

FaSTAR-Moveの概要
FaSTAR-Move - 移動・変形する物体周りの解析に対応した 移動・変形物体解析モジュール (ver.1) 開発中
スライディング格子に対応し, エンジンのファン・圧縮機・タービンなどの翼列解析, 熱連成解析を可能とするエンジン解析モジュール (ver.2) (2018年度より着手予定)
 移動・変形物体解析モジュール ⇒ 移動重合格子法を採用 複数の格子の重ね合わせで、物体周りの格子を作成するため、 複雑な形状や一部分が移動・変形する物体に対して効果的な手法

外部搭載物分離解析	- Per-	de la	and the second	
外部搭載物分離解析	解析条件	ŧ		
z	マッハ数	M = 0.95		
Y X	母機姿勢角	$\alpha = \beta = 0$ [deg]		
外部搭載物を 投下した状態を 解析 ・ JAXA Supercomputer System Generation2 (JSS2)で計算	高度	26,000 [ft]		
	搭載物質量特性	Mass = 907.184 [kg] I _{xx} = 27.12 [kg*m ²] I _{yy} = I _{zz} = 488.1 [kg*m ²]		
	搭載物射出条件	射出位置:前方先端より36.54%位置 :後方先端より51.57%位置 射出力:前方:10675.7 [N] :後方:42702.9[N] ストローク:0.10 [m]		
	射出力以外の外力	重力1[G] = 9.80665 [m/sec]		
	基準面積	0.20247 [m ²]	搭載物断面積	
	基準点	0.508 [m]	搭載物断面直径	
	モーメント基準点	先端より 41.85%	搭載物重心位置	

解析手法	L.	10-1	fre
外部搭載物分離格子		解析手法	
		支配方程式	3次元圧縮性NS方程式
		空間離散化	有限体積法セル中心法
		数値流束関数	HLLEW
		勾配計算法	GLSQ
		勾配制限リミタ	Hishida (van Lee型)
		時間積分法	LU-SGS
		乱流モデル	SA-noft2-R
		合計1850万セルの外部搭載物分離の 重合格子で移動重合機能及び 現実的な時間で解析が可能かを検証	
王翼 + ハイロン格子	262万セル	<u> 現美的な時間で 脾析かり 能かを 検証</u>	
外部搭載物格子	316万セル	目標は3日以内に全解析を終了	
背景格子	1272万セル		
合計	1850万セル		

FaSTAR-Move Ver.1の詳細スペック				
 流体解析機能 支配方程式 Euler, Full N-S 離散化 Cell-center (Faceベースデータ) 並び替え Cuthill-Mackee 非粘性流束 HLLEW, Roe, HLLE, AUSM+UI 勾配評価 Least-Square, Green-Gauss, G 勾配制限関数 Hishida, Venkatakrishnan, Bar 高精度化 MUSCL, U-MUSCL 乱流モデル SA, SST, EARSM, DES, LES 遷移モデル 強制遷移、自然遷移 (γ-Re_{θt}) 領域分割 METIS 並列計算 MPI 時間積分 LU-SGS (定常/非定常、local/gl 安定化 初期条件,初期CFL, 低品質格子 重動連成解析 病ee motion(6自由度運動方程式 物体数 複数可(接触判定無し) 格子間補問 距離の逆数を重み係数とした補問 前処理対応ソフト: Gridgen(Pointwise), Hee 後処理対応ソフト: Fieldview, Tecplot, Para 	下線はデフォルトの手法 青字はFaSTAR-Move上では未検証 のみ P, SLAU LSQ th-Jespersen, minmod ² 対応、低圧力対応 PIハイブリッド並列対応), prescribed motion			