
% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sys=[0 10 4 2 0 0];
% initial conditions
x0=[0 0 (1lb+ub)/2 00 0 0 O toler_succ_osc toler_amp];

else
% Flags not considered here are treated as unimportant.
sys = [];
end

APPENDIX 6

ADJUSTABLE BUTTERWORTH FILTER

function [sys, x0] = adjubutt (t,x,u, flag, Tsamp)

adjustable Butterworth filter;

u(l) is the input of the filter

u(2) is signal to set parameters if u(2) goes from 0 to 1
u(3) is the cuttoff frequency

x(1:4) is the state of the controller

x(5) id the memory for old u(2)

X(6) is the state for "on - off"
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% Tsamp is the sampling time

% output(l) = control signal

% output(2) = derivative of the filtered output
if abs(flag) == 2, % discrrete states

sys=X;

if abs(round(t/Tsamp)-(t/Tsamp)) < le+8*eps
if u(2)==1 & x(5)==0 % oscillation detected
global T _estimated Acd Bcd Ccc Dcc Akomp Bkomp Ckomp Dkomp
if x(6)== % Filter is off, turn it on
disp(’turn filter on’)
Apom={[-2.6131 -3.4142 -2.6131 -1.0000];
eye(3),[0;0;011;
Bpom=[1;0;0;0];
$controller parameters
% use global for memory
uuu=u(3);
Akomp=eye(4)+Apom*(Tsamp*uuu)+ApomA2/2*(Tsamp*uuu)Az;
Bkomp=Tsamp*uuu*Bpom+(Tsamp*uuu)“2/2*Apom*Bpom;
Ckomp=[0 0 0 13
Dkomp=0;
else % turn it off
disp('turn filter off’)
Ckomp=1[0 0 0 01;
Dkomp=1;
end
end
% Calculation of the new controller states
global T estimated Acd Bcd Ccc Dcc Akomp Bkomp Ckomp Dkomp
sys (1:4)=Akomp*x(1:4)+Bkomp*u(l);
sys(5)=u(2); % old u(2) value, to detect front
end
elseif flag == 3,
% output
global T_estimated Acd Bcd Ccc Dcc Akomp Bkomp Ckomp Dkomp
sys (1) =Ckomp*x(1:4)+Dkomp*u(l);
sys(2)=[0 0 1 0]*x(1:4); % derivative
elseif flag == 4,
% next event (sampling time)
numSamp = floor(t/Tsamp + le+8*eps);
sys = (numSamp + 1) *Tsamp;

elseif flag == 0,
% initialization
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% No. of continuous states, discrete states, system outputs,
% length of input u, unused feature, direct feedthrough flag
sys = [0 6 2 3 0 1]';
% initial conditions
x0 = [00 000 07;
% Initialization : a backup filter cutt off = 2*pi*1Hz
Apom=[[-2.6131 -3.4142 -2.6131 -1.0000];
eye(3),[0;0;0]1;
Bpom=[1;0;0;0];
%controller parameters
% use global for memory
global T_estimated Acd Bcd Ccc Dcc Akomp Bkomp Ckomp Dkomp
uuu=2*pi*l;
Akomp=eye(4)+Apom*(Tsamp*uuu)+ApomA2/2*(Tsamp*uuu)“Z;
Bkomp=Tsamp*uuu*Bpom+(Tsamp*uuu)“2/2*Apom*Bpom;

Ckomp=[0 0 0 01;
Dkomp=1; % controller is off
else
% Flags not considered here are treated as unimportant.
sys = [];

end
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