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ABsTRAcT: Transient cool-down process of a fluid from an initial high temperature to a target temperature in a closed
container is investigated numerically. The fluid has a quadratic density-temperature relationship, and the maximum
density occurring at T,,. Cooling is accomplished by abruptly lowing the sidewall temperature, and the mean
temperature passes through T, in the course of cool-down. A finite-volume method is employed to acquire numerical
solutions to the full, time-dependent two-dimensional Navier-Stokes equations. In order to simulate the realistic
situations under micro gravity, the Rayleigh number, Ra, encompasses the range 10° < Ra < 10%. The effects of the
density inversion on the cool-down are illuminated. Based on the structures of the sidewall boundary layer, three
characteristic flow regimes are identified at early time. The qualitative early-time behavior is determined by the
density inversion factor. Evolutions of the global fields of flow and temperature of each flow regime are described.
The analysis of time-dependent heat transfer characteristics reveals that the cool-down process is divided into several
definite transient phases. The relevant time scales for the overall cool-down process are estimated. The specific effects
of the Rayleigh number, density inversion factor, and the aspect ratio of the container on each evolutionary stage
are elaborated.

1. INTRODUCTION

In liquid storage tanks equipped in space facilities, it is often required that the contained fluid
should be maintained at a low temperature. Cool-down of a liquid from the initial-state high
temperature to a target temperature is a crucial mission in this system. Cooling is accomplished by
adopting cooling elements around the tanks. Under terrestrial condition, the Rayleigh number, Ra,
which is a principle control parameter of these problems, is very large, i.e., Ra=10'"~10', Transient
cool-down process is governed by fully turbulent convection. Even under micro-gravity condition
(8~107°g,, g, is the terrestrial gravity), Ra is still large, Ra>>1, i.e., the buoyancy effects are
substantial. Cool-down is driven by natural convection rather than by conduction. A key element is
to predict the time scale for the fluid to reach a desired temperature level. These are based upon a
proper understanding of the time-dependent structures of flow and temperature fields.

Another concern of the present study is the effects of density inversion in the course of
cool-down. Transient buoyant convection of an initially-isothermal fluid in an enclosure, in response
to the changes in thermal boundary conditions, has been widely studied. Discussions have been
centered on the evolutions of convective flow pattern and temperature field, and to the relevant scales
of time, velocity and boundary layer thickness. Comprehensive reviews on this subject were given by
Ostrach [I] and Hyun [2]. The great majority of previous studies have been performed under the
Boussinesq fluid approximation, which stipulates a linear relationship between density and tempera-
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ture. However, for water and certain liquids, density can not be described by a monotonic linear
function of temperature near the melting point (see, e.g., [3]). Instead, density o reaches its
maximum at a specific temperature T,,, and p decreases when temperature deviates from T, in both
directions. The best known example is water which has maximum density at T,,=3.98°C and many
beverages have a similar property. This nonlinear behavior, termed the density inversion, brings forth
a major dynamic ingredient to natural convection.

Recently, buoyant convection of an enclosed fluid with density inversion has been studied by
numerical computations and laboratory experiments [4-16]. These works revealed the prominent
impacts of the density inversion in various flow configurations. Most of these studies deal with
primarily steady-state situations [4-10]. A literature survey discloses that comparatively scanty
attention has been given to transient natural convection with density inversion.

Robillard and Vasseur [11] investigated convective cooling of water near 4°C in a rectangular
cavity with a constant cooling rate applied on all boundaries. Numerical and experimental studies on
the transient natural convection of water in a sidewall-heated cavity were recently conducted by
Braga and Viskanta [12] and McDonough and Faghri [/3]. In the initial state, motionless and
isothermal water at a high temperature T; (> T,,) filled the rectangular cavity. The temperature of one
sidewall was abruptly lowered and kept at T,,=0°C, while the opposing wall temperature was
maintained at the initial value T, =T;. Tong and Koster [/4] numerically investigated a similar
problem using different initial conditions, i.e., T;=Tn. Numerical solutions demonstrated good
agreement with the experimental results, which illustrated the general influences of density inversion
on the transient flow and temperature fields and heat transfer characteristics.

Systematic studies of cool-down (or heat-up) of the entire body of an initially-isothermal liquid
with density inversion to a desired temperature have been scarce. Vasseur and Robillard [I5] and
Robillard and Vasseur [I6] numerically investigated the transient natural convection of water ina
rectangular cavity, with varying aspect ratios and initial water temperatures in the range 4C<T; <
10°C. Temperatures at all solid boundary walls were abruptly changed to 0°C. Time-dependent
evolutions of the subsequent flow and temperature fields were portrayed. However, their results were
restricted to the range of relatively small Rayleigh numbers, 2.9 X 10° to 8 X 10* Therefore, the
convection effects were not pronounced; consequently, the time-dependent variations of the
numerically-acquired Nusselt number did not deviate much from the pure conduction solution. In
addition, due to the limited coverage of the relevant parameters, the effects of the Rayleigh number
and of the initial temperature (the density inversion factor) on the global cool-down process were not
elucidated.

In this study, comprehensive and detailed numerical simulations are carried out to describe the
cool-down of a liquid contained in a vertical cylinder through its maximum-density temperature; the
entire body of an enclosed fluid of initial temperature T;(>Ty) is cooled by altering the sidewall
temperature abruptly to T, (< T,,). The present calculations cover a much extended range of values
of the Rayleigh number, aspect ratio and density inversion factor. The objective is to gain a thorough
basic understanding of the underlying physical phenomenon in the convective cool-down process
encompassing the maximum-density temperature. The impetus of this paper is to depict dominant
transient flow and temperature fields and the associated cooling characteristics of earlier stages of
cool-down. Emphasis will be given to the specific impacts of density inversion on the transient cooling
process. Special concern will be devoted to depicting the distinctive transient phases in the course of
cool-down. Scalings will be provided to characterize each transient stage and the influences of the
principle parameters on the overall cool-down time scales will be scrutinized.

2. MATHEMATICAL FORMULATION

Consider a vertically-mounted cylinder of radius R and vertical height H, which is completely
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Fig. 1. Schematic diagram of the flow configuration.

filled with a liquid of kinematic viscosity v, thermal diffusivity £. The vertical axis of the cylinder is
antiparallel to the gravity. Maximum density of the fluid, o,,, occurs at the temperature 7=1T,,. The
fluid is initially at rest and isothermal at temperature T;(>T,,). At =0, the whole vertical sidewall
is abruptly cooled to temperature T,,(< T,,). The horizontal endwalls are thermally insulated. Fig. 1
shows a schema of the flow configuration and coordinate system. It is assumed that the fluid is
Newtonian and incompressible, and all the fluid properties are constant except for the density in the
buoyancy term. The density p is assumed to obey a quadratic density-temperature relationship in the
vicinity of the maximum-density temperature T, [17]:

L —10-8 (-1, (1)
m
where § is the volumetric expansion coefficient for a density-inversion fluid.
For comparison, the conventional Boussinesq fluid approximation states a linear density-
temperature relationship:

P —10-a (T-T), )
where p, and T, indicate reference quantities and a is thermometric expansion coefficient for a
Boussinesq fluid. <
The flow is governed by the time-dependent Navier-Stokes equations, which, in nondimensional
form, are expressed as

Ou 1 0 2 0 __0Op [ Pr 172 2, U
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where V2= 1 —‘l 9 + —. In the above, standard notation is employed, i.e., p is the pressure,

rar or 0z%°

6 the temperature, ¢ the time, (7, z) the radial and vertical coordinates, and (u, v) the velocity
components corresponding respectively to (r, z) directions. Non-dimensionalization was effectuated
in the following fashion:

t=1*(RaPr)? 5 R @)
(u, w) = (u*, w*) (RaPr)~"? %, (8)
(r. z2)=(",z")/R, 9)
8= TL;_—TT"‘— (10)

where * denotes dimensional quantities and g is the gravitational acceleration.
The relevant non-dimensional parameters are

— p.)gR?
Ra= M, the Rayleigh number; (12)
OmVK
=v/K, the Prandtl number; (13)
A=H/R, the aspect ratio of the cylinder; (14)

Note that, as shown in equation (12), the Rayleigh number is defined by using the difference between
the maximum density and the density at the cold sidewall. This definition of Ra is similar to that of
the cold-side Ra adopted by Lankford and Bejan et al.[6]. A slightly different form of Ra was
selected in Refs. [12, 13, 15], in which the density difference Ap=p,,—p, o0 denoting the density at
the mean temperature (7; +T,) /2, was employed.

In line with the problem description, the initial and boundary conditions are

u=w=0 and =7, for £ <0, (15)
where
=(T;—Tm)/ (Tm—Ty), (16)
and for t=>0
u=w=0and 6=—1atr=1; an
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Clearly, 7 in equation (16) indicates the level of the initial-state temperature T}, relative to T, and T,,;

7 will be termed the density inversion factor.
3. NUMERICAL MODEL

The system of equations (3)-(6) was solved numerically by employing a finite-volume procedure
based on the SIMPLER algorithm [18]. The governing equations were discretized on a staggered
grid. Spatial differencing schemes of the second-order accuracy were adopted for the equation terms.
A central differencing was used for the diffusion terms, and a recent version of the QUICK scheme
[19] was utilized for the nonlinear convective terms. All of the boundary conditions were treated by
using second-order differencings. Time integration was accomplished by using an iterative Eulerian
implicit method of first order accuracy in time. The resulting accuracy of the present numerical
method is O(Ax, At*), where Ax is the grid spacing and At the time step used in calculations.
Convergence of the solutions was declared at each time step when the maximum relative change
between two consecutive iteration levels falls below 10~ for u, w and 6. A parallel checking was
performed to ensure that mass continuity in every computational control volume should be satisfied
within a relative error 1078,

Verification of the present numerical model was achieved by repeating a multitude of calculations
of the previous results [12-15]. Fig. 2 illustrates the reliability and accuracy of the present numerical
model. The experiment No. 1 (T; =T, =8°C, T, =0°C, Pr=11.82) of Braga and Viskanta [12] was
reproduced and the results at two time instants were compared with their numerical and experimental
results. For this test, a strectched grid network of 62 X 62 nodes was used and Az was 1 second. The
flow patterns and temperature fields are generally similar to those of numerical results of Braga and
Viskanta (see Figs. 2-3 in [12]). The difference can be found in the size of the circulating cell in the
lower left corner. The present numerical model produced a bigger cell, which is in closer agreement
with the visualized flow patterns (Fig. 4 in [12]). Comparisons were also made of the horizontal
temperature profiles at three representative heights (Fig. 5 in [12]). Fig. 2(c) reveals that the present
numerical model gives a better prediction of the experimental data than that of Braga and Viskanta
[12]. Thease results illustrate the reliability of the present model. The improved agreement with
experimental results can be attributable to the fact that the present numerical method adopted
higher-order spacial differencing schemes than that of Braga and Viskanta [12]. Additional runs
were repeated with different grids and time steps. For the temperature field at 15min (at 30min), the
maximum difference between 62X 62 and 82X 82 nodes was 4.9% (10.4%) and the maximum
difference between 62X62 and 102X 102 nodes was 5.8% (15.3%). The large differences were
monitored only near the border between the two counter-rotating cells across which the temperature
varies sharply. In the other regions, the differences at 15 minute (30 minute) were less than 1% (2%).
The solutions were shown to be almost insensitive to Az if At is small enough to resolve the boundary
layer formation.

For the present problem, numerical computations were conducted for selected sets of (Ra, A) by
varying 7 in the range 0< 7y <3.0. The parameters were chosen to simulate realistic problems under
micro-gravity condition; the selected values of Ra and 4 were Ra=10% 10°and 107, and 4 = 1.0, 2.0,
5.0, 10.0. The resulting Rayleigh number based on the height of the cylinder, Ray, encompassed the
range of 10°< Ray <10°. The Prandtl number, Pr, was set Pr=1 1.573, which is the typical value for
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Fig. 2. Results of a verification test of the present numerical method for Experiment No. 1 of Braga and Viskanta
[12]. The time instants are 15 minute for left column and 30 minute for right column. (a) Predicted
streamlines, (b) predicted isotherms, (c) horizontal profiles of temperature at three different height. In
Fig. 2(c), the solid lines and symbols represent the numerical and experimental results of Braga and
Viskanta [I2], respectively and the present numerical results are shown by broken lines.

Table 1. Computed sets of (Ra, 4), and grid points and time steps used
for calculations.
Ra A Number of grid time step, At
10° 1.0 52X 52 0.01
108 1.0 62X 62 0.01
107 1.0 72X72 0.01
10° 2.0 62X72 0.01
10° 5.0 72X102 0.005
10° 10.0 82X 122 0.005 for y<1.0

0.002 for y > 1.0

water near 3.98°C. Depending on the value of Ra and 4, different grid meshes and time step were
used. To resolve thin boundary layers adjacent to the solid walls, grid stretching was implemented
such that at least 5 grid points were located in the boundary layer. The computed cases, grids and time
steps used in the present calculations are listed in Table 1.
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4. EARLY-TIME FLOW CHARACTERISTICS

Before proceeding further, it is helpful to have a brief overview of the flow structure adjacent to
the sidewall at very early times. It is noted that Ra/Prt>>1 for all the present runs. Based on the
scaling argument of Patterson & Imberger [20], the flow regime in the early stage is of the
boundary-layer type. In response to the impulsive change in the sidewall temperature, the thermal
boundary layer forms on the sidewall, in which vertical flow is induced by buoyancy force. This layer
grows until the heat conducted out to the sidewall balances that convected in by the vertical currents.
Since Pr > 1, momentum is diffused into the core outside the thickness of thermal boundary layer. This
generates a secondary viscous layer, which is governed by the inertia-viscous balance. This assertion
is valid in depicting the general early-time behavior of cool-down. However, in comparison with the
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Fig. 3. Early time evolutions of vertical velocity (left column) and density (right column) near the sidewall
atz=0.5. Ra=10% A=1.0. (a) 7=0.2; (b) 7=0.3; (c) 7=0.5.
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Boussinesq fluid, the buoyancy-induced flow of a fluid with density inversion presents a more
complicated picture.

Fig. 3 exemplifies the structures of vertical boundary layer, which depict the early time evolutions
of vertical velocity and density near the sidewall at the vertical mid-depth plane (z=A4/2). The
influence of the density inversion in determining the buoyancy force is schematically illustrated. For
y>0, there exists a buoyancy force reversal inside the thermal boundary layer; the sign of the
buoyancy force is positive (upward) in the wall-side of the boundary layer while it is negative
(downward) in the core-side (see, e.g., [21, 22]). Owing to this character, three flow patterns,
depending on the value of 7, can be identified at early times in the thermal boundary layer.

When 7 is small (see Fig. 3(a)), the positive buoyancy force prevails in the bulk of the vertical
thermal boundary layer. Only in a narrow zone of the layer, the negative buoyancy exists. However,
this negative buoyancy is outweighed by viscous shear force, which is locally effective in such a thin
area between the dominant upward motion and the solid wall. Consequently, the resulting boundary
layer flow is predominantly upward, which is referred to as flow regime 1. On the other hand, for large
7 (see Fig. 3(c)), a situation opposite to the cases of small 7 develops. The buoyancy force is mostly
negative in the vertical thermal boundary layer. The positive buoyancy force is restricted in a very
narrow region adjacent to the sidewall. Accordingly, the flow in the vertical thermal boundary layer
is predominantly downward, which is referred to as flow regime IIL The intermediate pattern, flow
regime II, is illustrated in Fig. 3(b). For a moderate value of 7, a flow reversal, associated with the
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Fig. 4. Summary of the results in the 7-Ra domain. In the figure, A represents flow regime I; @, flow regime II;
W, flow regime III. A single circle represents the cases in which a weak secondary boundary layer wave
forms. The double circles indicate the cases in which more than three boundary layer waves are developed.
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buoyancy force reversal, exists; both the upward and downward motions are present in the vertical
thermal boundary layer. This is the case when the magnitudes of positive and negative buoyancy
forces are comparable. It is noteworthy that the velocity profiles of flow regimes II and III resemble
those of the lower and upper branch similarity solutions for the case of an infinite vertical wall with
density inversion [2], 22].

The results of the present runs are summarized in Fig. 4. The essential qualitative character of
flow in the early stage of cool-down can be classified into the above-described three categories. Fig.
4 indicates that the influences of Ra and 4 in determining the flow regime are generally meager. The
qualitative flow characteristics at early times of the cool-down process are determined mainly by a
single parameter 7. In the present study, only discrete points in the parameter space were covered.
Therefore, it posed difficulties in evaluating the exact values of 7 at which demarcations between two
flow regimes are located. Obviously, flow regimes I and III are seen for small and large values of 7,
respectively, and flow regime II occurs only in a narrow range of 7.

5. DESCRIPTION OF THE OVERALL TRANSIENT COOL-DOWN

Exemplary plots showing the transient flow patterns and temperature fields of flow regime I are
illustrated in Fig. 5 for Ra=10%, 4= 1.0, and 7=0.0. For this specific case with no density inversion,
the overall cool-down process is qualitatively similar to that for a Boussinesq fluid with a negative
value of @ in equation (2). At small times, the thermal boundary layer forms on the sidewall and the
upward flow in this layer drives the counter-clockwise (CCW) circulations. The thermal boundary
layer forms on the sidewall and it grows to a thickness 67 ~O(Ra~/*PrV/241/ %) in time t ~O(Pr'/2
A2y [2, 20]. The heat transfer rate at the sidewall is estimated as

3l 2 (20)
As the sidewall boundary layer is fully developed, the upwelling currents via the sidewall boundary
layer produce a viscous intrusion layer, which propagates in the horizontal direction near the upper
endwall, as displayed in Fig. 5(b). The front of the cold fluid parcels moves downward in the interior
core after the horizontal intrusion layer reaches the central axis of the cylinder. Following the front
movement, a stable density stratification is established in the interior core as shown in Fig. 5(c). The
CCW circulation cell fills the full cylinder and the interior stratification is established with the fluid
of §<0. According to the previous scaling argument [2, 20], this process takes a convective time
scale, t~O(Ra"*Pr'/4"/#). In this transient phase, the structure of the thermal boundary layer is
largely unchanged. Consequently, the heat transfer rate in this phase remains almost constant.

Afterwards, convective cooling in the interior progresses, and the mean temperature (density) of
the interior fluid decreases. The circulations weaken with time and cool-down in this stage slows
down. Finally, the flow undergoes a slow diffusively-controlled approach toward the stationary and
isothermal steady state.

Fig. 6 typifies transient flow and temperature fields of flow regime II for Ra=10%A4=1.0, and 7=
0.3. At very early times, the thermal boundary layer forms on the sidewall. F ig. 6(a) demonstrates the
presence of flow reversal in the vertical thermal boundary layer. Both the upward and downward
flows are developed in the wall-side and core-side regions of the thermal boundary layer, respectively.
These produce an isolated CCW circulation cell near the sidewall. Noting Pr>1, the downward
momentum (velocity) is diffused into the viscous layer outside the thermal boundary layer, which
creates a clockwise (CW) circulation cell in the interior. Consequently, the flow field is characterized
by a bi-cellular structure, which consists of two counter-rotating cells.

Similarly to the case of y =0, the horizontal propagation of intrusion layer is visible in Fig. 6(b).
However, following the intrusion, the region occupied by the isolated CCW cell is expanded in the
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]

Fig. 5. Sequential plots showing isotherms (left column) and stream functions (right column). Ra = 106,'A =1.0,
and y=0.0. The time instants are (a) ¢=5; (b) t=20; (c) t=60. The contour increments are A¢ =0.0005
and AG=0.1.

neighborhood of the upper horizontal endwall. The border between the CW and CCW cells
approximately coincides with the line of density maximum (8=0), as was reported in [I2-14]. The
front of the cold fluid parcels moves downward in the interior as the horizontal intrusion is being
accomplished. The CCW circulations fill the full cylinder and the subsequent transient characteristics
are similar to those in the final stage of cool-down described for y=0.

The transient response of flow regime III is exemplified in Fig. 7, for Ra= 10%, A=1.0, and 7=
1.0. As in the afore-described regimes, the vertical thermal boundary layer forms at early times, as
shown in Fig. 7(a). The flow in the vertical thermal boundary layer is entirely downward. According-
ly, the full cylinder has the CW circulations only, and the horizontal intrusion is seen in the lower part
of the cylinder. It is noticeable in Fig. 7(b) that two CCW circulation cells appear; one in the central
part and the other near the lower sidewall corner. The former is due to the local baroclinicity reversal
(change in the sign of 8p/0r) in the central region. This cell is maintained in a short period, and its
impact on the overall cool-down process is minor.

It is useful to monitor the evolution of the latter CCW circulation cell. The horizontal intrusion
delivers cold fluid parcels to the lower part of the cylinder. The maximum density line (9=0) moves
further toward the interior side, which produces a different environment for the fluid in the lower
corner region. In the lower corner region, & becomes negative and p decreases monotonically toward
the sidewall. Consequently, the positive buoyancy force is created in this region. This, in turn, induces
upward velocity near the sidewall, which generates a new CCW circulation cell isolated in the lower
corner region.
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Fig. 6. Same as in Fig. 5, except for y=0.3. (a) t=10; (b) r=30; (c) t=60. Isotherms of positive 8, and the
contours for negative ¢ (CW circulation) are shown by broken lines.

r=1 r=0

Fig. 7. Same as in Fig. 6, except for 7= 1.0. (a) 1=3; (b) t=20; (c) t=30; (d) t=60. A¢=0.0005 for positive
¢ and A¢=0.001 for negative ¢.

This document is provided by JAXA.




12 Report No. 667

Here, it is important to describe the roles of the CW and CCW circulations. The CW circulations
provide convective cooling in the interior by delivering cold fluid parcels which was cooled at the
sidewall. Due to the CW circulations, the front of cold fluid parcels propagates upward. Following the
front, stable density stratification is established in the interior. With the progress of the core
stratification, the CW circulations weaken and they vanish at large times. Heat transfer at the sidewall
in the region of the CCW circulation cell (below the separation point) gives rise to cooling for the
fluid in this isolated region. This causes the isolated CCW circulation cell to grow with time. Since the
stable stratification in the interior blocks the horizontal expansion, this CCW circulation cell grows
mainly in the vertical direction along the sidewall as shown in Figs. 7(b-d). This transient character,
termed the sidewall boundary layer restructuring, is a phenomenon unique to flow regime III.

The boundary layer restructuring implies that there exists a separation point on the sidewall across
which the flow changes its direction. The boundary-layer flows below and above this point have
similar qualitative structures to those of the lower and upper branch similarity solutions for the
boundary layer on an infinite vertical wall with density inversion [4, 5 ]- The thermal boundary layer
thickness above the separation point is much smaller than that below the separation point. Conse-
quently, the heat transfer rate decreases with the advance of boundary layer restructuring.

As the sidewall boundary layer restructuring is fully achieved, a second horizontal intrusion
appears in the upper part of the cylinder. The transient process afterwards is akin to that of flow
regime II.

The flow restructuring in the cool-down of an enclosed fluid with density inversion was reported
by Vasseur and Robillard [15]. They presented the half-domain numerical solutions by assuming the
symmetry about the vertical center line. Fig. 2 in [15] showed the presence of three transient stages,
which depicted the results of the specific case for y=1.0 (this belongs to the flow regime III of the
present paper). At the beginning of cooling process, a CW circulation cell is induced in the right half
cavity. In the next stage, a CCW circulation cell is created from the lower right corner region, and it
grows upward to push the original CW circulation cell. Finally, only the newly-developed CCW
circulation fills the right half cavity. However, the transient restructuring in [15] was not restricted
in the region adjacent to the sidewall; the newly-developed CCW circulation cell occupies the full
lower part of the cavity, spanning horizontally from the interior to the sidewall. As a result, the flow
pattern in the second stage displays two counter-rotating circulation cells which are vertically stacked.
All the results in [15] illustrated the same characteristics. This discrepancy can be attributed to the
difference in the thermal boundary condition; the horizontal walls of the cavity considered by Vasseur
and Robillard [15] are a perfectly conducting wall of T=T,,, while the upper and lower endwalls of
the present cylinder are thermally insulated. Due to the constant-temperature condition at the
horizontal walls, the line of the maximum density lied in the horizontal direction. Along this line, the
newly-developed CCW circulation could grow in the horizontal direction.

The transient phenomenon similar to the boundary layer restructuring was also explored in
unsteady natural convection of a fluid near its density maximum in a sidewall-heated cavity [12-14].
The transient flow patterns for the cases with a large density inversion reveal a pair of counter-
rotating circulation cells. Near the lower corner of the cold wall, a circulation cell is seen which
rotates in the opposite direction to the dominant circulation which occupies most of the cavity. It is
conspicuous in Fig. 3 of [13] that this corner cell grows upward along the sidewall. Owing to the
constraint in the problem setup, this cell stopped growing at a certain vertical level. The full boundary
layer restructuring depicted in the present cool-down problem was not discussed explicitly.

6. BOUNDARY LAYER WAVES

It is of value to point out one finding of interest. Fig. 8 shows the results at a high Ra(Ra=10"),
with 7=0.5, and 4 = 1.0. The general features of boundary layer restructuring process are similar to
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Fig. 8. Same as in Fig. 6, except for 7=0.5, Ra=10". (a) t=25; (b) t=40.

that in Fig. 7. However, it is clearly visible that the wave-like flow patterns form in the boundary layer
below the separation point. There exist two centers of the CCW circulations. Following the primary
mode, secondary and higher-mode waves are discernible and they move in the upward direction with
time.

These transient flow characteristics are also monitored at a lower Ra with a large aspect ratio. Fig.
9 exemplifies the boundary layer restructuring process for Ra=10°, 4 =10.0, and 7=0.5. Initially, a
CCW cell appears in the lower corner region and it moves upward. However, the boundary layer
below the separation point becomes unstable, thus, generates subsidiary modes. In Fig. 9(c), three
waves traveling along the sidewall are seen. The flow exhibits several CCW cells and CW cells, which
are arranged in the vertical direction. After the primary mode of the boundary restructuring reaches
the upper endwall, the cold parcels propagate downward in the interior core region. The developed
waves travel upward and disappear eventually as the front of cold fluid parcels moves downward in
the interior core.

The above-described boundary layer waves were previously ascertained in other flow configura-
tions, e. g., natural convection of a Boussinesq fluid in the sidewall-heated cavity [23, 24]. For a very
large Ra with 4 =0(1) [23],0ra moderately large Ra with a large 4 [24], boundary layer waves were
reported to develop in the sidewall boundary layer. One assertion is that these waves may be
responsible for bringing permanent unsteadiness and, thus, providing origins of turbulence.

The present results concerning the existence of boundary layer waves are also summarized in Fig.
4. It is obvious that the boundary layer waves are captured when Rq and 4 are large, namely, the
Rayleigh number based on the vertical height of the cylinder, Ray (=RaA %), is sufficiently large. At
a relatively small Ray (indicated with a single circle in Fig. 4), only a weak secondary wave forms but
it soon decays due to the pronounced viscous and thermal diffusions. At a larger Ray, the generation
of boundary layer waves becomes more active, and several succeeding modes are created although
they disappear eventually with the progress of cool-down. Here, it is worth pointing out that, in the
present cool-down problems, the boundary layer waves are developed at a much smaller Ray, than for
a Boussinesq fluid. In a sidewall-heated cavity with 4=1, they are seen for Ra~10° [23]. In
particular, as shown in Fig. 4, the boundary layer waves are developed at much smaller Ray for
moderate values of 7 (e.g., 7=0.5) than for small or large values of 7- A plausible explanation can be
made. The flow reversal in the boundary layer due to density inversion is most conspicuous near the
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Fig. 9. Same as in Fig. 7, except for 4 =10.0 and Ra=10°. (a) t=25; (b) 1=40; (¢) t=55. A¢=0.005.

border of flow regime II and III. The boundary layer is prone to instability in the presence of flow
reversal in the boundary layer. The velocity shear due to the flow reversal creates an environment for
the boundary layer to be unstable so as to generate boundary layer waves. Consequently, owing to the
density inversion, the boundary layer instability is seen to occur at a much smaller Rag than for a
Boussinesq fluid.

7. TRANSIENT PHASES AND TIME SCALES

Time-dependent heat transfer characteristics are described. Fig. 10 depicts the temporal variation
of the Nusselt number at the sidewall for the case of Ra= 107, A=1.0, and y=1.0. The Nusselt
number, Nu, is defined as

__ L a0
Nu= 1o or ., 4z 21)
Fig. 10 suggests that the full cool-down process can be divided into four distinguishable transient
phases. The first, phase I, represents the formation of the sidewall boundary layer. Nu decreases very
rapidly with the growth of thermal boundary layer, although the overall value of Nu is very large. In
phase II, Nu decreases at a reduced rate. Phase II is associated with the afore-mentioned sidewall
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boundary layer restructuring. Phase III corresponds to the transient stage, in which the upper
horizontal intrusion and downward propagation of the cold fluid parcels with 8 <0 take place. In this
phase, temporal variations of Nu are very small, since the structure of the thermal boundary layer
remains virtually unchanged. In the final phase IV, Nu decreases slowly with time, which is closely
related to the afore-mentioned decrease in the effective Rayleigh number.

Phasell Phase Il | Phase lil I Phase IV
t ,_-'I by I i ‘,-J ty
_
> -
102—:
B N
N _.,c’_\\\__\_
x
1 \ \\
17 \
3 L} T T T ' T T T T ' L) T T T [ T 1 T T —l
0 100 200 300 400
t

Fig. 10. Phases in the evolution of the Nusselt number. Rg = 10’, 4=1.0, and y=1.0.

The effects of 7 on the temporal behavior of Nu are illustrated in Fig. 11(a). It is seen that phase
II, relating to the boundary layer restructuring, exists only for y>>0.5, while phases I, III and IV are
discernible for all the cases. The time duration for phase II increases with 7. The general transient
behavior in phases I, III and IV is similar. The temporal oscillations which are seen in phase III for
7=0.4 indicate the influences of boundary layer waves. The oscillations of small frequencies are more
pronounced for y=0.4 and 7=0.5. These are in line with the regime diagram of Fig. 4.

The effect of 4 on time-dependent heat transfer characteristics is demonstrated in Fig. 11(b). It
is notable that the qualitative features of overall transient heat transfer becomes similar if the abscissa
is expressed as t/(RaPr’A)'/*. In particular, the effect of 4 is inconspicuous in phase IV. Fig. 12
illustrates the overall cool-down process by monitoring the time-dependent variations of the mean

fluid temperature, 6, which is defined as

5=2 [ /6 rarz. (22)

The temporal behavior of & is generally consistent with the variation of Nu.

Finally, discussions will be focused on the issue of the relevant time scales in cool-down. The
characteristic cool-down time scales can be assessed by examining the time durations of the
afore-mentioned transient phases. The transition between two successive phases is judged by means of
the graphical analysis of the time-dependent Nu curves as shown in Fig. 10. The characteristic curves
of four phases are acquired by fitting of the numerical data, and the transition is identified by
searching for the intersection point of the curves of two successive phases. The final adjustment
process at large times in phase IV becomes diffusive in nature, and it takes place over a long time span.
Thus, the time duration for phase IV is estimated up to the time at which 8= —0.9, as shown in Fig.
12. Admittedly, a certain amount of arbitrariness is involved in the present classifications of relevant
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Fig. 11. Effects of 7 and A on the evolution of Nu. (a) Ra= 107 and 4 =1.0; (b) Ra=10% 7=1.0.
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Fig. 12. Temporal variations of the mean fluid temperature. Ra =10, 4=1.0, and 7=1.0.

phases. The main effort is to provide an overall descriptive picture of qualitative essentials of the
global cool-down process.

Based on the above method, the time scales of the four transient phases were calculated, which are
summarized in Fig. 13. It is clear that f; increases with 7, and ¢; reaches a maximum around at 7=0.4.
For large values of 7, t; decreases in proportion to 1/7. The heat transfer rate at the cold wall in the
presence of the flow reversal in the vertical boundary layer (for y=0.3, 0.4) is smaller than that
without the flow reversal (7<0.2 and 7>>0.5). Note that 7 in the former case is also larger than those
of latter cases. Consequently, for flow regime II (for r=0.3, 0.4), it takes more time for the sidewall
boundary layer to grow to its full thickness. However, it is stressed that a precise estimation of #; is
immaterial; the overall magnitude of ¢; is much smaller than other time scales (note the difference in
units of time in the coordinates of Fig. 13).

The estimated values of ¢;; are plotted in Fig. 13(b). It is immediately clear that t;; increases with
7; the effects of Ra and 4 on ty, scaled by Ra'*4'3, are minor. Data analysis of the numerical results
leads to a correlation

tu/(Ra"* Pr'/2 4'/%)=0.5686(y —0.4771)* 2%, (23)
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Fig. 13. Scaled time durations for each phase described in Fig. 10. O, Ra= 10°, 4=1.0; (J, Ra = 105 4A=1.0;
AN, Ra=10", 4=1.0; ®, Ra= 10°, 4=2.0; W, Ra= 10%, 4=5.0, A, Ra=10% 4=10.0.

which is shown in the solid-line curve in Fig. 13(b).

Figs. 13(c) and (d) display t;; and ¢;,. The impact of 7 on t;; and #,y is noticeable only for small
values of 7. In particular, t;; and Liv are nearly independent of 7 for large values of 7. In addition, t,;;
and #;y, scaled by (Ra4)"'* and Ra'’* respectively, exhibit only minor dependency on Ra and A. This
provides an order-of-magnitude estimation for tir and tyy. The independence of t;; and t;y on 7 can be
explained by the following physical argument. It can be deduced from Fig. 1 and F ig. 6, that the mean
temperature falls below 0 in phase III. This implies that the explicit effects of the density inversion
decays away in this phase. It is worth recalling that the density inversion effects are represented by the
parameter 7. The present Ra is based on the difference between the maximum density and the density
at the cold sidewall. Therefore, Ra in the present study is decoupled from the direct effect of density
inversion.

By using the definitions of 7 and Ra in the present formulation, the effect of 7 turns up mostly in
the early stages of cool-down when the density inversion is a principal dynamic element. The effects
of 4 becomes insignificant with the progress of cool-down. The parameter Ra becomes the dominant
controlling factor in the medium- and large-time adjustment processes when the density inversion
effect has subsided.

4. CONCLUSION

The early-time behavior of the boundary-layer flows is controlled largely by the density inversion
factor 7. Evolutions of the global fields of velocity and temperature are characterized by Ra and 4
when 7 is very small, and the general features are similar to those of the conventional Boussinesq fluid.
The flow reversal in the thermal boundary layer is possible for intermediate values of 7. For large 7,
a single cell flow structure is initially developed by the downward flow in the boundary layer.
Afterwards, an oppositely-rotating circulation cell emerges from the lower corner region, and the
subsequent boundary-layer restructuring along the sidewall is monitored. These are reflective of the
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pronounced effects of density inversion in the transient cool-down process. The horizontal intrusion
and downward convective filling of cold fluid parcels are seen to follow. Afterwards, slow convective
cooling of the fluid is achieved at large times.

The results of the present computations disclose the presence of boundary layer waves traveling
along the sidewall. These waves emerge for a large Ray, but they are developed at a much smaller Ray
for moderate values of 7 than for a Boussinesq fluid.

The temporal variations of Nu disclose the presence of four distinct phases, which is in line with
the description of transient flow and temperature fields. The time durations of the early phases are
strongly affected by the strength of density-inversion. The overall times pertinent to the global
adjustment process are shown to scale with Ra'/*.
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