高温気流連続燃焼実験装置

辻 廣•竹 野 忠 夫•堀 守 雄
Design，Construction and Performance of the ISAS
High－Enthalpy Air Flow Combustion Tunnel
By
Hiroshi Tsuji，Tadao Takeno and Morio Hori

Abstract

The ISAS ceramic－heated combustion－tunnel was designed and constructed with the object of providing a means of studying problems associated with combustion in a high－enthalpy air flow，including super－ sonic combustion The constructed pebble－bed heater using alumina refrac－ tories provides air temperatures of up to $1450^{\circ} \mathrm{C}$ ，and the run time is five minutes duration at the maximum air flow rate of $1 \mathrm{~kg} / \mathrm{sec}$ ．The Mach number of the supersonic air stream is 1.9 ．Much of the report is given over to the design of the facility and the necessary control system，and the details of the operation process of the tunnel are included．The test results of the facility are discussed and the performance actually obtained is found to be almost satisfactory．

Abstract

概 要 超音速燃焼の研究を行うことを主目的とし，さらに高温の亜音速流中の燃焼現象を研究す る目的で，空気流温度を広い範囲にわたって制御するととができる高温気流連続燃焼実験装置を設備した。本装置の中心部をなす高温気流発生装置には，蓄熱式アルミナ・ペブル加熱器が用いられており，この加熱器内のペブルは，都市ガスを燃焼させて，約 $1600^{\circ} \mathrm{C}$ にまで加熱され，蓄熱される，常温の空気を，蓄熱されたペブル・ベッドを通過させて一定温度 （ $1450^{\circ} \mathrm{C} \pm 50^{\circ} \mathrm{C}$ ）の高温空気とし，（1）超音速燃焼実験の場合には， $200 \varnothing$ 超高温 急開弁，超音速ノズルを経て超音速燃焼器に，また（2）亜音速燃焼実験の場合には， 100 め超高温急開弁を経て混合器に送りてむ。ての場合，高温空気と加熱器をバイパスして供給 される常温の空気とが混合器内で混合され，所定の温度に調節された高温空気が亜音速燃焼器に送られる。加熱器を通過する最大空気流量は $1 \mathrm{~kg} / \mathrm{sec}$ でっての流量での放熱持続時間 は5分，高温の超音速空気流のマッハ数は1．9である。なお，本報告には実験装置の制御系統および実験操作手順などがまとめて記述されており，最後に，性能試験結果について検討 が行われている．

1．ま え が き

宇宙航空研究所における実験設備整備計画の一環として，超音速燃焼実験装置を中核とし た高温気流連続燃焼実験装置の建設が進められ，1974年，との装置の建設がほぼ完了し，現在，との装置を利用していろいろな種類の実験研究を行っている。との機会に，本実験装置 を設置したいきさつと設備の概要について取りまとめて報告する。

2．超音速燃焼［1］～［5］

極超音速で飛行する長距離航空機用のエンジンとして，また大規模な宇宙探究用大型ロケ ットの回収可能なブースタとして，極超音速ラムジェットエンジンの開発が話題にのぼって から約20年になる．極超音速航空機のエンジンはもちろんのとと，宇宙飛行体に対するブー スタも比較的空気の密度がうすくない大気中で作動するので，これらのエンジンやブースタ として，非常に高いマッハ数で飛行可能なAir－Breathingエンジンである極超音速ラムジェ ットエンジンが適しており，また将来性がある。 このAir－Breathing エンジンが化学ロケッ トモータに比べて優れている点は，飛行体は燃料だけを搭載し，燃焼に必要な酸素は大気中 から取り入れることであり，そのため推進剤の消費率は著しく減り，燃料比推力は化学ロケ ットモータに比べて1桁近く大きくなり，かつ推進剤やタンクの重量，ひいてはエンジン全体の重量やその大きさが減少するととである，またブースタとしても容易に回収するととが でき，宇宙飛行体の打上げ費用も軽減されるという利点あある。
$2 ~ 6$ 程度の比較的低いマッハ数での飛行を対象にしたラムジェットエンジンにおいては， エンジンに入った空気流は亜音速にまで減速されて燃焼室に入り，そのため燃焼室での空気 の静圧や温度は上昇し，ことで燃料が噴射され，火炎が保炎器に保持されて，亜音速流中で安定な燃焼が行われ，燃焼ガスはノズルを通って噴出される。

しかし，飛行マッハ数が更に高くなるにつれて，空気流を亜音速にまで減速させると，燃焼器内での空気流の静圧や温度は急激に上昇し（第1表），燃料比推力も急激に減少する。そ れとともに，構造および椧却の面から考えて燃焼器そのものの設計もまた困難になる。また飛行マッハ数が非常に高い場合には，燃焼器に入る空気は高温のため解離しはじめ，更にと

第1表 超音速および亜音速燃焼ラムジェットの燃焼条件の比較

	亜音速燃焼ラムジェット		超音速燃焼ラムジェット	
	バーナ入口	バーナ出口	バーナ入口	バーナ出口
よどみ圧力回復係数	0.013		0.5	
燃 焼 室 圧 力	75 atm	75 atm	2.7 atm	2.7 atm
気 流 温 度	$4,500^{\circ} \mathrm{K}$	$4,210^{\circ} \mathrm{K}$	$1,250^{\circ} \mathrm{K}$	$2,640^{\circ} \mathrm{K}$
気 流 速 度	$430 \mathrm{~m} / \mathrm{sec}$	$520 \mathrm{~m} / \mathrm{sec}$	$3,340 \mathrm{~m} / \mathrm{sec}$	$3,360 \mathrm{~m} / \mathrm{sec}$
気 流 マッハッ数	0.33	0.38	4.85	3.28

飛行マッハ八数 12 ；高度 30 km ；燃料 水素；理論混合比；水素噴出速度 $3,900 \mathrm{~m} / \mathrm{sec}$

の状態で燃料を噴射しても，燃料分子もまた解離をおてし，燃料噴射後の平衡温度はかえっ て噴射前の空気温度よりも低くなるという事態がおてる。 よって非常に速い飛行に対しては， エンジン内での空気流の減速は燃焼器内の空気の静圧や温度が燃焼に適した状態に保てる程度にとどめておく必要があり，そのため必然的に燃焼器内の空気流速は超音速となり，超音速気流中に燃料が噴射されて燃焼（いわゆる超音速燃焼 Super sonic Combustion）が行わ れ，燃焼ガスは加速されて噴出される。

とのような事情で超音速燃焼ラムジェット（Supersonic Combustion Ramjet，略して Scramjet）が脚光を浴びるようになった。とのスクラムジェットの比推力もまた飛行マッハ数が増大するにつれて減少するが，マッハ数が 20 位でもなお化学ロケットモータの比推力に比べて $4 ~ 5$ 倍の値を保ち，スクラムジェットは飛行マッハ数の広い範囲にわたって優れた性能をもっている。しかしての優れた性能は，超音速気流中で安定かつ定常な燃焼が可能と なり，かつ非常に短い時間内に火炎反応を終了させるという重要な問題（例えば，第 1 表に示したスクラムジェットの例においては，燃焼器内の流速は約 $3,300 \mathrm{~m} / \mathrm{sec}$ であるので，燃焼器を実用的な長さに抑えるためには，火炎反応の時間が $0.1 \sim 0.5 \mathrm{msec}$ の程度）が解決 されて後，はじめて実現されるものである，このようにスクラムジェットにおいては燃焼の問題が本質的な役割を果しているので，乙て約十数年来，超音速気流中の燃焼そのものの研究が非常に盛んになり，またとの超音速燃焼は実用的な面からの要請ばかりでなく，燃焼学 の立場からみてもいろいろ興味ある問題をふくんでいるので，多くの燃焼研究者の関心を集 め，現在，燃焼研究のトピックスの一つとなっている。

超音速燃焼はその燃焼の過程によってだいたい三つの型，すなわち（1）Standing Deto－ nation Waveを利用する方式，（2）Turbulent Deflagration Waveを利用する方式， （3）Turbulent Diffusion Flame による方式，に分類するととができるが，とれらの中で， （1）と（2）は，燃料と酸化剤が予め混合して可燃性混合気をつくり，いわゆる予混合火炎 （Premixed Flame）を形成する燃焼方式であり，（3）は，燃料と酸化剤は予め混合してお らず，いわゆる拡散火炎（Diffusion Flame）を形成する燃焼方式であるという大きな相違 がある。また（1）の燃焼方式では衝撃波をともなっており，（2）と（3）の燃焼方式では衝撃波をともなわないという著しい相違がある。

3．超音速燃焼実験装置の設備目的

超音速燃焼の問題は一般に高温の超音速気流を取扱うので，超音速燃焼の実験を行うため には，まず大流量の空気を相当な高温にまで予熱しなければならず，そのため基礎的実験を行うためにも，韭常に大がかりな実験装置を必要とする。現在，超音速燃焼実験用の高温気流をつくる方法として，（1）電気的アーク加熱器を用いる方法，（2）ペブル蓄熱式加熱器 を用いる方法，（3）燃焼ガスを高温気流として利用する方法，などが実際に試みられている。電気的アーク加熱器を用いた超音速燃焼の実験はフランスのPoitiers 大学で行われている が，この方法では大流量の空気を加熱するために大電力を必要とするので，現在までのとて ろこの方法はあまり普及していないように思われる。ペブル蓄熱式加熱器を用いて高温の空気流をつくる方法が，現在最も標準的方法と考えられ，との型の加熱器を備えた超音速燃焼

の本格的な実験装置が欧米の各国で設備され［6］，この問題についての実験研究が重点的に行われている。燃焼ガスを高温気流として用いる方法，いわゆる Vitiated Air Stream を用いる方法は，比較的簡単な実験装置で超音速燃焼の基礎研究を行う方法として考案された屯ので，高圧の亜音速空気中に燃料を噴射して希薄混合比（Lean Mixture Ratio）で燃焼 をおとさせ，高温になった燃焼ガスと過剰空気の混合気（Vitiated Air）（必要に応じて酸素を加える）をノズルを通して超音速流とし，燃焼実験に利用する方法である。との方法は，純粋の高温空気を用いないという点で，化学的立場からみると若干の問題は残るが，超音速燃焼に関連する流れの場の問題に重点を置いた研究ではかなりの成果を期待するととができ， アメリカのNASA の研究所やGASL，フランスのONERA などで実際に試みられて実験 が行われており，また最近，との方法による超音速燃焼の実験結果も数多く発表されるよう になってきた。なお，高温気流のよどみ点温度を十分高くする必要のある場合には，（2）と （3）の方法が併用して用いられるととが多い。

我々の研究室においては，超音速燃焼の重要性にかんがみ，早くからこの問題の研究に着手し，Vitiated Air Stream を利用して超音速燃焼の実験を行ってきた［7］～［10］．し かし，超音速燃焼の研究を更にほりさげて行うためには，どうしても高温空気流を用いる必要があり，また我国における今後のとの方面の研究の発展をはかるためにも，高温空気流の燃焼実験装置を是非設備することの必要性を痛感した。 さらに高温気流中の燃焼については，亜音速流の場合においても，燃焼学的にみて，着火，火炎安定化をはじめ，いろいろ興味あ る問題が数多くある，以上のような理由で，空気流温度を相当広い範囲にわたって自由に制御するととができ，さらに亜音速流から超音速流にわたって実験可能な燃焼実験装置，いわ ゆる高温気流連続燃焼実験装置の試作，設備を計画した。なお，装置の計画，設計に際して は，既設の連続燃焼実験装置用の空気供給装置［11］，および球形眝気槽の空気をなるべく活用するように注意を払った。

との新しい実験装置においては，空気や燃料ガス流量，圧力，温度などの作動•制御範囲 をなるべく広げ，かつ非定常運転時における装置全体の安全性を高め，危険防止装置などの安全対策を屯十分検討しておく必要があり，またなんといっても，我国最初の設備であるの で，装置の具体的な設計に際しては，細かい点でいろいろ技術的に前もって検討し，解決し ておかなければならない問題が少なくなかった。したがって，短時日の間に，とれらの問題 をすべて解決し，設備を完成させるととは技術的にみて非常に困離であったので，年次計画 をたてて設備の建設を行い，1974年，当初計画の実験装置がほぼ完成し，現在，との装置 を利用して超音速燃焼の実験や亜音速高温気流中の燃焼実験を行っている。

4．実験設備の概要

高温気流連続燃焼実験装置は，すでに述べたように，高温の超音速および亜音速気流中の燃焼現象について基礎研究をする目的で設備されたものであり，大別して，空気加熱筒，空気供給ライン，燃料供給ライン，水素供給装置，水素警報装置，2ヶの超高温急開弁，高温空気－常温空気混合器，圧力，流量および高温気流温度の計測制御装置，超音速ノズルや各種燃焼器などより構成されている。との実験装置の流動系統図（ただし水素供給装置と水素警

第1図 高温気流連続燃焼実験装置の流動采統図

$$
\begin{aligned}
& \text { ——: 手動并 } \\
& \text { 丙一: 空気圧作動調節升 } \\
& \text { 呙: : 電動弁 } \\
& \text { 属一: 超高温急開弁 }
\end{aligned}
$$

第2図 実験室の各機器配置図（地下実験室）

第2図 実験室の各機器配置図（1階操作室および付属設備）

報装置［12］は除く）を第1図に示す。 この装置は最大空気流量 $1 \mathrm{~kg} / \mathrm{sec}$ で，大気圧から $6 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$ までの圧力範囲，常温から $1,500^{\circ} \mathrm{C}$ までの岐点温度範囲にわたって実験を行 うことができ，かつ空気や都市ガスの圧力や流量を自動的に制御するために各種調節計，空気圧作動式の自動調節弁，空気圧作動遮断弁および超高温急開弁を備えている。との実験装置で使用する空気および都市ガスは，既設の連続燃焼実験装置用の供給装置や貯気槽によっ て供給される［11］［13］．

燃焼実験用空気を加熱する空気加熱器はアルミナ・ペブル蓄熱式で，加熱器上部に取り付 けられた燃焼装置（高速度ガスバーナ）により都市ガスを燃焼させてペブルを約 $1600^{\circ} \mathrm{C}$ ま で加熱し（ただしペブル・ベッド下部格子温度は $600^{\circ} \mathrm{C}$ ），蓄熱する。実験に際しては，常温 の空気を，蓄熱されたペブル・ベッドの下部から通過させるととによって熱交換を行い，一定温度（ $\left.1450^{\circ} \mathrm{C} \pm 50^{\circ} \mathrm{C}\right) ~$ の高温空気として，（1）超音速燃焼の場合には $200 \varnothing$ 超高温急開弁，超音速ノズルを経て超音速燃焼器に，また（2）覀音速燃焼の場合には，100め超高温急開弁を経て混合器に送り込む。との場合，高温空気と加熱器をバイパスして供給される常温の空気とが混合器内で混合され，所定温度に調節された高温空気（この温度は混合される空気量の流量比によって任意に変えられる）が亜音速燃焼器に送られる。都市ガスはペブル加熱用以外に燃焼実験用燃料としても利用される。

本実験装置は，研究所キャンパスの最南部に新しく建築された高温気流燃焼実験室建家 （59号館）の中に設備されているが，第2図に実験室の各機器配置の平面図を示す。超音速燃焼の実験においては非常に大きい騒音を発生するので，その防音対策と，将来本建家の北側 に近接して建築される予定の一般研究棟の日射の問題を解決するために，高温気流燃焼実験室建家は，地上 1 階，地下 1 階よりなっており，本実験装置の主要な機器（空気加熱器，200 ø超高温急開弁， $100 \varnothing$ 超高温急開弁，加熱用燃焼ガス排気弁，高温空気－常温空気混合器，加熱器加熱用操作盤（通称A操作盤），計装空気用圧縮機，泠却水ポンプ，冷却水用弁スタン ド，水素供給用操作盤など），空気およびガス配管，燃焼器などはすべて地下室に配置し，燃

第3図 地下実験室の全景

焼実験用操作盤（通称 B 操作盤）のみを 1 階の操作室に配置した。操作室からは防音硝子窓 を通して地下の主要な機器や燃焼器などは監視するととができる。また本建家には防音対策上，燃焼風洞吹出口に消音塔が設けられており，さらに実験室内の換気を十分行うために強力な換気装置が設備されている。なお本建家南側の地中に冷却水槽が，地上に冷却塔が設備 されている．第 3 図に地下実験室の全景の写真を示す。

5．空 気 加 熱 器

高温気流連続燃焼実験装置においては，空気加熱器が最も重要な役割を果しており，この特性によって実験装置全体の性能がきまるので，加熱器のタイプの選定およびその要目の決定には，細心の注意を払い，十分検討を加えた［6］．アルミナ $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ やジルコニア $(\mathrm{Zr}$ O_{2} ）などのペブル（球塊）を蓄熱体とした蓄熱式ペブル・ベッド加熱器は，実験に先だって付属のバーナを用いて燃焼を行わせ，その燃焼ガスを通過させて蓄熱体を高温に加熱し，一 たん蓄熱させた上燃焼を停止し，その後，実験用空気を高温ペブル層内を通過させるととに よって，瞬間的に加熱する熱交換器である。一般にとの方式の加熱器は，起動時における空気の立ち上がり時間が非常に短かく，かつ使用時間中は加熱される空気温度はほぼ一定に保持され，風洞には適した特性をもっている。

蓄熱式空気加熱器は，最近わが国においても極超音速風洞や MHD 発電試験装置などに用 いられているが，超音速燃焼風洞の場合には，蓄熱体の加熱温度も極めて高く，また加熱器内の圧力も高いという厳しい条件をみたさなければならない。とれまで諸外国で設備されて いる超音速燃焼風洞をいろいろ比較，検討を行った結果，イギリスの Cranfield のThe College of Aeronautics とアメリカの Seattle の BSRL に設備されている超音速燃焼風洞とほぼ同じような規模の蓄熱式ペブル加熱器を，我々の高温気流連続燃焼実験装置の空気加熱器として採用することにし，ペブルとしては比較的入手の容易なアルミナ・ペブルを用 いるととにした。また吐出空気のよどみ点温度は，少くとも $1500^{\circ} \mathrm{C}$ 以上を目標にし（した がってペブル加熱温度は $1600^{\circ} \mathrm{C}$ 以上），最大空気流量 $1 \mathrm{~kg} / \mathrm{sec}$ ，との流量での放熱持続時間 300 sec ，加熱器圧力 7ata（したがって高温の超音速気流のマッハ数は約2）を設計条件 とした。また加熱用燃料として，その供給装置が既設されており，取り扱いが便利な都市が スを利用するととにした。製作された空気加熱筒（加熱器本体および付属燃焼装置）の要目 を第2表および第3表に示す。

加熱器本体は第4図に示すように，内径 1600 mm の鋼板溶接構造の容器内に，断熱材と してアスベスト（または高温用キャスタブル）および3層の耐火，耐熱レンガを内張りして内径 850 mm とし，との中に直径 10.75 mm のアルミナ・ペブル 1490 kg を充填したもので （高さ 1200 mm ），ペブルは加熱器下部に設けられた格子状サポートによって支持されてい る．加熱器燃焼排ガス出口， $200 \varnothing お よ ひ ゙ ~ 100 \varnothing$ 超高温急開弁流路の内面にもキャスタブル張りをして断熱を行い，熱損失を防いでいる。

燃焼装置は加熱筒内に充填されているペブルを加熱するためのもので，高速度ガスバーナ および空気，都市ガス供給管よりなっている。燃料として都市ガスを用いた点が，今回の装置の一つの新しい特徴で，そのため供給装置が簡単になり，取り扱いも簡単化されている。

第2表 加熱器本体の要目

型 式	ペブルベッド蓄熱式
胴板内径	1600 mm
全 長	約 3000 mm
ペブル	球状アルミナ・ペブル
成 分	$\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$ 以上，その他 $\mathrm{SiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}_{3}$
直 径	10.75 mm
気 孔 率	13%
吸 水 率	4\％
真 比 重	$3.7 \sim 3.9 \mathrm{gr} / \mathrm{cm}^{3}$
嵩 比 重	$2160 \mathrm{~kg} / \mathrm{m}^{3}$
ペブル・ベッド	
直 径	850 mm
断 面 皘	$0.567 \mathrm{~m}^{2}$
高 さ	1200 mm
全ペブル重量	1490 kg
空 隙 率	0.41
単位体積当りのペブル数	0.908×10^{6}
＂伝熱面積	$329 \mathrm{~m}^{2} / \mathrm{m}^{3}$
＂熱損失面積	$4.71 \mathrm{~m}^{2} / \mathrm{m}^{3}$
単位長さ当りのペブル重量	$1240 \mathrm{~kg} / \mathrm{m}$
単位断面積当りの流路断面積	$0.41 \mathrm{~m}^{2} / \mathrm{m}^{2}$
耐火断熱レンガ層	
内 径	850 mm
外 径	1600 mm
厚 さ	375 mm
1 層 目	純アルミナ質
$2 "$	高アルミナ質
3 ＂	高温用耐火断熱レンガ
$4 ״$	アスベストまたは高温用キャスタブル
ペブル最高加熱温度	$1600^{\circ} \mathrm{C}$
ペブル層下部温度	$600^{\circ} \mathrm{C}$
レンガ層内壁設計最高温度	$1700^{\circ} \mathrm{C}$
加熱筒設計圧力	$10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$
＂耐圧試験圧力	$15 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$
放熱空気圧力	$2 \sim 6 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$
最大放熱空気流量	$1 \mathrm{~kg} / \mathrm{sec}$
最高放熱空気温度	$1500^{\circ} \mathrm{C}$
放熱持続時間	300 sec （最大放熱空気流量の場合）

第3表 加熱器燃焼装置の要目

型 式	アフターミックス型パイロットバーナ付高速度ガスバーナ
使用ガス	都市ガス
発 熱 量	$5000 \mathrm{kcal} / \mathrm{Nm}^{3}$
燃焼用空気流量	$356 \mathrm{Nm}^{3} / \mathrm{hr}$
＂ガス流量	$60.5 \mathrm{Nm}^{3} / \mathrm{hr}$
燃 焼 量	$3 \times 10^{5} \mathrm{kcal} / \mathrm{hr}$
燃料•空気混合比	$0.8 ~ 1.0$
加熱時間	3 hr
着火装置	電気着火式
パイロットバーナ	アフターミックス型
燃焼用空気流量	$30 \mathrm{Nm}^{3} / \mathrm{hr}$
＂ガス流量	$7 \mathrm{Nm}^{3} / \mathrm{hr}$
燃 焼 量	$3 \times 10^{4} \mathrm{kcal} / \mathrm{hr}$
炎監視装置	ウルトラビジョン

高速度ガスバーナは，第5図に示すようにマルチノズルを有するアフターミックス型で，ま ず点火プラグによってパイロットバーナに点火してパイロット火炎をつくり，これによって主バーナに点火するようになっている。

燃焼ガスの温度を $1500^{\circ} \mathrm{C}$ ，その流量を $0.14 \mathrm{~kg} / \mathrm{sec}$ としたときのペブル・ベッドの加熱特性の計算値［6］を第6図（a），（b）に示す。第6図（a）はペブル・ベッドの初期温度を $0^{\circ} \mathrm{C}$ ，加熱ガス温度を $1500^{\circ} \mathrm{C}$ 一定とした場合の加熱特性であり，また第6図（b）はペブル・ベッ ドの初期温度を $0^{\circ} \mathrm{C}$ ，加熱ガスの周辺耐火材への熱損失を考慮した場合の加熱特性を示してい
る。（a）の条件では加熱開始後 3 時間でペブル・ベッド下部温度が格子制限温度の $600^{\circ} \mathrm{C}$ に達し，加熱は終了するが，（b）の条件では加熱時間が長くなっているととがわかる，上記 の条件に対応した加熱終了時におけるペブル・ベッド内の温度分布をそれぞれ第7図（a）， （b）に示す。（a）の場合には，ペブル・ベッドの上半部の温度がほぼ $1500^{\circ} \mathrm{C}$ になっている が，（b）の場合にはペブル・ベッド上半部の温度分布も少し悪くなっている。

次に，加熱されるべき空気の初期温度を $0^{\circ} \mathrm{C}$ ，流量を $1 \mathrm{~kg} / \mathrm{sec}$ とした場合のペブル・ベッ ドの放熱特性を第8図（a），（b）に示す。とれらの特性は第7図（a），（b）に示された加熱終了時のペブル・ベッド内の温度分布をもとにして計算によって求められたあのであり，θ_{1} は空気流温度，θ_{2} は蓄熱体温度を示している。放熱開始 5 分後における加熱器からの吐出空気温度は， （a）の場合には $1500^{\circ} \mathrm{C}$ からほとんど低下せず，（b）の場合でも 2% 程度の低下がみられるに すぎず，実用上，放熱持続時間 5 分以内では吐出空気温度はほぼ一定とみなすととができる。

第4図 蓄熱式ペブル・ベッド加熱器本体

第5図 蓄熱式ペブル・ベッド加熱用高速度ガスバーナ

（a）加熱ガス温度一定の場合

（b）加熱ガスの周辺耐火材への熱損失を考慮した場合

第6図ペブル・ベッド加熱特性（計算値）

（a）加熱ガス温度一定の場合

（b）加熱ガスの周辺耐火材への熱損失を考慮した場合

第7図 加熱終了時におけるペプル・ベッド内温度分布（計算値）

（a）放熱開始初期温度分布が第7図（a）の場合

（b）放熱開始初期温度分布が第7図（b）の場合

第8図 ペブル・ベッド放熱特性（計算値）

6．空気および都市ガス流量•圧力制御装置

本実験装置で使用する空気および都市ガスは，60号館に既設の燃焼実験室から地中に埋設 して配管されたパイプを通して供給され，既設の制御装置によって空気や都市ガスの供給圧力を自動的に制御するととができるので，その点を十分考慮して本実験装置の制御系を計画 した。との制御系は第1図にその大要が示されているが，実験の種類，すなわち使用する実験ラインとその操作の目的に応じて，第9図に示すように三つの系統，すなわち（1）ペブ ル加熱用燃焼制御系，（2）要音速燃焼実験制御系，（3）超音速燃焼実験制御系，に大別す るととができる，ペブル加熱用燃焼は，いわゆる燃焼実験に先だって行うあのであり，また その制御系も燃焼実験に対する制御系と全く独立であるので，加熱用燃焼に使用する各種機器の運転や弁の操作の便宜を考えて，加熱器加熱用操作盤（通称A操作盤）は地下実験室の加熱器近傍に設置されている。一方，燃焼実験用（亜音速燃焼および超音速燃焼）操作盤（通称 B 操作盤）は 1 階の操作室に設置されている。

6.1 ペブル加熱用燃焼制御系

加熱用燃焼に必要な空気および都市ガスは既設の供給装置によって圧力を一定に制御して供給される（常用 $2 \mathrm{~kg} / \mathrm{cm}^{2-} \mathrm{G}$ ）。したがって本制御系（第 9 図（a））においては，空気と都市 ガスのオリフイス差圧を，それぞれ差圧伝送器FT－1 およびFT－5 を経て流量指示調節計 FIC－1 および FIC－5 に導き，とれら調節計の出力でそれぞれ 1 ヶの調節弁 FCV－1 および FCV－5を作動させ，オリフイス差圧を制御して流量を調節する。空気および都市ガス流量 は流量記録計 FR－11に記録される。なお本制御系においては，2ヶの調節計の間に比率設定器 $\mathrm{FrC}-1$ が設けられており，主バーナの都市ガス流量は，あらかじめ設定された空気流量 に対し，比率設定器により都市ガス・空気流量比がたえず一定になるように制御される，し たがって加熱中の燃焼ガス温度は常に一定に保持され，その結果，ペブル・ベッドに対して良好な加熱特性が得られる。なお設備した加熱器の標準加熱時間（空気流量 $365 \mathrm{Nm}^{3} / \mathrm{hr}$ ，都市がス流量 $60.5 \mathrm{Nm}^{3} / \mathrm{hr}$ で）は約 3 時間であるが，空気や都市がスの流量を変えて加熱時間 を調節するととができ，また必要な場合には，都市がス・空気の流量比を変えて加熱温度を調節するととができる（空気流量 $550 \sim 140 \mathrm{Nm}^{3} / \mathrm{hr}$ ，都市ガス流量 $120 \sim 30 \mathrm{Nm}^{3} / \mathrm{hr}$ の範囲で可変）。
加熱用燃焼ガス温度はペブル上方の空間（燃焼室）に插入されているPR熱電対によって計測され，温度記録計TR－21 に記録される。またペブル内温度はペブル上面より 50 mm ， 600 mm の位置に挿入されている 2 本の PR熱電対と 1150 mm の位置に挿入されている 1本のCA熱電対によって計測され，3本のCA熱電対によって計測されたペブル支持格子温度と 6 本のCA 熱電対によって計測された加熱器外周温度と一緒に 12 点温度記録計 TR－22 に記録される。

燃焼装置の上部には火災監視装置としてウルトラビジョンが取りつけられており（第 5 図），点火時にパイロットバーナが着火しない場合や，加熱燃焼中に主バーナの火炎が消えた場合 には，リレーが働き，警報ブザーがなると同時に都市がス用の空気圧作動式元弁 $V_{.2}$ が急閉 し，バーナへの都市ガスの供給を遮断し，加熱器内に都市ガスが充満するのを防止する。

（a）ペブル加熱用燃焼制御系
第9図 実験装置制御系統図

6．2 亜音速燃焼実験制御系

亜音速燃焼実験ラインは，高温用空気供給ライン，常温空気供給ライン，高温空気－常温空気混合器，燃焼器および都市ガス供給ラインより構成されている（第 9 図（b））。燃焼実験 に使用する都市ガスは既設の供給装置によって圧力を一定（2～6 kg／cm²－G）に制御して

第9図（c）超音速燃焼実験制御系
本実験室に供給されるので，本制御系においてもペブル加熱用燃焼制御系と同様に，流量指示調節計の出力で 1 ケの調節弁を作動させて流量を制御する。 すなわちオリフイス差圧を差圧伝送器 FT－6を経て流量指示調節計 FIC－6 に導き，との調節計の出力で調節弁 FCV－6 を作動させ，オリフイス差圧を制御して流量を調節する。都市ガス流量は流量記録計 FR－16 に記録される。

乙れに対し，空気供給ラインには，オリフイス上流の圧力を制御するための圧力調節弁 PCV－7 が設けられており，オリフイス上流の圧力は圧力伝送器 PT－7を経て圧力指示調節計 PIC－7 に導かれ，との調節計の出力によって圧力調節弁は作動する，オリフイス上流の王力は圧力記録計 PR－12に記録される，圧力調節弁 PCV－7の下流において，空気供給ラ インは高温用空気ラインと常温空気ラインに分岐されており，高温用空気はオリフイス，流量調節弁 FCV－3を経て加熱器に入り，加熱されて $100 \varnothing$ 超高温急開弁を通過して混合器に入る，一方，常温空気はオリフイス，流量調節弁 FCV－4を経て混合器に入り，高温空気と混合して所定温度になった空気は亜音速燃焼器に送られる。高温用空気および常温空気のオ リフイス差圧は，それぞれ差圧伝送器 FT－3および FT－4を経て流量指示調節計 FIC－3お よび FIC－4に導かれ，とれら調節計の出力で流量調節弁 FCV－3および FCV－4 は作動し，流量が調節される。高温用空気および常温空気の流量は流量記録計 FR－13 に記録される。 なお高温用空気と常温空気に対する 2 ケの流量調節計の間に比率設定器 $\mathrm{FrC}-2$ が設けられ ており，高温用空気流量は，あらかじめ設定された常温空気流量に対し，比率設定器により流量比が一定になるように制御される。したがって亜音速燃焼器に送られる高温空気流の温度は所定の温度に保持するととができる。高温空気流温度は混合器入口でPR 熱電対によっ て，また混合器出口で CA 熱電対によって計測され，温度記録計TR－23に記録される。なお亜音速燃焼実験の場合には，空気および都市がス流量の広い範囲にわたって実験を行うとと が多い。 そのため空気および都市ガスに対しそれぞれ1ケのオリフイスで流量を測定したり制御したりするととは難かしいので，第 9 図（b）に示すように，高温用空気供給ライン，常温空気供給ラインおよび都市ガス供給ラインには，それぞれ2ケのオリフイスを並列にな らべ，実験流量に応じてそれぞれオリフィスを切換えて使用するととにした。

本制御系に設けられている圧力調節弁 PCV－7は，眝気槽の空気を利用するような大流量実験（約 $700 \mathrm{Nm}^{3} / \mathrm{hr}$ 以上）の場合にのみ使用する必要があり（この場合には既設の燃焼実験装置で圧力制御をするととが不可能），既設の燃焼実験装置から調圧されて送られる空気を使用する場合には，圧力調節弁は不必要となるので手動調節で全開にしておく。

6.3 超音速燃焼実験制御系

超音速燃焼実験用空気は貯気槽から供給され，圧力調整弁 PCV－2，空気圧作動遮断弁PV－ 24 を経て加熱器に入り，約 $1500^{\circ} \mathrm{C}$ に加熱され， $200 \varnothing$ 超高温急開弁，超音速ノズルを通過し て超音速燃焼器に入る（第 9 図（c））。超音速燃焼風洞においてはノズル上流の圧力のみを制御す ればよく，したがって運転定常状態での制御は比較的簡単である。本実験ラインの制御系に おいては，加熱器内圧力を圧力伝送器 PT－2 を経て圧力指示調節計PIC－2に導き，との調節計の出力で圧力調節弁 PCV－2 を作動させて加熱器内圧力を調節する。ての圧力は圧力記録計 PR－12 に記録される。

しかし，本実験装置のようにペブル・ベッド加熱器を用いた場合には，風洞始動時の加熱器内の圧力制御系が問題になる。実験に際しては，空気はペブル・ベッドの下部から上方に向って通過するので，ペブル・ベッドでの空気差圧がある限界値を越すと，ペブルは浮上し はじめ，高温になったペブルが気流にのって飛散し，超音速ノズル，超音速燃焼器，超高温弁や配管内壁に損傷を与えるのみならず，またいろいろ危険なととあおとりうる。 本ペブル・ ベッドのペブル垺上限界差圧 ΔP_{c} は $2.36 \mathrm{~kg} / \mathrm{cm}^{2}$ であり，乙れに対し最小使用圧力 3 ata ，通過空気流量 $1 \mathrm{~kg} / \mathrm{sec}$ でペブル・ベッド内の圧力損失 $4 P$ は $0.8 \mathrm{~kg} / \mathrm{cm}^{2}$ であるので，風洞 の運転定常状態ではもちろんペブル浮上の心配はない。しかし超音速燃焼実験の場合，加熱器内圧力を常圧にして始動すると，ペブル・ベッドでの初期の圧力差が ΔP_{c} をとえるとと になる。とれを避けるために，実験開始前にバイパスラインの小さな手動弁 V_{34} を開いて空気を加熱器内に送り，加熱器内圧力を定常作動圧力よりやや高く上げて後，手動弁を閉じ，超音速風洞を始動させるようにした。なおこの超音速風洞の始動は連動押ボタンの操作によ って行われ，空気圧作動式遮断弁PV－24と 200 ф超高温急開弁がまず開き，加熱器内圧力 の変化に応じて圧力調節弁 PCV－2 が作動をはじめる。しかしてれら3個の自動弁が全閉か ら全開になるまでにかかる時間は，PV－24で約 1 sec ，超高温急開弁で約 6 sec ，PCV－2で約 17 sec と異なっているため，加熱器内圧力が定常状態におちつき，風洞が定常運転に入る まで約 30 sec の過渡時間が存在する。

超音速気流の岐点温度は超音速ノズル上流の整流筒内に挿入されているPR 熱電対によっ て計測され，温度記録計 TR－23に記録される。なお超音速燃焼実験に都市ガスを用いる場合には，亜音速燃焼実験制御系の項で説明した都市ガス供給ラインを利用して，超音速燃焼器に都市ガスを送るととができる。また水素は新しく設備された水素供給装置によって圧力 や流量が制御されて燃焼器に送られる［12］．

6.4 オリフイス

本実験装置においては，流量の測定や制御を行うために，空気供給ラインに5個，都市ガ ス供給ラインに 3 個のオリフイスが使用されているが，第 4 表にこれらオリフイスの規格を示す。 使用したオリフィスの絞り形状はすべてConcentric Edge形状で，調節計のFull Scale

に対応する各オリフイスの最大差圧はそれぞれ 1000 mmAq である．また表に示されている オリフィスの基準最大流量とは，オリフイス上流の流体圧力が指定の基準作動圧力で，流体温度が $20^{\circ} \mathrm{C}$ の場合，オリフイス差圧 1000 mm Aq に対応する流量の標準状態に換算した容積流量のととである。なおオリフイスの設計に際しては標準状態での空気の比重は 1.293 kg $/ \mathrm{m}^{3}$ ，都市ガスの比重を $0.786 \mathrm{~kg} / \mathrm{m}^{3}$ としている。

第4表 オリフイス一覧表

	記 号	型 式	基準最大流量 （ $\mathrm{Nm}^{3} \mathrm{hr}$ ）	基準作動圧力 （ $\mathrm{kg} / \mathrm{cm}^{2}-\mathrm{G}$ ）	$\begin{array}{\|c} \text { 管内径 } \\ (\mathrm{mm} \varnothing) \end{array}$	$\begin{gathered} \text { 孔径 } \\ (\mathrm{mm} \varnothing) \end{gathered}$
加熱用空気オリフイス	FE－1	$\begin{array}{\|l\|} \hline \text { リングング } \\ \text { オリフィス } \end{array}$	550	2.0	73.90	39.03
亜音速高温用空気オリフイス（大）	FE－3－1	＂	2000	6.0	97.10	59.18
＂（小）	FE－3－2	＂	500	6.0	49.50	29.54
亜音速常温空気オリフイス（大）	FE－4－1	$\begin{aligned} & \text { オリフイス } \\ & \text { プレート } \end{aligned}$	3000	6.0	143.20	73.89
＂（小）	FE－4－2	$\begin{aligned} & \text { リング } \\ & \text { オリフィス } \end{aligned}$	1000	6.0	73.90	42.08
加熱用都市ガスオリフイス	FE－5	＂	125	2.0	49.50	16.70
実験用都市ガスオリフイス（大）	FE－6－1	＂	200	6.0	49.50	17.11
＂（小）	FE－6－2	＂	80	6.0	25.00	10.72

6.5 調節弁および超高温急開弁

本実験装置においては空気および都市ガスの圧力や流量を制御するために計 7 個の空気圧作動式の調節弁が用いられている。使用した調節弁の種類を第5表に示す。とれらの調節弁 は，超音速燃焼実験ラインの圧力調節弁 PCV－2を除き，いづれも電空ポジショナー付であ り，またPCV－2は電空トランスジューサーと空気式ポジショナーを備えており，各調節計 からの入力信号 DC $10 \sim 50 \mathrm{~mA}$ の範囲で作動する。ダイヤフラム作動空気圧は，第5表に示 すように， $0.2 \sim 1.0 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$ または $0.4 \sim 2.0 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$ で，正作動型は空気圧 $0.2(0.4)$ $\mathrm{kg} / \mathrm{cm}^{2-G}$ で弁が全開となり，空気圧が増すにつれて弁は閉じ， 1.0 （ 2.0 ） $\mathrm{kg} / \mathrm{cm}^{2}-\mathrm{G}$ で全閉となる。一方，逆作動型は空気圧 $1.0(2.0) \mathrm{kg} / \mathrm{cm}^{2}-\mathrm{G}$ で弁が全開となり，空気圧が減少 するにつれて弁は閉じ， $0.2(0.4) \mathrm{kg} / \mathrm{cm}^{2}-G$ で全閉となる。なお入力信号に対する調節弁 の作動は，入力信号が増すにつれて弁が閉じるのが正作動型であり，入力信号が減少するに つれて弁が閉じるのが逆作動型である。調節弁として正作動型または逆作動型のいづれを選択するかという問題は，各機器の始動の場合の安全性と第7章の実験操作手順の項で述べる実験中の機器の故障の場合の弁の作動を考慮して解決した。なお本実験装置には，とれら調節弁のほかに，都市ガス供給ラインの元弁 V_{2} に空気圧作動式調節弁が用いられており（第 5 表），電磁升の操作によって ON－OFFの作動をする。
第5表 空気圧作動式調節弁一覧表

	記 号	$\begin{aligned} & \text { 弁 } \\ & \text { 本 } \\ & \text { 体 } \\ & \text { 型 } \\ & \text { 式 } \end{aligned}$	$\begin{gathered} \text { 弁 } \\ \text { 呼 } \\ \text { び } \\ \text { 径 } \\ \text { (ィンチ) } \end{gathered}$	$\begin{gathered} \text { 内 } \\ \text { 弁 } \\ \square \\ \text { 径 } \\ \text { (インチ) } \end{gathered}$	$\begin{gathered} \text { 配 } \\ \text { 管 } \\ \text { 径 } \\ \text { (イン) } \end{gathered}$	$\begin{gathered} \text { a } \\ ⺊ \\ \text { 口 } \\ 1 \\ \eta \\ (\mathrm{~mm}) \end{gathered}$		動	内弁型式	備 考
							対作動空気圧	対信号電 流		
加熱用空気流量調節开	FCV－1	複座	2	2	3	25.4	正	逆	\％ported	電空ポジショナー付
超音速空気圧力調節弁	PCV－2	単座	4	2	4	25.4	逆＊	＂	\％contoured	ポジショナー付
亜音速高温空気流量調節弁	FCV－3	複座	$1 \frac{1}{2}$	$1 \frac{1}{2}$	4	19.05	逆	＂	\％ported	電空ポジショナー付
亜音速常温空気流量調節弁	FCV－4	＂	2	2	6	25.4	＂	＂	＂	＂
加熱用都市ガス流量調節弁	FCV－5	単座	1	1	2	19.05	＂	＂	$\%$ contoured	＂
実験用都市ガス流量調節弁	FCV－6	＂	$\frac{3}{4}$	$\frac{3}{4}$	2	19.05	＂	＂	＂	＂
亜音速空気圧力調節弁	PCV－7	複座	2	2	4	25.4	＂	＂	\％ported	＂
都 市がス元 弁	V_{2}	単座	2	2	2	25.4	逆＊	－	semi－throttle	三方電磁弁付 $\mathrm{ON} \cdot \mathrm{OFF}$ 作動

＊作動空気圧力範囲 $0.4 \sim 2.0 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$（そのほかの弁においては $0.2 \sim 1.0 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$ ）

加熱器出口に設備されている 200ϕ および 100ϕ の超高温急開卉の写真を第 10 図に示すが， いずれも最高使用温度は $1600^{\circ} \mathrm{C}$ ，耐圧は $15 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$ となっており，弁の作動は空気圧に よって行われ，全閉から全開（全開から全閉）に要する時間は $2 \sim 6 \mathrm{sec}$ である。

第10図 超高温急開开

6.6 調節計，記録計および操作盤

本実験装置に使用されている空気および都市ガスの圧力や流量を制御するための調節計を まとめて第 6 表に，また圧力，流量および温度を記録するための各種記録計をまとめて第 7表に示す。

加熱器内ペブルを加熱する場合に使用する調節計や記録計はすべて地下実験室の加熱器近傍に設置されている加熱器加熱用操作盤（A操作盤）に，また亜音速燃㳣実験および超音速燃焼実験を行う場合に使用する調節計や記録計はすべて一階の操作室に設置されている燃焼実験用操作艦（B操作盤）にそれぞれ集中して配置されている。第11図および第 12 図はそれ ぞれ A 操作盤および B 操作艦上の各計器の配置図を示すが，とれら操作盤には調節計や記録計のほかに，比率設定器，圧力計，切換スイッチ，各機器運転•停止押ボタン，各種計器用 スナップスイッチ，ならびに各機器運転•停止を示す白色表示灯や異常状態発生を示す赤色表示灯などか配置されている。また操作盤上部には流動系統がグラフィックで表示されてお り，主要な手動弁の開閉を示す表示灯がついている。第13図および第14図はそれぞれ加熱器加熱用操作盤および燃焼実験用操作盤の写真を示す。
第6表 調 節 計 一 覧 表

	記 号	型 式	制御動作	作 動	目 盛
加熱用空気流量指示調節計	FIC－1	FCE－H55T	比例•積分•微分	逆	平方根目盛 $0 \sim 100 \%$
超音速空気王力指示調節計	P IC－2	FCE－H 45 T	比例•積分	＂	等分目盛 $0 \sim 10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$
亜音速高温用空気流量指示調節計	F IC－3	FCE－H55 T	比例•積分•微分	＂	平方根目盛 $0 \sim 100 \%$
亜音速常温空気流量指示調節計	F IC－4	＂	＂	＂	＂
加熱用都市ガス流量指示調節計	FIC－5	＂	＂	＂	＂
実験用都市ガス流量指示調節計	FIC－6	＂	＂	＂	＂
亜音速空気圧力指示調節計	P I C－7	＂	＂	＂	等分目盛 $0 \sim 10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}$
加熱用空気•都市ガス流量比率設定器	Fr C－1	FRO－H 41M	－	－	平方根目盛 $0.6 \sim 1.7$
亜音速常温•高温用空気流量比率設定計	Fr C－2	＂	－	－	＂

	記 号	型 式	記 録 方 式	目 盛
加熱用空気•都市ガス流量記録計	FR－11	NRE 4232	$2 \text { ペン式 }\left\{\begin{array}{l} \text { チャート官 } \\ \text { チート速度 } \\ 19 \mathrm{~mm} / \mathrm{hr}, 19 \mathrm{~mm} / \mathrm{min} \end{array}\right.$	平方根目盛 $0 \sim 100$
超－亜音速空気圧力記録計	PR－12	ERB 1－40	$1 \text { ペン式 }\left\{\begin{array}{l} \text { チャートゆ } \\ \text { チャ速度 } 200 \mathrm{~mm} \\ 12.500 \mathrm{~mm} / \mathrm{min} \end{array}\right.$	$0 \stackrel{\text { 等 }}{\sim} 10 \mathrm{~kg} / \mathrm{cm}^{\text {盛 }}-\mathrm{G}$
亜音速常温•高温用空気流量記録計	FR－13	ERB 2P－40／40	2 ペン式 ¢＂／＂	平方根目盛 $0 \sim 100 \%$
実験用都市ガス流量記録計	FR－16	ERB 1－40	1 ペン式\｛＂／＂	„
燃 焼 室 温 度 記 録 計	TR－21	ERB 1－90Z－23		$0 \sim 1700^{\circ} \mathrm{C}(\mathrm{PR})$
加熱器外周・ペブル温度記録計	TR－22	ERB 12－90ML 122－23		$\begin{aligned} & 0 \sim 1700^{\circ} \mathrm{C}(\mathrm{PR}) \\ & 0 \sim 1000^{\circ} \mathrm{C}(\mathrm{CA}) \end{aligned}$
混合器出入口・ノズル入口温度記録計	TR－23	ERB 2P－30－23／30－23		$\begin{aligned} & 0 \sim 1500^{\circ} \mathrm{C}(\mathrm{PR} \\ & 0 \sim 600^{\circ} \mathrm{C}(\mathrm{CA}) \end{aligned}$

第11図 加熱器加熱用操作盤配置図

デスク面

```
冷却水ポンプ運転表示灯(白)
            " 停止
計装空気用王縮機運転
計装空気用王縮機運転
            停 止
            停 止
ノスル冷却水ポンプ運転
ノスル冷却水ポンプ運転
    " 停止"
    " 停止"
冷却水断水(高温弁)表示灯(赤)
冷却水断水(高温弁)表示灯(赤)
    "(デトネーションノズル)"
    "(デトネーションノズル)"
" (超音速ノズル)
" (超音速ノズル)
水素年ス遮断
水素年ス遮断
計.装空気圧低下
計.装空気圧低下
加熱器外周温度 200 呂曾
加熱器外周温度 200 呂曾
冷却塔異常停止"
冷却塔異常停止"
冷却塔用ポンプ異常停止 "
冷却塔用ポンプ異常停止 "
ノズル冷却水ポンプ異常停止 "
ノズル冷却水ポンプ異常停止 "
亜音速常温•高温用空気流量記録計(F R-13)
亜音速常温•高温用空気流量記録計(F R-13)
超•亜音速空気圧力記録計(PR-12)
超•亜音速空気圧力記録計(PR-12)
実験用都市ガス流量記録計(FR-16)
実験用都市ガス流量記録計(FR-16)
混合器出入口•ノズル入口温度記録計(T R-23)
混合器出入口•ノズル入口温度記録計(T R-23)
亜音速常温空気流量指示調節計(F I C-4)
亜音速常温空気流量指示調節計(F I C-4)
亜音速常温•高温用空気流量比率設定器(FrC-2)
亜音速常温•高温用空気流量比率設定器(FrC-2)
亜音速高温用空気流量指示調節計(F I C-3)
亜音速高温用空気流量指示調節計(F I C-3)
超音速空気圧力指示調節計(P I C-2)
超音速空気圧力指示調節計(P I C-2)
亜音速空気圧力指示調節計(P I C-7)
亜音速空気圧力指示調節計(P I C-7)
実験用都市ガス流量指示調節計(FI C-6)
実験用都市ガス流量指示調節計(FI C-6)
計装空気元圧圧力計
計装空気元圧圧力計
冷却水ポンプ吐出圧力計
冷却水ポンプ吐出圧力計
冷却水低圧側圧力計
冷却水低圧側圧力計
加熱器内圧力指示計
加熱器内圧力指示計
超音速単独•連動切替スイッチ
超音速単独•連動切替スイッチ
超音速•デトネーション切替スイッチ
超音速•デトネーション切替スイッチ
超•亜音速空気圧力
超•亜音速空気圧力
超音速ノズル•亜音速混合器温度切替スイッチ
超音速ノズル•亜音速混合器温度切替スイッチ
計装空気用王縮機運転•停止押ボタン
計装空気用王縮機運転•停止押ボタン
都市ガス元升開閉押ボタン
都市ガス元升開閉押ボタン
200\phi超高温急開弁(V17)開閉押ボタン
200\phi超高温急開弁(V17)開閉押ボタン
空気在作動遮断亣(PV-24)開閉
空気在作動遮断亣(PV-24)開閉
超音速都市ガス元弁開閉押ボタン
超音速都市ガス元弁開閉押ボタン
100 \phi 超高温急開卉( (V18) ) 開閉押ボタン
100 \phi 超高温急開卉( (V18) ) 開閉押ボタン
ノズル冷却水ポンプ運転•停止
ノズル冷却水ポンプ運転•停止
非常停止押ボタン
非常停止押ボタン
超音速連動用押ボタン
超音速連動用押ボタン
ランプテスト押ボタン
ランプテスト押ボタン
ブザーリセット押ボタン
ブザーリセット押ボタン
各種計器用スナップスイッチ群
```

各種計器用スナップスイッチ群

```


第13図 加熱器加熱用操作盤


第14図 燃焼実験用操作盤

\section*{7．実 験 操 作手順}

本実験装置においては， 1490 kg のアルミナ・ペブルを約 \(1500^{\circ} \mathrm{C}\) に加熱するために約 3時間都市ガスを燃焼させたり，高温の高速空気流中に燃料を噴出させて超音速あるいは亜音速燃焼実験を行ったりするので，危険を避け，安全を確保するために，実験操作を系統的に確実に行わなければならず，そのため実験操作手順をあらかじめ十分検討しておく必要があ る．また実験中に使用機器が故障したり，作動状態に異常をきたしたような場合に，実験ラ インに危険状態が発生するのを防止するために，直ちに調節弁が自動的に実験ラインの安全

第15図 ペブル加熱用燃焼操作手順

\begin{tabular}{|c|c|}
\hline 計装空気圧力低下（ \(2.5 \mathrm{~kg} / \mathrm{cm}^{2}\) 以下）\() 7\) & \(V_{2}\) 自動閉鎖 \\
\hline \begin{tabular}{l}
冷却水断水 \\
加熱器外周過熱（ \(200^{\circ} \mathrm{C}\) 以上）
\end{tabular} & 表示•警報 \\
\hline 非常停止用押ボタン操作 & \(\mathrm{V}_{2}\) 自動閉鎖 \\
\hline
\end{tabular}
第16図 亜音速燃焼実験操作手順

第17図 超音速燃焼実験操作手順

側に作動するように制御系回路を検討しておく必要がある．したがって我々は実験操作手順 と故障の場合の制御系回路の作動の検討に細心の注意を払った。
実験操作手順は実験の種類，すなわち使用する実験ラインとその制御系に対して三つの操作手順，すなわち（1）ペブル加熱用燃焼操作手順，（2）亜音速燃焼実験操作手順，（3）超音速燃焼実験操作手順，に大別することができる。 これら三つの操作手順説明図をそれぞ れ第15図，第16図，および第17図に示す。とれらの図に示されている手動弁の番号 \(V_{N}\) は第 1 図の流動系統図および第 9 図（a），（b），（c）の実験装置制御系統図に記入されている弁番号に対応している。また記号 MANおよびAUTO はそれぞれ空気圧作動式調節弁の手動調節および自動調節を意味しており，とれら調節の切換は調節計の自動一手動切換スイッチ の操作によって簡単に行うととができる。なおとれらの図をみれば実験操作手順は容易に理解するととができる。

またとれらの図には，実験中に停電した場合や重大な故障が発生した場合，あるいは非常用押ボタンを操作した場合の各種調節弁や超高温急開弁，遮断弁などの作動状況が示されて いる。なお重大な故障が発生した場合には，警報ブザーがなるとともにその故障の原因（計装空気圧力低下，ペブル加熱燃焼用空気圧力低下，ペブル加熱燃焼中の失火，加熱器外周過熱，冷却水断水，冷却水ポンプ異常停止など）が赤色表示灯によって示されるので，故障の原因とその時点の各種条件に応じて，それから先の適切な処置をとる必要がある。

\section*{8．超音速ノズル}

超音速ノズルは，はじめノズル出口マッハ数 2 を目標にして検討した。超音速燃焼実験に利用する眝気槽の空気圧は最大 \(15 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) であるが，燃焼実験室内の配管，圧力容器，弁類などがすべて耐圧 \(10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) で設備されているので，燃焼実験の場合には貯気槽圧力を いつも \(10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) におさえて使用する必要がある。また超音速燃焼実験ラインの圧力調節弁 PCV－2 の調節性能を良くするためには，との弁での圧力損失をなるべく大きくする必要 があり，かつ貯気槽から本実験装置までの配管が長く，この配管の圧力損失もかなり大きい。 したがってノズル出ロマッハ数 2 に対応する加熱器内圧力 \(8.08 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{abs}\) 。を確保するの がやや無理であることが明らかになったので，結局ノズル出ロマッハ数1．9の超音速ノズル を用いるととにした。試作した軸対称超音速ノズルを第18図に示すが，とのノズルは水冷式 で，設計空気流量 \(1 \mathrm{~kg} / \mathrm{sec}\) ，岐点圧力 \(6.85 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{abs}\) 。，岐点温度 \(1450^{\circ} \mathrm{C}\) ，スロート直径 45.0 mm ，出口直径 58.8 mm ，全長 360.18 mm である．なおノズル入口での流れや温度分布 の状態をよくするために， \(200 \varnothing\) 超高温急開弁と超音速ノズルとの間に，内面に耐火断熱レ ンガを施行した整流筒を設けた。 この整流筒には高温空気流の岐点温度測定のための熱電対 が插入されており，測定温度は記録計TR－23 によって記録される。

\section*{9．実験装置の性能試験結果}

各機器の単体テストや制御系の調整を行った後，本実験装置の総合的な性能を確認するた めの試験を数回にわたって行った。との試験は，（1）ペブル・ベッド加熱試験，（2）亜音速実験ラインの放熱試験，（3）超音速実験ラインの圧力制御および放熱試験，に大別する


第18図 超音速ノズル

\section*{ことができる。}

第19図は（1）と（2）の試験をひきつづいて行った場合に得られたペブル・ベッド加熱お よび亜音速実験放熱温度曲線の一例を示す。との場合，ペブル加熱用燃焼は空気流量 360 N \(\mathrm{m}^{3} / \mathrm{hr}\) ，都市ガス流量 \(72 \mathrm{Nm}^{3} / \mathrm{hr}\) ，当量比約 0.9 で行ったが，燃焼開始後ペブル上部（ペブ ル上面より 50 mm 下方）および燃焼室温度は，最初は急激に，その後ゆるやかに上昇する。一方，ペブル支持格子温度は，はじめはゆるやかに，その後ほぼ直線的に上昇し， 138 分で \(600^{\circ} \mathrm{C}\) に達して加熱は終了する。加熱終了時ペブル上部温度は \(1680^{\circ} \mathrm{C}\) ，燃焼室温度は 1570 \({ }^{\circ} \mathrm{C}\) になっているが，この燃焼室温度は加熱用燃焼ガスの平均温度を示しているものではな い。ペブル上部およびペブル支持格子温度の時間経過は第 6 図（b）の曲線と定性的に良い一致を示している。なお本実験において加熱時間が標準の3時間よりかなり短かくなっている のは，本実験の前日に同じような試験を行っており，ペブル内の熱が十分放熱されていなか ったととに起因している。加熱器外周の初期温度も前日の試験の影響を受けて，実験室内の温度よりかなり高くなっているが（ \(\left.120^{\circ} \mathrm{C}\right)\) ，本実験中の加熱器外周温度の上昇はほとんど なく， \(200^{\circ} \mathrm{C}\) という限界温度に対して十分余裕があり，問題にならなかった。

加熱終了後，直ちに各種手動弁の操作を行って実験ラインを切換え，亜音速実験ラインを用いて放熱試験をはじめたが，第19図をみればわかるように，この実験準備に20分余りの時


第19図ペブル・ベッド加熱および亜音速実験放熱温度曲線

間がかかり，との間加熱器内の熱損失（特にペブル上部の温度が低下）があり，実験開始時 にはペブル上部温度は \(1450^{\circ} \mathrm{C}\) に低下している。したがってなるべく高温の空気を利用した いような場合には，実験準備時間を極力きりつめる必要がある。亜音速放熱試験は，加熱器 を通過する高温用空気流量 \(0.17 \mathrm{~kg} / \mathrm{sec}\) ，加熱器をバイパスして混合器に入る常温空気流量 \(0.83 \mathrm{~kg} / \mathrm{sec}\) という条件の屯とで行われているが，実験開始後，ペブル支持格子温度は急激 に低下し，混合器入口および出口における空気温度は最初急激に，その後ゆるやかに上昇し， 10分程度でほぼ一定温度に落着いている。なぁ混合器入口での空気温度がペブル上部温度よ りかなり低くなっており，混合器入口までの配管壁面への熱損失が，高温空気流量が少ない場合には相対的に非常に大きいととがわかるが，混合器入口および出口における温度曲線は，熱損失を考慮して行った計算結果と良い一致を示している。
超音速実験の場合には，制御系の説明のとてろで述べたように，実験開始時の加熱器内圧力の過渡特性が問題になる。 との過渡特性を良くするために，圧力変化を小さくし，定常状態にいたるまでの整定時間を短かくし，かつハンチング現象をなくするととが望ましい。設備された超音速実験ラインにおいては，過渡特性は庄力調節計PIC－2の比例帯と積分時間 および圧力調節弁 PCV－2の初期開度によってきまるので，まず常温空気を用いて繰返し試験を行った結果，比例帯20（ゲイン5），積分時間 3 sec が最も適当な値であるととが確かめ られた。また調節弁 PCV－2 の初期開度は，はじめ調節計の手動操作（MAN）によって与

え，実験開始後，ある適当な時間をおいて，調節計を自動操作（AUTO）に切換え，実験ラ インを自動制御するという方法を採用したが，試験の結果，予想どおり，調節弁に適当な初期開度を与えると初期の圧力変化の大きさは小さくなるととがわかった。しかし実験開始後 に MAN \(\rightarrow\) AUTO 切換えという操作が入り実験者に心理的な負担がふえるとと，初期開度 を与えても加熱器内圧力の整定時間がほとんど変化しないとと，更に初期開度を与えなくて もペブル浮上現象が全くないとと，などが確かめられたので，それ以後の超音速実験において は，調節計ははじめから自動操作とし，圧力調節弁の初期開度は 0 として実験を行うととに した。
第20図は高温空気流を用いて行った超音速実験の場合の加熱器内圧力曲線を示す。との圧力 は実験開始直後一度大きく低下した後上昇をはじめ，若干のオーバシュートの後，設定値に近づき，実験開始後約30秒で定常状態に落着く，またハンチング現象も全くみられず，実験停止まで約4分半，完全に圧力が一定に保たれている，なおての場合定常状態での圧力調節弁 PCV－2 の開度は \(85 \%\) ，との 5 分間に眝気槽圧力は \(10 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) から \(9.3 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) に減少している。


第20図 超音速実験加熱器内圧力曲線

ノズル出口の高温の超音速気流の様子は瞬間シュリーレン写真によって調べたが，その写真の代表的な三つの例を第 21 図に示す。はじめの二枚の写真は，加熱器内圧力が設定圧力よ りも低い過渡状態における写真で，マッハ反射衝撃波や斜めの衝撃波が形成されているのが わかる。三枚目の写真は流れが定常状態に落着いた場合の写真で，衝撃波をとあなわない， きれいな高温の超音速の流れの場を示している。

第 22 図は加熱器内圧力の時間変化ととも汇整流筒内で測定した気流の温度変化の一例を示 している。この温度は実験開始後急激に上昇し，圧力が定常状態におちつくと，温度もほぼ定常状態になるが，どちらかというと温度は僅かづつ上昇の傾向がみられる。とれは高温空気流から超高温弁や整流筒の壁面への熱損失が定常状態に達していないととに起因している。


第21図 超音速実験開始時における流れの場の時間変化（瞬間シュリーレン写真）


第22図 超音速実験加熱器内圧力および整流筒温度曲線

\section*{10．あと がき}

以上，宇宙航空研究所の燃焼学部門に設備された超音速燃焼実験装置を中核とした高温気流連続燃焼実験装置の概要について，まとめて説明を行った。新しく設備された超音速燃焼実験装置（いわゆる超音速燃焼風洞）はわが国最初の設備であり，したがって建設途上にお いて，難しい技術的な問題にも度々遭遇した。しかしとれらの問題をどうにか解決して設備 を完成させるととができ，また同時に，実験装置の性能向上のために合後改良しなければな らない問題点を明らかにすることができた。現在，との実験装置を用いて超音速燃焼の実験 ［9］［10］，静止デトネーションの実験［14］や，高温空気流中の水素の乱流拡散火炎の実験［15］［16］を行っており，いくつかの研究成果をあげつつある．

との実験装置の建設に際しては，燃焼学部門全員の総力を結集してことに当ったが，特に辻研究室および竹野研究室の松井潔，山岡市郎，小谷良信，吉田亮，佐藤順一，湯浅三郎，鈴木仁治，宇野達夫の諸氏にはなみなみならぬ協力をお願いした。 これら各位のど援助，ご協力に対してとてに厚くお礼申し上げる。また本実験装置の設計，製作を担当され，絶大な協力をたまわった三菱重工業株式会社神戸研究所および神戸造船所の各位に対し，また実験室建屋の完成に絶大な努力を払われた本学施設部の各位にもとの機会に感謝の意を表した い。

1975年12月1日原動機部

\section*{参 考 文 献}
［1］A．Ferri ：Review of problems in application of supersonic combustion，Journ．Roy． Aero．Soc．，Vol．68，No． 635 （1964），pp．575／597．
［2］辻 廣：超音速燃焼，日本機械学会誌，Vol．70，No．583（1967），pp．1205／1214．
［3］辻 廣：Standing detonation wave，東京大学宇宙航空研究所，昭和 43 年度＂ショック・ チューブシンポジウム＂前刷（1968），pp．55／56．
［4］辻 廣：超音速燃焼，日本機械学会，第 306 回講習会教材（1969），pp．63／73．
［5］竹野忠夫：Scramjet について，東京大学宇宙航空研究所，昭和 46 年度＂新しい推進系シン ポジウム＂前刷（1971），pp．38／43．
［6］辻 廣，竹野忠夫，堀 守雄，松井 潔：高温気流連続燃焼実験装置－1，高温気流発生装置，東京大学宇宙航空研究所報告，Vol．7，No 2（B）（1971），pp．551／565．
［7］辻 廣，竹野忠夫，安室紘一：超音速噴流による乱流拡散火炎の実験的研究，日本機械学会論文集，Vol．37，No． 294 （1971），pp．383／390．
［ 8 ］H．Tsuji，T．Takeno and A．Yoshida ：A preliminary study of supersonic combus－ tion in a vitiated airstream using transverse injection，ISAS，Univ．of Tokyo， Report No． 510 （1974）．
［9］吉田 亮，辻 廣：流れに垂直に噴射された水素噴流と高温超音速気流の干渉の実験，東京大学宇宙航空研究所，第2回＂衝撃工学シンポジウム＂前刷（1975），pp．34／41．
［10］吉田 亮，辻 廣：Transverse injectionによる超音速燃焼の研究，第13回燃焼シンポジ ウム前刷（1975），pp．143／146．
［11］辻 廣，堀 守雄，岡野達夫，山岡市郎：新たに改造設備された連続燃焼実験装置，東京大学宇宙航空研究所報告，Vol．1，No． 4 （B）（1965），pp．475／498．
［12］竹野忠夫，吉田 亮，小谷良信，宇野達夫：水素燃焼実験装置，東京大学宇宙航空研究所報告 Vol．11，Na 4 （B）（1976），pp．105／128
［13］超音速気流総合実験室建設委員会：超音速気流総合実験室建設報告，東京大学航空研究所集報， Vol．3，Na 6 （B）（1963），pp．389／618．
［14］竹野忠夫，小谷良信，宇野達夫：静止デトネーションの実験的研究，東京大学宇宙航空研究所，第2回＂衝撃工学シンポジゥム＂前刷（1975），pp．42／48．
［15］T．Takeno and Y．Kotani ：An experimental study on the stability of jet diffusion flame，to be published in Acta Astronautica．
［16］竹野忠夫，小谷良信：乱流拡散火炎の安定と構造，第13回燃焼シンポジウム前刷（1965），pp． 135／138．

東京大学宇宙航空研究所報告第 11 巻第 4 号（B）
\[
1976 \text { 年 } 1 \text { 月 }
\]

「高温気流連続燃焼実験装置」
辻 廣，竹野忠夫，堀 守雄

正 誤 表
\begin{tabular}{|c|c|c|c|}
\hline 頁 & 図，表，行 & 誤 & 正 \\
\hline 71 & 第1図 & \multicolumn{2}{|l|}{\begin{tabular}{l}
機器記号 F R ，FIC，PR，PIC，FrC，TR，と機器番号の間に八 イフンを挿入する（18ヶ所） \\
例： \\
\begin{tabular}{|c|}
\hline FR－－ \\
\(11-1\)
\end{tabular}
\end{tabular}} \\
\hline 77 & 第3表，8行目 & 燃料•空気混合比 & 燃料•空気当量比 \\
\hline 80 & 第6図（a），（b） & 燃焼ガス流量 \(0.14 \mathrm{~kg} / \mathrm{s}\) & 燃焼ガス流量 \(0.14 \mathrm{~kg} / \mathrm{sec}\) \\
\hline 82 & 第8 図（a），（b） & 空気流量 \(1 \mathrm{~kg} / \mathrm{s}\) & 空気流量 \(1 \mathrm{~kg} / \mathrm{sec}\) \\
\hline 84～85 & \begin{tabular}{l}
第 9 図 \\
（a），（b），（c ）
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
機器記号 F R ，FIC，PR，PIC，FrC，TR，FT，PT，FE，と機器番号の間にハイフンを挿入する（ a ）：10ヶ所，（b）：19ヶ所，（c）： 9 ケ所） \\
例： \\
FR \\
FR－ \\
11 \\
11
\end{tabular}} \\
\hline 86 & 6 行目 & 圧力調整弁 & 圧力調節弁 \\
\hline 90 & \begin{tabular}{l}
第6表， \\
下より1行目
\end{tabular} & 亜音速常温•高温用空気流量比率設定計 & 亜音速常温•高温用空気流量比率設定器 \\
\hline 91～92 & \[
\begin{aligned}
& \text { 第11図 } \\
& \text { 第12図 }
\end{aligned}
\] & \multicolumn{2}{|l|}{第11図と第12図の說明はそのままにして図のみを入れ替える} \\
\hline 91 & 第11図 & 27 イブニッショントランス通電•停止押ボタン & 27 イグニョショントランス通電•停止押ボタン \\
\hline 92 & 第12図 & 5 ノスル冷却水ポンプ運転 & 5 ノズル泠却水ポンプ運転 \\
\hline \begin{tabular}{c}
94 \\
\(\prime \prime\) \\
\(\prime \prime\) \\
\hline
\end{tabular} & 第15図 & \[
\begin{gathered}
\text { FCV } 1 \\
\text { FCV } 5 \\
\text { 計装空気圧力低下 } \\
\text { ( } 2.5 \mathrm{~kg} / \mathrm{cm}^{2} \text { 以下) } \\
\text { 燃料用空気圧力低下 } \\
\left(1.5 \mathrm{~kg} / \mathrm{cm}^{2}\right. \text { 以下) }
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{array}{ll}
\text { FCV-1 } & \text { (7ヶ所) } \\
\text { FCV-5 } & \text { (5ヶ所) }
\end{array}
\] \\
計装用空気圧力低下 \\
（ \(2.5 \mathrm{~kg} / \mathrm{cm}^{2}-\mathrm{G}\) 以下） \\
燃焼用空気圧力低下 \\
（ \(1.5 \mathrm{~kg} / \mathrm{cmi}^{2}-\mathrm{G}\) 以下）
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 頁 & 図，表，行 & 誤 & 正 \\
\hline 95 & 第16図 & \begin{tabular}{l}
自動調節弁記号 FCV，PCVと弁 （23ヶ所） \\
例：FCV 3
\end{tabular} & 番号の間にハイフンを挿入する
\[
\text { FCV - } 3
\] \\
\hline 95 & 第16図 & 計装空気圧力低下（ \(2.5 \mathrm{~kg} / \mathrm{cm}^{2}\) 以下） & 計装空気圧力低下 \(\left(2.5 \mathrm{~kg} / \mathrm{cm}^{2}\right.\) －G以下） \\
\hline 96 & 第17図 & \multicolumn{2}{|l|}{\begin{tabular}{l}
自動調節弁記号 FCV，PCV および空気圧作動遮断升記号 P V と弁番号の間にハイフンを插入する（13ヶ所） \\
例：PCV2 \\
PCV－2
\end{tabular}} \\
\hline 96 & 第17図 & 計装空気圧力低下 （ \(2.5 \mathrm{~kg} / \mathrm{cm}\) 以下） & \begin{tabular}{l}
計装空気圧力低下 \\
（ \(2.5 \mathrm{~kg} / \mathrm{cmi}^{2}\)－G以下）
\end{tabular} \\
\hline 97 & 12行目 & 非常 & 非常停止 \\
\hline
\end{tabular}

東京大学宇宙航空研究所報告第 12 巻第 1 号（A）
1976年2月
\begin{tabular}{|l|l|l|l|}
\hline 頁 & 図。表，行 & \multicolumn{1}{|c|}{ 誤 } & \multicolumn{1}{c|}{ 正 } \\
\hline \multirow{5}{*}{198} & & 193頁の第3図 & 202頁の第3図 \\
& & 202頁の第3図 & 193頁の第3図 \\
& & ノズル主流がない場合の & 小型コールドガスジェット \\
& & LITVCの横推力 特性 & の特性についての附録 \\
& & の附録 & \\
\hline
\end{tabular}```

