

The analysis of wing-body configuration by Building-Cube Method (BCMによる翼胴形態解析の現状)

OTakaya Kojima, Shinya Makino, Takashi Misaka, Shigeru Obayashi (Institute of Fluid Science, Tohoku University) Daisuke Sasaki (Kanazawa Institute of technology)

Third Aerodynamics Prediction Challenge @National Olympics Memorial Youth Center 2

2017/6/28

• APC-III Case 1

NASA-CRM aerodynamic prediction at cruise and high AoA

→ BCM-TAS coupling solver

APC-I Case2
 Wake of NASA-CRM wing-body configuration
 → BCM solver

- BCM (Building Cube Method)
 - Cartesian mesh based solver

2017/6/28

Third Aerodynamics Prediction Challenge

Near wall treatment

- BCM-TAS coupling solver
 - Efficient analysis near the wall: TAS*
 - Sufficient resolution in the far field: BCM

Coupling mesh around CRM

*TAS (Tohoku university Aerodynamic Simulation)

- Unstructured mesh solver

Case 1

NASA-CRM aerodynamic prediction at cruise and high AoA

- Geometry: wing, body, tail (ih = 0 deg)
- M = 0.847, Re_{c} = 2.26 * 10⁶, T_{ref} = 284 K
- AoA: -1.79, -0.62, 0.32, 1.39, 2.47, 2.94, 3.55, 4.65, 5.72 deg

2017/6/20	
201//0/20	

Third Aerodynamics Prediction Challenge

Case 1: Numerical methods 🔛 🕼

Solver : BCM-TAS coupling

	TAS	ВСМ
Governing Eq.	Compressible NS Eq.	Compressible Euler Eq.
Discretization	Cell-vertex finite volume	Cell-centered finite volume
Inviscid Flux	HLLEW	HLLEW
Time integration	LU-SGS	LU-SGS
Turbulence model	SA-noft2	-

Grid : MEGG3D Medium mesh + BCM mesh

Linear interpolation between BCM and TAS

APC-I Case 2

Wake of NASA-CRM wing-body configuration

- M = 0.85, Re_{c} =2.26*10⁶, T_{ref} = 284 K
- AoA : 3.07, 4.84deg
- Wing deformation considered

APC-I Case 2: Numerical methods

-	By Kana
Tanki Laverely	hno
IFS)	
	o stur.

	BCM-NS	BCM-Euler
Governing Eq.	Compressible NS Eq.	Compressible Euler Eq.
Discretization	Cell-centered finite volume	Cell-centered finite volume
Inviscid Flux	SLAU	HLLEW
Time integration	LU-SGS	LU-SGS
Turbulence model	SA-noft2-R	-

Wall boundary treatment

 Immersed boundary method (Ghost cell approach) Density & pressure → Zeroth-order interpolation Velocity → Linear interpolation

 Solvers 	
BCM-RANS	: NS solver / nonslip condition
BCM-RANS-SLIP	: NS solver / slip condition
BCM-Euler	: Euler solver
Coupling-Euler	: TAS(SA) / BCM Euler
Coupling-DES	: TAS(SA) / BCM (Lagrangian SGS)

• Grid

	Coarse	Medium	Fine
Minimum grid size	0.0061035 (0.92mm)	0.0030518 (0.46mm)	0.0015259 (0.23mm)
Total cell number	253,468,672	1,425,592,320	1,459,552,256

```
2017/6/28
```

Third Aerodynamics Prediction Challenge

11

APC-I Case 2 : Result (*u*)

• The result of RANS does not have sufficient negative pressure to generate wing tip vortex

pressure to generate wing tip vortex

 Velocity profile along the horizontal line passing through wing-tip vortex center

2017/6/28

Third Aerodynamics Prediction Challenge

тоноки

APC-I Case 2 : Result (W)


```
2017/6/28
```

Third Aerodynamics Prediction Challenge

17

Conclusion

We analyzed APC-III Case 1 and APC-I Case 2 by BCM

- APC-III Case 1 (BCM-TAS coupling solver)
 - Good agreement with the experiment and other CFD solver for C_L and C_m
 - C_D appears larger than other solvers
 - → Turbulence model? grid? interpolation between BCM-TAS?
- APC-I Case 2 (BCM solver)
 - The RANS solver did not generate a wing-tip vortex
 - BCM result could not capture separation around kink
 - \rightarrow It is necessary to properly resolve the surface of the object
 - Peak tangential velocity is overestimated in the BCM-Euler, and vortex core appears too large in the BCM-RANS-SLIP