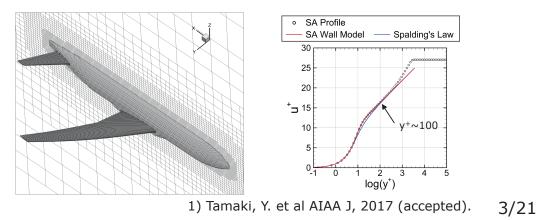
UTCartによる直交格子・埋め込み境界法を用いた NASA-CRM空力解析

Aerodynamic Analysis of NASA-CRM by UTCart using Cartesian Grid and **Immersed Boundary Method**

The University of Tokyo OYoshiharu Tamaki, Taro Imamura

1/21

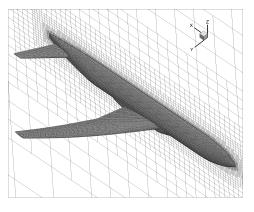
2017/6/30 APC-III, Tokyo

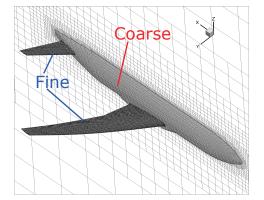

Agenda

- Background/Objective
- Computational Settings
- Results
 - Grid Convergence Study •
 - Alpha-Sweep •
- Conclusions

Background/Objective

- UTCart (The <u>University of Tokyo Cartesian grid based</u> automatic flow solver) is developed as a platform for aerodynamic designing
 - Automatic grid generator based on oct-tree structure
 - Compressible flow solver parallelized by MPI
 - The immersed boundary method with a wall function¹⁾
- Prediction accuracy in flows around an aircraft should be confirmed

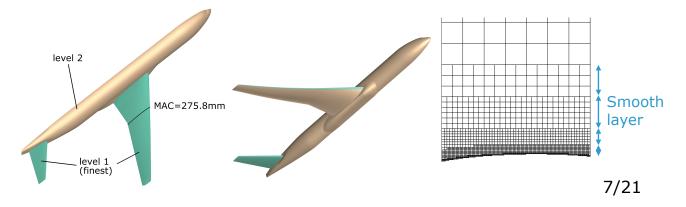

Agenda


- Background/Objective
- Computational Settings
- Results
 - Grid Convergence Study
 - Alpha-Sweep
- Conclusions

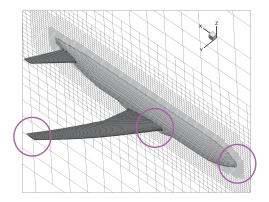
Test cases

- **D** Grid convergence at α = 2.94 deg
 - · Coarse, medium, fine grids
 - Wing-body-tail (no support strut)
- □ Case 1 (Alpha-sweep)
 - Medium grid
 - Wing-body-tail (no support strut)
- Reference computation
 - FaSTAR on UPACS medium & fine grids

- □ Variable wall spacing (fine on wing upper surface and tail)
 - 282~850 cell/MAC
 - \Rightarrow <u>750~1340 cell/MAC</u> (upper surface)

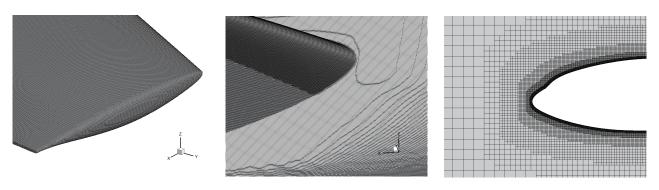

- **QCR-2000**
- **D** Force integration (flux-based method²⁾)

2) 玉置, 今村, 数値流体シンポジウム2016 🥚


6/21

Grid Settings

		N.4. 11	
	Coarse	Medium	Fine
Total cell number		50,323,727	97,041,807
Domain size in	4.80×10 ⁴	3.60×10 ⁴	5.40×10 ⁴
Grid size	0.732	0.549	0.412
(wing upper surface / tail) in	3/4	3/4	
Grid size	0.366	0.274	0.206
(wing lower surface / fuselage) in			
Smooth layer (near field)	3	6	8
Smooth layer (far field)	3	3	3
MAC / Grid size	753	1,004	1,339
(wing upper surface)			

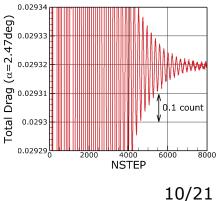


Grid Settings

Overview: Very coarse grid (only for visualization)

Others: Medium grid

Computational Methods

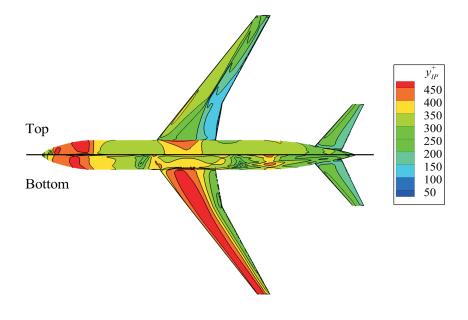

Solver	UTCart	FaSTAR	
Turbulence Model	SA-noft2-R- QCR2000		
Inviscid flux	SLAU (AUSM-type)		
Spatial Scheme (Inviscid term)	Second-order MUSCL		
Limiter	Barth-Jespersen	Hishida	
Spatial Scheme (Viscous term)	Second order central difference		
Gradient Estimation	Weighted least- squares (G)	GLSQ	
Time Integration	MFGS	LUSGS	

9/21

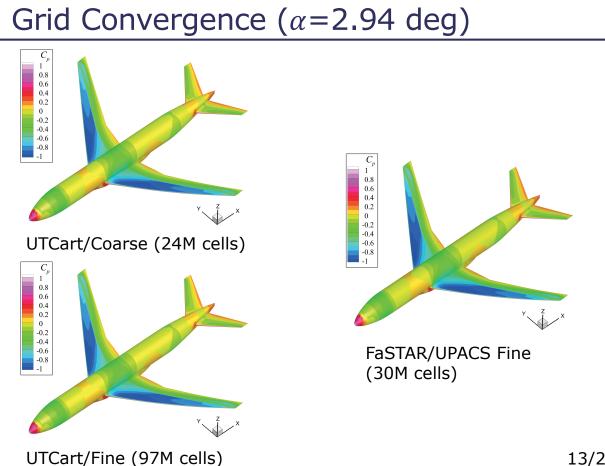
Computational Resources (UTCart)

For Medium grid (50M cells)

- Grid generation
 - Workstation, Xeon E5-2643 v3 @ 3.4GHz, 1core
 - 43 min, 50 GBRAM
- Flow calculation
 - Reedbush-U supercomputer (UTokyo), Xeon E5-2697 v4
 @ 2.1 GHz, 144 cores (pure MPI)
 - 5.5 hours (8000 steps), 60 GBRAM

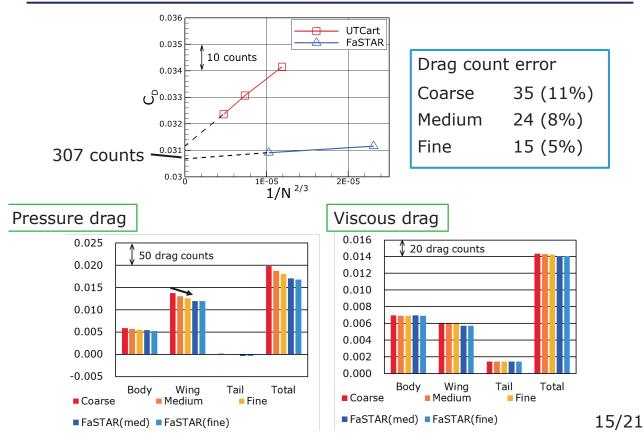


Agenda

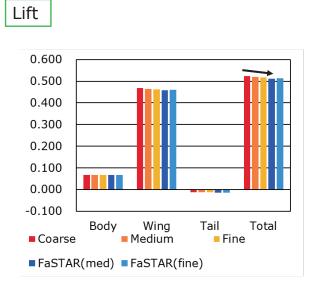

- Background/Objective
- Computational Settings
- Results
 - Grid Convergence Study
 - Alpha-Sweep
- Conclusions

Surface y⁺ Distribution (α =2.94 deg)

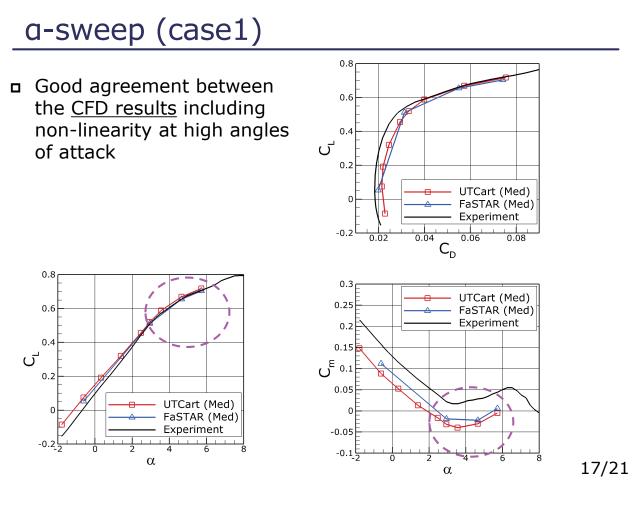
- Medium grid
- **u** y⁺ at IP height ($d_{IP} = 2\Delta x$)
- \square ~300 on the wing upper surface



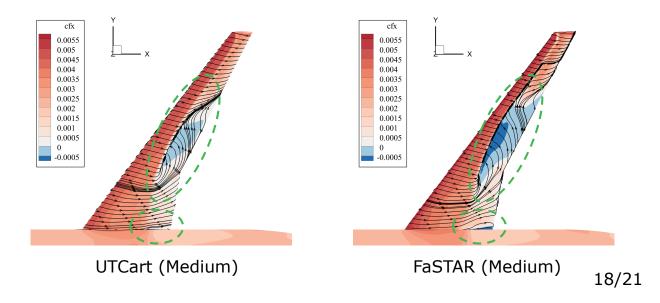
13/21

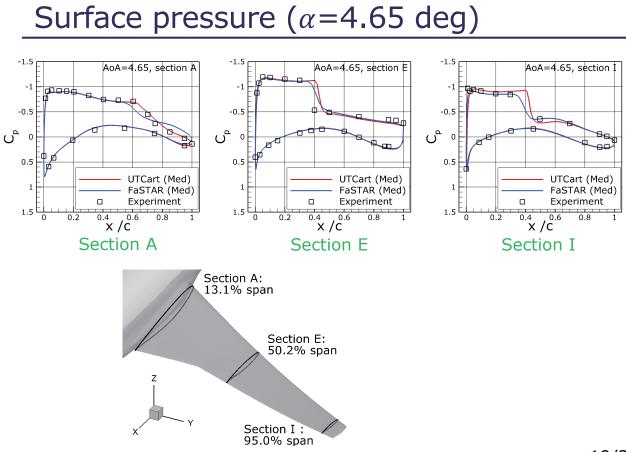

Grid Convergence at α =2.94 deg

Grid Convergence at α =2.94 deg

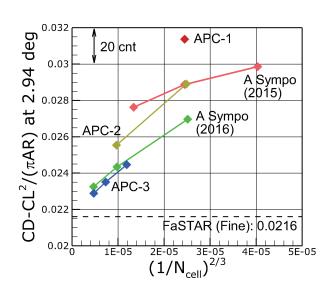


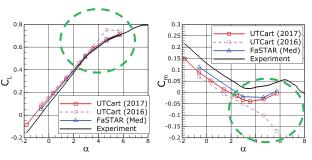
Pitching moment




46

Surface Streamline (α =4.65 deg)


- Separation occurs at mid-span and root
- Friction in the separated region is small in the UTCart result (limitation of the wall function?)



19/21

Improvement of UTCart in APC

- Drag prediction is improving (still +15 count)
 - Larger scale computation
 - Force integration
 - Variable cell size on wall
 - etc.
- ✓ Better prediction at high AoA
 - QCR
 - Variable cell size on wall

Conclusions

- **\square** Grid convergence is examined at a=2.94 deg
 - The trend of each aerodynamic coefficients is consistent with the reference CFD data
 - Fine grid result has 15 counts (5%) error of drag
- UTCart can predict non-linearity of the aerodynamic coefficient at the high-angles of attack
 - Prediction accuracy of flow separation/difference between CFD and experiment should be investigated further

We are grateful to JAXA for providing the unstructured CFD solver FaSTAR.

21/21