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A first attempt for detecting transonic buffet signature via unsteady-data mining
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The transonic buffet degrades the aerodynamic performance of the aircraft during cruise. It is a phenomenon that should be avoided

absolutely as it may lead to accidents. However, the mechanism of occurrence has yet to be elucidated. To understand this phe-

nomenon, large-scale unsteady data is accumulated using computational fluid dynamics. In contrast, data mining of time series data

such as unsteady data is a recent topic in that field. In this study, we have attempted to perform unsteady data mining with capacity

exceeding Tera’s order. As a result, the behavior of the physical quantity before the transonic buffet arises was suggested to be dif-

ferent from the data just before the transonic buffet occurs. Moreover, a topological data analysis revealed abnormalities before the

temporal origination determined by visualizing flow structure. Based on the results, we visualized the data over time, and found the

characteristic change of the viscosity distribution on the wing surface. This should be a clue to elucidate this phenomenon.
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1. Introduction

Unfortunately, the current civil aircraft has transonic cruises
because the supersonic aircraft Concorde has retired. Because
the shockwave interacts with the separated boundary layer,
many transient phenomena occur under transonic flow condi-
tions. The resulting pressure fluctuations cause a number of
undesirable unstable effects and therefore there is the possibil-
ity of shockwave oscillations known as transonic buffets on the
wing surface of the airplane V.

This is a phenomenon in which the interaction between the
shockwave and the turbulent boundary layer and the separation
of the flow cause a large self-sustained fluctuation on the profile
at the transonic Mach number. Shock-induced variations often
lead to periodic impact motion with large amplitude at high sub-
sonic Mach numbers. Although these shockwave movements
were reported in 19472, the physical mechanism of the wing
transonic buffet is still unknown despite the possibility of induc-
ing a severe accident. So the transonic buffet is one of the most
important topics in the experimental / computational aerody-
namic field. When transonic buffet occurs in a civil aircraft sail-
ing on a daily basis, it is an extremely dangerous phenomenon
due to falling into a stall and therefore has a flight profile such
that a transonic buffet never occurs. Elucidation of the cause is
a matter of great urgency.

Past experiments and calculations show that the transonic
buffet phenomenon is low frequency oscillation®. It is slower
on the order of O(107!) to O(107?) than the flow phenomena
generated around the wing of the airplane. In recent years, ex-
periments and calculations gradually capture the transonic buf-
fet?, but its data is enormous in Tera-order due to the fine
time scale. Because this is an acceptable quantity as one of
Big data ¥, it is not possible to easily analyze data for the tran-

sonic buffet data set. Big data analysis is a topic in the field of
data mining and extensive data analysis, however, in the field
of aerospace engineering, it has not been able to successfully
use time series data sets such as unsteady aerodynamic data. To
acquire knowledge to make use of the design, it is necessary
to obtain design information through data mining by effectively
using accumulated unsteady data.

The ultimate goal of this project is to reveal the cause of
the transonic buffet and to design a new geometry of the air-
plane wing or a device that does not produce transonic buffet
on the aircraft. As a first step, this study determines the tempo-
ral and spatial origination of the transonic buffet temporally and
spatially with respect to a time series data set with a transient
phenomenon of transonic buffets constructed by Computational
Fluid Dynamics (CFD). To do so, we tried several data mining
techniques from conventional to state-of-the-art methods and
examined the policy of the next step.

2. Numerical Methods

2.1. CFD

Unstructured detached eddy simulation (DES) is executed
using FaSTAR (FaST Aerodynamic Routines)® developed by
Japan Aerospace Exploration Agency (JAXA). Summarize the
calculation scheme for analyzing the transonic buffet by FaS-
TAR shown in Table 1.

We prepare a calculation model for NACAO012. The 3D
model has a length of non-dimensional spanwise length of 0.5
under the dimensionless chord length of 1.0 shown in Fig. 1. We
calculate under the Mach number M = 0.72 =const. For data
mining, we obtain the data set from DES analysis with swept
angle of attack (AoA) (linear angle of attack o sweep from 3.6
to 4.6 [deg] because the transient buffet is predicted from DES
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Table 1. Computational schemes on FaSTAR for analyzing transonic buffet.

Governing equation

Full Navier-Stokes

Discretization Cell-center

Mesh type Structured

Inviscid flux Harten-Lax-van Leer-Einfeldt-Wada 7
Viscous flux Cell gradient

Gradient evaluation
Limiter

Turbulent model

Time integration
Domain decomposition
Parallel computation MPI

Weighted Green-Gauss

Hishida’s limiter

Spalart-Allmaras (SA-no ft,-R)®
Lower/Upper-Symmetric Gauss Seidel
METIS

V&Z/?
Y 4
Fig. 1. Computational model using NACAOO12. Generated meshes
size are 501 x 101 x 161.

analysis with fixed AoA near « of 4.1 [deg]). The initial value
of DES analysis with swept AoA uses the result of DES with
fixed AoA and starts continuation calculation. The dimension-
less time step is 0.005 (roughly equivalent to real time 0.003
[s]) and 320000 steps are totally computed. y = 0 and y = 0.5
have periodic boundary condition. We acquire six output data:
density p, x-directional velocity u, y-directional velocity v, z-
directional velocity w, pressure p, and the turbulent eddy vis-
cosity coefficient near the wall v.

Since the amount of data becomes enormous when physical
quantities are acquired in all cells of the mesh, this time we
create data sets for data mining at 60 monitoring points. The
monitoring points #1 to #30 are on the top side surface of the
computational model, and #31 to #60 are set as one layer upper
mesh. In this paper, we will focus on the monitoring points from
#1 to #30 due to similar tendencies. The monitoring points from
#1 to #30 are shown in Fig. 2. The monitoring points from #1 to
#10 are on y = 0.10, from #11 to #20 are on y = 0.25, and from
#21 to #30 are on y = 0.40. The x coordinates of #1, #11, and
#21 are set at x = 0.05, #10, #20, and #30 are set at x = 0.50.
Other monitoring points are set at even intervals.

Fig. 2. The monitoring points on the upper surface of NACA0012

computational model.

2.2. Data Mining

We employ several data mining techniques: on-demand type
correlation-based hierarchical structuring method (CTHSM) '
including a parallel coordinate plots (PCP) 'V and a scatter plot
matrix (SPM) 2, the Barnes-Hut-SNE (Stochastic Neighbor
Embedding) '¥, and the Betti sequence Y. CIHSM is a type
of rule mining, structuring generated rule set and clarifying
the organic relationship between the rules. Each rule set ap-
plies PCP and SPM to examine a physical background which
rule sets generate. PCP and SPM are the well-known general-
purpose tool for multi-dimensional data visualization. Even
though many visualization techniques have been supposed, PCP
and SPM are still the simplest and the easiest to observe com-
plex relationships among variables of high-dimensional data.
The Barnes-Hut-SNE is an embedding technique that is com-
monly used for the visualization of high-dimensional data in
SPM and that normally runs in O(N?).

In contrast, the Betti sequence analysis is based on the chaos
theory ' and the persistent homology '©; it is one of the topo-
logical data analysis (TDA) '” manners. The Betti sequence is
the vector which describes the feature of attractor. It represents
the following time evolution equation relative to time series us-
ing persistent homology:

s X1), ey

X1 = fOks Xp—1, -0

where x; (Vx; € R) denotes time series observations. We ana-
lyze the classification scores to cognize the occurrence of buffet
via applying the above Betti sequence to unsteady aerodynamic
data as TDA viewpoints. The detailed descriptions of the Betti
sequence can be referred in 4.

Fig. 3. Instantaneous situation of the CFD result in the transonic buf-

fet on the wing upper region. We illustrate the wing upper surface,
iso-surface of turbulent viscosity with C}, distribution, and the surface
at y = 0.40 with C), distribution.
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3. Results

3.1. CFD Result as a Data Mining Dataset

CFD analysis is implemented in JSS2 (JAXA supercomputer
system second generation). DES analysis with swept AoA takes
about two weeks. In this calculation, alpha is shifted from 3.60
to 4.60 [deg]. This is because it was confirmed that the transonic
buffet starts from approximately 4.12 [deg] in the result of the
DES with fixed AoA separately performed (for effective para-
metric calculation of 2 decimal places, the effective digits are
up to 2 decimal places). Analysis of the results obtained from
DES analysis with swept AoA showed that the transonic region
of transonic buffet is roughly 13% to 24% of the chord length;
the Strouhal number S, on the time scale based on the chord
length (S, ~ 1) is approximately 0.073 to 0.081. Thereupon,
the current transonic buffet is a low frequent phenomenon.

Figure 3 shows the 3D flow of the instantaneous situation
after the transonic buffet began to occur. It consists of an iso-
surface of the turbulent viscosity with a contour of the pressure
coefficient C, and a calculated surface with y = 0.40 with C,
contour. From this figure, we can know the flow structure under
transonic buffet condition. Separation occurs behind the shock-
wave surface. The boundary layer grows, the transition region
appears, and the turbulent boundary layer develops. We can
also observe three-dimensional nonlinear structure.
3.2. Data-Mining Result
3.2.1. Result from PCP

The data of DES with swept AoA was analyzed from the
following viewpoint:

e We compare six physical quantities’ changes at whole
monitoring points to find differences in trends by points.

e We analyze based on two viewpoints:

— physical amounts themselves at each monitoring point
at present time
— difference of physical quantities between the immedi-
ately preceding and present time at each monitoring
point
to cognize the difference between that two viewpoints.

e We compare not only the values at each monitoring point
but also the data of the surrounding spots with the values
of the averaged data so that we analyze what kind of trend
difference will occur.

Figure 4 shows the PCP results between well before and just
before buffet occurs. As a consequence, the tendency greatly
depends on the monitoring points; it was found that the closer
to the shockwave, the more clearly the tendency is exhibited.
Although it was confirmed that the trend greatly differs with
the difference and the value itself, there was no large difference
between the two in the strength of the trend.

Moreover, there is a part where the tendency is strengthened
by taking the average of the surrounding monitoring points. The
representative monitoring point is #5; we shows the PCP of
the six physical quantities between the time before occurring
transonic buffet and that immediately before occurring it. This
figure simply explains the different tendency of the behavior
of whole physical quantities, hence we will visualize the flow
structure under the condition addressed by PCP in Chapter 4. to
clarify the physical reason of the different tendency.

3.2.2. Result from Barnes-Hut-SNE

Figure 5 illustrates the results of applying the Barnes-Hut-
SNE at from #01 to #05. The five-dimensional physical quantity
is expressed as a feature that is dimensionally compressed well
than expected. Since the periodic and gradual changes of the
physical quantities are drawn, this algorithm can also visualize
the time series changes of the physical quantities. If we classify
the physical quantity and examine the trend change, it may be
applicable to sign detection. However, although there seems to
be features, it is still unknown which physical quantity to focus
on. Many of the dimensionally compressed features overlap and
there are monitoring points that are difficult to grasp the features
qualitatively but because we can not conclude that there is no
physical quantity feature, we will consider coupling with other
dimensional compression methods.

3.2.3. Result from the Betti Sequence

From the analysis results at all monitoring points, the results
of #01 to #05 are shown as a representative example in Fig. 6.
According to the CFD result, since the position in the chordwise
direction is 13 to 24% in the oscillation region of the transonic
buffet, the monitoring points #01 and #02 are always located in

Nitr P u v W P p
(a)

0.00

Nitr P v v w P p

(b)
Fig. 4. PCP of averaged sampling difference. Red lines represent
the data with conditional correspondence and blue lines denote other
whole data. (a) the data at the time before occurring transonic buffet.
(b) the data at the time immediately before occurring transonic buffet.

Note that n;;,- denotes the computational iteration number.
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Fig. 5. The result of applying the Barnes-Hut-SNE at the monitoring
points from #01 to #05.

front of the shockwave regardless of the time. Also, the mon-
itoring points #03 and #04 are in shockwave oscillation, the
point #05 always lies behind the shockwave regardless of the
passage of time.

For monitoring points #01 and #02, the normal u is a constant
value; the Betti sequence value is not detected. In contrast, time
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Fig. 6. The result of applying the Betti sequence to u physical quan-

A

tity at the monitoring points from #01 to #05. Red line describes the
normalized number of the Betti sequence and blue line denotes nor-
malized u. The line is drawn at the position at & = 4.12 [deg] where
transonic buffet was determined to have occurred with the naked eye
from CFD animation.

series fluctuations are detected at #03 and #04.

Here we need to pay attention to the result of #03. This point
is the most anterior position of the chordwise direction where
the shockwave oscillation occurs. From the result of DES with
fixed AoA, it was confirmed that shockwave oscillation begins
at @ 4.12 [deg], but this result shows the reaction at o 3.7288
[deg]. In the results of DES with fixed AoA, it was judged that
the attack angle at which the shockwave started to oscillate was
the occurrence of a transonic buffet, but in data mining using the
Betti sequence, it is suggested that the transonic buffet already
started at a lower angle of attack than @ 4.12 [deg]. The invisible
phenomenon is captured by the Betti sequence, which may be
the temporal origination of the transonic buffet.

The time variation of the speed steadily appears at #05, but
the value of the Betti sequence rises sharply to a of 3.6202
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[deg]. Although no shockwave passes, it is suggested that an
abnormal phenomenon occurs behind the shockwave. Due to
a phenomenon earlier than @ of 3.7288 [deg], which may be a
sign of a transonic buffet at #03, the abnormal phenomenon that
occurs behind the shockwave may be the beginning of a subse-
quent transonic buffet. Since we cannot completely deny the
possibility that the transonic buffet is already occurring at & of
3.60 [deg], we need to use the sweep calculation result from the
angle of attack of less than 3.60 [deg].

4. Feedback of Knowledge from Data Mining to Visualiza-
tion

4.1. Observing Flow Structure at the Time Specified by
Data Mining

We will observe the instantaneous flow structure at the spec-
ified time to construe the abnormality that PCP and the Betti
sequence indicate. Figure 7 shows front upward visualization
of C, distribution on wing surface and iso-surface of u = 0
which describes flow separation boundary. This figure reveals
that separation behavior has 3D non-linearity for spanwise di-
rection.

A bird’s-eye view is shown in Fig. 8 to clearly show the mon-
itoring points around #5. Figure 8(a) shows that separation be-
hind the shockwave is suppressed near y = 0.10. Separation
does not grow and reattaches to the wing upper surface. Ac-
cording to Fig. 8(b), perturbation of C, on the wing surface
does not appear in the vicinity of #5, but there is a remarkable
difference in the spatial structure of x-direction velocity u.

In contrast, as indicated by three arrows, we recognize a dif-
ferent tendency in Fig. 8(c) showing the viscosity distribution
on the wing surface. These are the positions where the highly
viscous region is maintained in the chordwise direction. That
is, it can be confirmed that the three-dimensional nature of the
flow structure with respect to the spanwise direction is gener-
ated. High viscosity elongation inhibits separation and causes
reattachment. Differences between data indicated by PCP and
abnormality indicated by the Betti sequence are due to instabil-
ity in boundary layer transition.

The transonic buffet has three-dimensional structure in the
spanwise, because shockwaves have three-dimensionality be-
fore reaching buffet. The three-dimensional nature of the shock-

Cp

iso-surface

m 0.9

wing surface

0.9
N

I-1.5

Fig. 7. Front upward visualization of the instantaneous flow struc-

ture at the time specified by data mining. Iso-surface of u = 0 and C),
distribution on the wing surface.
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wave arises from the twist of the average flow generated by
the instability of the boundary layer transition on the wing sur-
face. Since three-dimensionality exists regardless of whether
transonic buffet occurs or not, instability due to boundary layer
transition is probably not a direct cause of transonic buffet.

Consequently, Fig. 8 derived by PCP and the Betti Sequence
suggests a physical mechanism to induce three-dimensionality
in the spanwise direction. Since the difference of the physical
quantity can capture the minute fluctuation, it succeeded in sim-
ply grasping the abnormality.
4.2. Hypothesis regarding Physical Mechanism of Tran-

sonic Buffet Outbreak

The consequences of data mining suggest the physical mech-

anism of transonic buffet as follows;

. Shock is generated.

. Pressure fluctuation is generated by shock. (*1)

. The fluctuation propagates to upstream. (*2)

. The fluctuation gives an effect on upstream velocity
changes; upstream pressure also varies according to the

N R N

Cp

iso-surface

= 0.9

s
Cp

wing surface

" 0.9

il-1.5

Cp

wing surface

" 0.9

I-1.5
(b)

viscosity
wing surface

1.1
N

i1
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Fig. 8. Upward visualization of the instantaneous flow structure at

the time specified by data mining. Red points represent the monitoring
points #4, #5, #6, and #15. (a) Iso-surface of u = 0 and C), distribution
on the wing surface , (b) just C), distribution on the wing surface, and
(c) Laminar viscosity distribution on the wing surface. Red points

denote the monitoring those.
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following Rankine-Hugoniot relation:

+1
1+ Y_I&
P2 U Y—1pi
2. 11 @)
pruwp Yt P2
y-1 pnm
If u; decreases, p; increases. In contrast, if u, swells, p;
declines.

5. Shock shifts to keep balance in the vicinity of it ? (*3)

To physically explain the above hypothesis, points of doubt are
listed below:

e (*1) Why shock yields pressure fluctuation.

e (*2) How pressure fluctuation propagates to upstream.
Where is the propagating path. If spatial propagation oc-
curs, spatial monitoring points is necessary.

e (*3) What balance? Circulation?

Further data mining will be carried out to give a physical expla-
nation to these in the future.

5. Conclusions

In this study, the data mining techniques such as from ortho-
dox to state-of-the-art have been applied to the large scale un-
steady aerodynamic data regarding transonic buffet generated
by computational fluid dynamic analysis. As a result, several
sign detection can be implemented. In response to this result,
we have found that characteristic changes in the viscosity distri-
bution of the wing surface can be seen as a result of visualizing
the data around the time. Following the consequence, since we
found the necessity of a more suitable dataset for examining
the origination of a transonic buffet, further data mining will
be performed for it, we will elucidate the physical mechanism
of transonic buffet phenomenon. Design information obtained
from data mining will lead to the geometry design that does not
cause transonic buffet.
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