49th Fluid Dynamics Conference / 35th Aerospace Numerical Simulation Symposium

FaSTAR results with Various Grids and Turbulence models

OTakahiro Yamamoto, Kenji Hayashi, Keiji Ueshima (Ryoyu Systems Co., Ltd.)

Takashi Ishida, Atsushi Hashimoto, Takashi Aoyama (JAXA)

Task1 Computational Method

- Flow solver: FaSTAR
 - Grid: HexaGrid, BOXFUN, UPACS, MEGG3D
 - Turbulence model: 3 SST models,

3 EARSM models,

- + 1 SA model (APC2 result)
- Discretization
 - Cell-Vertex: MEGG3D
 - Cell-Center: HexaGrid, UPACS, BOXFUN
- Inviscid flux: HLLEW
- Reconstruction: U-MUSCL(χ =0.5)
- Gradient: GLSQ
- Slope limiter: Hishida(van Leer-type)
- Time integration: LU-SGS (Local time stepping)

Turbulence models (1)

• **SAQCR**: SA-noft2-R-QCR2000

- This is used for APC-I and APC-II.
- No Ft2 term, rotation correction, nonlinear QCR model

 $\underline{\text{QCR} \mp \tau} \quad \tau_{ij,QCR} = \tau_{ij} - C_{cr1} \left[O_{ik} \tau_{jk} + O_{jk} \tau_{ik} \right]$

Linear Nonlinear (QCR model)

- SST: SST2003
 - Menter's SST proposed in 2003
- SSTsust: SST-2003-sust
 - k and ω do not decay in free stream (controlled decay)
- SSTsustQCR: SST-2003-sust-QCR2000
 - Add QCR model to the above SSTsust model

Controlled decay model

Turbulence models (2)

- EARSM: EARSMko2005a
 - Hellsten's k-ω based explicit algebraic Reynolds stress model

$$\begin{aligned} \tau_{ij} &= 2 \frac{M_{\infty}}{Re_{\infty}} \mu_t \left(S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) - \frac{1}{3} \rho k \delta_{ij} - \underline{a_{ij}^{(ex)}} \rho k \\ a_{ij}^{(ex)} &= \beta_3 \left(W_{ik}^* W_{kj}^* - \frac{1}{3} II_{\Omega} \delta_{ij} \right) + \beta_4 \left(S_{ik}^* W_{kj}^* - W_{ik}^* S_{kj}^* \right) + \beta_6 \left(S_{ik}^* W_{kl}^* W_{lj}^* + W_{ik}^* W_{kl}^* S_{lj}^* - II_{\Omega} S_{ij}^* - \frac{2}{3} IV \delta_{ij} \right) \\ &+ \beta_9 \left(W_{ik}^* S_{kl}^* W_{lm}^* W_{mj}^* - W_{ik}^* W_{kl}^* S_{lm}^* W_{mj}^* \right) \\ S_{ij}^* &= \frac{1}{\beta^* \omega} \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad W_{ij}^* = \frac{1}{\beta^* \omega} \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \end{aligned}$$

- EARSMmod :
 - The nonlinear term $a^{(ex)}$ is deleted from the above model
 - This is a linear k- ω model, but this is different form the Wilcox's k- ω model
- EASRMmodQCR:
 - Add QCR model to the above EARSMmod

- Low AoA Cruise AoA : Almost same
- High AoA : Considerable variations

Aerodynamics Coef. at 2.94deg (MEGG3D)

- CD: EARSM model > SA model > SST model
- The similar trend for the other grids.

5

AR

Pressure and Viscous Drag at 2.94deg (MEGG3D)

Viscous Drag: EARSM model > SA model > SST model

7

$CL-\alpha$ at High Angles of Attack

• High AoA: HexaGrid and BOXFUN results are similar trend.

UPACS and MEGG3D results are similar trend.

- Shock wave location is changed by turbulence models.
- BOXFUN: There is no SOB(Side of Body) separation.
- MEGG3D: The size of SOB separation is changed by turbulence models.

Cp and CL of AoA5.72deg(BOXFUN)

- There is a relationship between Cp of SectionC and CL.
- The vortex appears near the SectionC.

• Best CL prediction ⇒ MEGG3D+EARSMmod

- Best Shock wave location ⇒ BOXFUN+EARSMmodQCR
- There are no cases which correspond with both of CL and Shock wave location?
 11

Task2 Whole Wind Tunnel CFD

- We computed the wall interferences
 - to investigate the difference between EXP and CFD at the low angles of attack
 - to validate the amount of wall correction
- Grid: BOXFUN
- Turbulence model: SA-noft2-R-QCR2000

Computational Conditions

	w/o wall	w/ wall
Mach number	0.847 (corrected)	0.85 (uncorrected)
Angle of attack	0 deg	0 deg
EXP	All corrected	Only corrected for upflow angle

Task3 Computational Method

ARC

- Flow solver: FaSTAR
 - Grid: HexaGrid(80 million cells)
 - Discrezation: Cell-Center
 - Inviscid flux: HLLEW
 - Reconstruction: MUSCL
 - Gradient: GLSQ
 - Slope limiter: Hishida(van Leer-type)
 - Time integration: LU-SGS(Dual Time Stepping)
 - Turbulence model: Zonal-DES(SA-noft2-R-QCR2000)

We change the RANS thickness in the spanwise direction. x1: Thickness which calculated from the previous RANS computation. x6: Six times thickness of x1.

16

SectionE: Spanwise x1 get close to the EXP. •

SectionF: Spanwise x6 get close to the EXP. •

Time history of Cp at AoA4.87deg(Section E)

Time history of Cp is similar to the EXP.

- Shock wave location: Almost same
- Q criteria: Small vortex are found at BOXFUN.

Summary

- Task 1
 - We computed with 4 grids and 6 turbulence models.
 - Low AoA Cruise AoA
 - Computed forces are almost same.
 - Viscous Drag: EARSM model > SA model > SST model
 - High AoA
 - Computed forces show considerable variations.
 - Shock wave location is changed by turbulence models.
 - The SOB separation is affected by the grids.
 - There is the relationship between Cp of SectionC and CL.
 - There are no cases which correspond with both of CL and Shock wave location

Summary

- Task 2
 - We computed the wall interferences.
 - Lift
 - The CFD result is still overestimated.
 - The wall interference is almost same between CFD and EXP.
- Task 3
 - We computed Zonal-DES for the two spanwise cases.
 - Average and RMS of Cp
 - The shock wave locations are not predicted well.
 - Time history of Cp
 - CFD is similar trend to the EXP.
 - Result of BOXFUN
 - The resolution near the wall is improved.