The 49th Fluid Dynamics Conference/ The 35th Aerospace Numerical Simulation Symposium 28 June 2017, National Olympics Memorial Youth Center, Tokyo, Japan

Summary of Third Aerodynamics Prediction Challenge (APC-III)

Atsushi Hashimoto (JAXA) APC committee

Contents

- Participants
- Test case 1
- Test case 2
- Test case 3
- Summary

Statistics of submitted data

- Organizations and number of submitted data(total 53 data)
 - National research institutes : JAXA(29)
 - Universities: Tohoku Univ., Tohoku Univ./KIT(1), Univ. of Tokyo(1), Toyama Univ.(3), Hokkaido Univ.(2)
 - Aerospace industries: KHI
 - Commercial software: Exa(1), CD-adapco(1), Cradle(2), NUMECA(12), AdvanceSoft(1)
- Grids for test case 1
 - HexaGrid:14
 - MEGG3D:16
- Provided by committee
- UPACS:10
- Custom:11
- Turbulence models
 - Test case 1: SA(9), SST(23), EARSM(15), K-ε(2), BSL(1), SS/SST-2003 Hybrid(1)
 - Test case 3 : DES(2), VLES(1)

ARC

Participants of case 1

ID	Name	Organization	Code	Grid	Turbulence Model		
	橋本 敦		HexaGrid		SA-noft2-R-QCR2000		
					SST-2003		
					SST-2003-sust		
				SST-2003-sust-QCR2000			
				nexacha	EARSM		
A					EARSM(w/o nonlinear)		
					EARSM-QCR2000 (w/o nonlinear)		
		JAXA	AA PASIAK SA-noft SST-200 SST-200 EARSM EARSM (w/o no	SA-noft2-R-QCR2000			
				MEGG3D	SST-2003		
					SST-2003-sust		
					SST-2003-sust-QCR2000		
					EARSM		
					EARSM(w/o nonlinear)		
					EARSM-QCR2000 (w/o nonlinear)		

165

Participants of case 1

Participants of case 1

ID	Name	Organization	Code	Grid	Turbulence Model	
C O	佐々木 大輔	金沢工業大学	BCM-TAS カップリング	Custom (MEGG3D+BCM)	SA	
D	玉置 義治	東京大学	UTCart	Custom (Octree Cartesian)	SA-noft2-R-QCR2000	
E O	松島 紀佐	富山大学	FaSTAR	HexaGrid	SST-2003	
F	土白 没市	北海道大学	RG-FaSTAR	HoveCrid	SST-2003	
\bigcirc	寸局 汗文			nexagnu	SS/SST-2003 Hybrid	
	曽我 匡統	CD-adapco	STAR-CCM+	Custom (polyhedra)	SST	
	中島 吉隆	ソフトウェアクレイドル	scFLOW	HexaGrid		
				Custom (polyhedra)	SST	

Participants of case 1

ID	Name	Organization	Code	Grid	Turbulence Model	
	岡 新一				SA-fv3(Cmat)	
				UPACS	SST-2003(Cmat)	
					SSC-EARSM(Cmat)	
К				NE/Open NE/Open NE/Open NE/Open MEGG3D SST-2003(Cscal) SST-2003(Cscal) SST-2003(Cscal) SST-2003(Cscal) SST-2003(Cscal) SST-2003(Cscal) SSC-EARSM(Cscal) KE-YS-1993(Cscal) KE-YS-1993(Cscal)	SA-fv3(Cscal)	
					SA-fv3(Cmat)	
					SST-2003(Cscal)	
		NUMECA	Fine/Open		SST-2003(Cmat)	
					SSC-EARSM(Cscal)	
					SSC-EARSM(Cmat)	
					KE-YS-1993(Cscal)	
					KE-YS-1993(Cmat)	
					S-BSL-EARSM(Cscal)	
L	大西 陽一	アドバンスソフト	Advance/Fr ontFlow/red	HexaGrid	SST	

7

Participants of case 1

ARC

ID	Name	Organization	Code	Grid	Turbulence Model	
A1	橋本 敦	JAXA	FaSTAR	Custom (HexaGrid)	SA-Zonal DES (Spanwise polynomialx1)	
A2	橋本 敦	JAXA	FaSTAR	Custom (HexaGrid)	SA-Zonal DES (Spanwise polynomialx6)	
H	甲斐 寿 Ehab Fares	Exa Japan Exa Corp.	PowerFLOW	Custom (Cartesian LBM)	VLES	

Issues of APC-I and APC-II

• The variation of CFD is large for high angles of attack

→<u>Test case 1:</u> Investigation of grids and turbulence models for high angle-of-attack flows

 \rightarrow The committee recommends turbulence models other than SA

- The slight difference remains between CFD and experiment
 →<u>Test case 2</u>: Discussion on the difference based on follow-up computations under arbitrary conditions
- Improvement of buffet prediction accuracy

 \rightarrow <u>Test case 3</u>: Comparison with unsteady pressure frequency spectra, unsteady PSP

 \rightarrow Unsteady pressure data and flow field data are submitted.

Case 1: Alpha-sweep

- Model: NASA-CRM(i_H=0deg) without support device
- Grid: Medium(~10M)
- Conditions : M = 0.847, Re_c = 2.26×10^6 , T_{ref} = 284K
- Angles: -1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg,
 2.94deg, 3.55deg, 4.65deg, 5.72deg
- Data to be submitted :
 - Aerodynamic coefficients(C_D,C_L,C_m)
 - Decompose them into pressure and friction
 - Decompose them into parts (main wing, fuselage, tail)
 - Surface C_p distributions
 - Main wing
- Recommendations:
 - Usage of turbulence models other than SA
 - Discussion on high-angle-of-attack flows

Support correction

• The results of HexaGrid and FaSTAR are used for the correction.

AoA	CD	CD	ΔCD	CL	CL		Cm	Cm	ΔCm
	(w support)	(wo support)		(w support)	(wo support)	ACL	(w support)	(wo support)	
-1.79	0.0202	0.0221	-0.0019	-0.128	-0.117	-0.011	0.218	0.192	0.026
-0.62	0.0182	0.0202	-0.0020	0.031	0.045	-0.014	0.157	0.128	0.029
0.32	0.0187	0.0209	-0.0022	0.147	0.162	-0.015	0.121	0.091	0.030
1.39	0.0207	0.0231	-0.0024	0.277	0.294	-0.017	0.080	0.047	0.032
2.47	0.0248	0.0277	-0.0029	0.414	0.434	-0.020	0.048	0.014	0.034
2.94	0.0279	0.0311	-0.0033	0.478	0.499	-0.020	0.032	-0.003	0.035
3.55	0.0339	0.0377	-0.0038	0.551	0.568	-0.017	0.022	-0.011	0.033
4.65	0.0503	0.0549	-0.0045	0.628	0.643	-0.015	0.039	0.008	0.031
5 72	0.0692	0.0741	-0.0048	0.663	0.683	-0.020	0.078	0.047	0.030

Case 1: List of data

- Alpha sweep (CL-α, CL-CD, Cm-α)
 - Comparison with APC-I and APC-II
 - Comparison between grids(HexaGrid, MEGG3D, UPACS, Custom)
 - Comparison between turbulence models(SA, SST, EARSM)
- Cruise condition (α=2.94deg)
 - Aerodynamics coefficients(CD, CL, Cm, CDi)
 - Cp distributions (Section A-I)
- High angle of attack (α=5.72deg)
 - Cp distributions (Section A-I)
 - Comparison between the results with and without SOB separation
 - Comparison between grids (HexaGrid, MEGG3D, UPACS, Custom)

Comparison with the previous results of APC-I and APC-II **CL - Alpha** 1 ~ 0 0.8 0 0.6 0.4 പ Exp Turb. Group Grid ID 0.2 (Line Color) (Marker Style) (Marker Coler) ☐ HexaGrid △ MEGG3D ◇ UPACS ○ Custom A C D E F I JAXA TWT SΑ SST Target 0 Sting Correct EARSM K-epsilon BSL -0.2 no line Hybrid Ŏ \bigcirc -0.4 -2 0 2 4 6 8 10 -4 12 α[deg]

The variation is larger than that of APC-I and APC-II especially for high angles of attack. But the slope is almost same between turbulence models.

13

Alpha sweep of APC-II

Alpha sweep of APC-I

15

Case 1: Alpha sweep

Comparison with the previous results of APC-I and APC-II

The variation is larger than that of APC-I and APC-II. But the trend is almost same between turbulence models.

17

Alpha sweep of APC-I

ARC

Comparison with the previous results of APC-I and APC-II Turb. Group ID Exp Grid (Line Color) (Marker Style) (Marker Coler) Cm - Alpha JAXA TWT SΔ □ HexaGrid A C SST △ MEGG3D Target 0.25 ♦ UPACS♦ Custom D E F J K Sting Correct EARSM K-epsilon BSL 0.2 Б no line Hybrid 0.15 \bigcirc 0.1 0.05 ڻ 0 -0.05 -0.1 Š -0.15 X -0.2 -0.25 -2 0 2 4 6 8 10 12 -4 α[deg]

The variation is larger than that of APC-I and APC-II especially for high angles of attack. But the slope is almost same between turbulence models.

19

Alpha sweep of APC-II

Alpha sweep of APC-I

21

Case 1: Alpha sweep

The high AoA behaviors of SST and EARSM are affected by the grid

ARC

23

Case 1: Alpha sweep

The high AoA behaviors of SST and EARSM are affected by the grid

25

Case 1: Alpha sweep

(This may be caused by the turbulence models used with UPACS grid)

27

Case 1: Alpha sweep

(This may be caused by the turbulence models used with UPACS grid)

25

Case 1: Alpha sweep

All data show the pitch-up characteristics for HexaGrid and Custom.

30

NRAG

All data show the pitch-up characteristics for HexaGrid and Custom.

31

Case 1: Alpha sweep

All data show the pitch-up characteristics for HexaGrid and Custom.

All data show the pitch-up characteristics for HexaGrid and Custom.

Case 1: Alpha sweep

Cm: SA < SST < EARSM EARSM shows pitch-up for high AoA The shock moves forward for EARSM, backward for SA

CL: SA > SST > EARSM Cm: SA < SST < EARSM EARSM shows pitch-up for high AoA

The shock moves forward for EARSM, backward for SA

35

Case 1: Alpha sweep

CE: SA > SST > EARSIN Cm: SA < SST < EARSM EARSM shows pitch-up for high AoA

The shock moves forward for EARSM, backward for SA

Case 1: Cp at cruise

37

ARR

Comparison of Cp under the cruise condition α=3° 2014/06/25 Run No. 463 Data No. 8 Section $E(\alpha_c=2.94)$ x/c -1.5 -1 Cp(pres.coef.) -0.5 0 Turb. Group . (Line Color) EXP SA 0.5 SST EARSM K-epsilon BSL 1 Hybrid 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Case 1: Cp at cruise

41

R

EARSM predicts the shock location well for all cross sections.

45

Case 1: Aerodynamic coefficients at cruise 🔊

Case 1: Aerodynamic coefficients at cruise 🔊

CFD is higher than EXP.

53

Case 1: Cp at high AoA

54

ARC

Case 1: Cp at high AoA

57

Case 1: Cp at high AoA

The variation is small for outboard sections (The flow is attached here).

The variation is small for outboard sections (The flow is attached here).

59

Case 1: Cp at high AoA

We classify the results into two groups with and without the side-of-body separation.

The shock wave locations are different even if the separation size is same at the wing root.

The order is EARSM, SST, SA, k-e.

63

Case 1: Cp at high AoA

The order is EARSM, SST, SA, k-e.

The order is SA, SST, EARSM, k-e.

65

Case 1: Cp at high AoA

The order is SA, SST, EARSM, k-e.

The order is SA, SST, EARSM, k-e.

67

Case 1: Cp at high AoA

EARSM predicts the shock location well for all cross sections.

There are no side-of-body separations for HexaGrid whereas there are side-of-body separations for MEGG3D and UPACS

69

Case 1: Cp at high AoA

There are no side-of-body separations for HexaGrid whereas there are side-of-body separations for MEGG3D and UPACS

73

Case 1: Cp at high AoA

Case 1: Cp at high AoA

The peak of negative pressure is small for HexaGrid

The peak of negative pressure is small for HexaGrid

Case 1: Summary

77

- We have collected total 53 submitted data with different grids and turbulence models (SA, SST, EARSM, and etc.).
- Turbulence model effects
 - The trend is similar for the alpha-sweep. The CL and Cm move up and down due to the turbulence model, but the slopes are same between the models.
 - CL is large in the order of SA, SST, EARSM. Cm is large in the order of EARSM, SST, SA. This is related with the shock location.
 - The Cp distributions agree with the experiment under the cruise condition.
 EARSM predicts the shock wave location well.
 - The idealized profile drag is higher than the experiment. The CL is lower than the experiment. (The shock locations are predicted well, but the lift is small.)
 - EARSM predicts the Cp well for the high angle of attack.
- Grid effects
 - There is no separation at the wing root for HexaGrid. This is same as the other coarse Cartesian grid.
 - The negative pressure is small for HexaGrid. The Cm is large for HexaGrid.
 - The nonlinear models (QCR, EARSM) have to be used for UPACS and MEGG3D grids to suppress the side-of-body separation.

Case 2: Follow-up discussion

- Model: NASA-CRM (arbitrary configurations)
- Grid: arbitrary grids
- Conditions: arbitrary conditions
- Angles: arbitrary angles
- Data to be submitted : None
- Recommendations:
 - Discussion on the difference observed in APC-I and APC-II
 - Aeroelasticity
 - Wall interference
 - Transition
 - No tails
 - High Re
 - Subsonic
- Case 2: Follow-up discussion
- Wall interference (JAXA)
 - The wall interference is small
 - Correction is almost same as the experiment
- Flow conditions (Toyama Univ.)
 - The lift curve slope is affected by Mach number.
- ETW (KHI)
 - The lift curve slope agrees with ETW.

Case 3: Buffet

- Model: NASA-CRM(i_H=0deg) with deformation
- Grid: Arbitrary grids
- Conditions : M = 0.85, $Re_c = 1.5 \times 10^6$, $T_{ref} = 282K$
- Angles: 4.87deg, 5.92deg
- Data to be submitted:
 - Aerodynamic coefficients(C_D,C_L,C_m)
 - Surface C_p distributions
 - Average, RMS
 - Frequency spectra
 - Flow field contours (Pressure, Mach number, eddy viscosity)

Case 3: Comparison locations

- Unsteady pressure is compared at Section $E(\eta=0.50)$ and Section F ($\eta=0.60$).
- Time histories and frequency spectra are compared at CH4 and CH19

Case 3: List of data

- Results of 4.87deg
 - Cp average and RMS(Section E, F)
 - Cp time histories and PSD (CH4, CH19)
 - Wing surface Cp(Average/RMS), Streamline(Average)
 - Cross sectional Cp(Average/RMS)
 - Cross sectional Mach number(Average/RMS)
 - Cross sectional eddy viscosity(Average)
- Results of 5.92deg
 - Cp average and RMS(Section E, F)
 - Cp time histories and PSD (CH4, CH19)
 - Wing surface Cp(Average/RMS), Streamline(Average)
 - Cross sectional Cp(Average/RMS)
 - Cross sectional Mach number(Average/RMS)
 - Cross sectional eddy viscosity(Average)

Case 3: Aerodynamic coefficient

Dependency on the employed method

Variation of the shock wave location is large

85

Case 3: Cp average (4.87deg)

ARC

Peak values are almost same

87

Case 3: Cp RMS (4.87deg)

Peak values are almost same

Case 3 : Cp time history (4.87deg)

Case 3: Cp time history (4.87deg)

Case 3: Cp PSD (4.87deg)

Case 3: Cp average (α=4.87deg)

93

Case 3: Cp RMS (α =4.87deg)

ARG

Case 3: Streamline (α=4.87deg)

95

Case 3: Cross sectional contours

ARC

We show the cross-sectional contours as follows,

H-LBM

Case 3: Cp average (α =4.87deg)

<u>ID:A1</u>

Case 3: Cp average (α =4.87deg)

<u>ID:A2</u>

Case 3: Cp average (α =4.87deg)

<u>ID : H</u>

Case 3: Cp RMS (α =4.87deg)

<u>ID:A1</u>

Case 3: Cp RMS (α =4.87deg)

<u>ID:A2</u>

Case 3: Cp RMS (α =4.87deg)

<u>ID:H</u>

Case 3: Mach number (α=4.87deg)

<u>ID:A1</u>

Case 3: Mach number (α=4.87deg)

ARC

<u>ID:A2</u>

Case 3: Mach number (α =4.87deg)

<u>ID:H</u>

Case 3: Mach number average (α =4.87deg)

<u>ID:A1</u>

Case 3: Mach number average (α =4.87deg)

<u>ID:A2</u>

Case 3: Mach number average (α =4.87deg)

<u>ID : H</u>

<u>ID:A1</u>

Case 3: Eddy viscosity average (α =4.87deg)

<u>ID:A2</u>

Case 3: Eddy viscosity average (α =4.87deg)

Case 3: Cp average (5.92deg)

The shock wave moves forward for 5.92deg.

Case 3 : Cp average (5.92deg)

The shock wave moves forward for 5.92deg.

113

Case 3: Cp RMS (5.92deg)

ARC

115

Case 3: Cp time history (5.92deg)

119

Case 3 : Cp average (α =5.92deg)

Case 3 : Cp RMS (α =5.92deg)

121

Case 3: Streamline (α=5.92deg)

AR

Case 3: Cross sectional contours

We show the cross-sectional contours as follows,

123

Case 3: Cp average (α =5.92deg)

<u>ID:A1</u>

Case 3: Cp average (α =5.92deg)

<u>ID:A2</u>

Case 3: Cp average (α=5.92deg)

<u>ID : H</u>

Case 3: Cp RMS (α=5.92deg)

<u>ID:A1</u>

Case 3: Cp RMS (α=5.92deg)

<u>ID:A2</u>

227

Case 3: Cp RMS (α =5.92deg)

<u>ID : H</u>

Case 3: Mach number (α=5.92deg)

<u>ID:A1</u>

Case 3: Mach number (α=5.92deg)

<u>ID:A2</u>

Case 3: Mach number (α=5.92deg)

<u>ID : H</u>

Case 3: Mach number average (α =5.92deg)

<u>ID:A1</u>

Case 3: Mach number average (α =5.92deg) ARC

ID: A2

Case 3: Mach number average (α =5.92deg)

<u>ID : H</u>

Case 3: Eddy viscosity average (α =5.92deg) ARC

ID:A1

Case 3: Eddy viscosity average (α =5.92deg)

<u>ID : H</u>

Case 3: Summary

- We collected three submitted data from two groups.
- The prediction of shock wave location is still difficult. (The results are almost same as those of APC-II)
- The PSD is similar to the experiment.
- The resolution of separated flow behind the shock wave is different between the data.
- The eddy viscosity development is different between the data.

Important days

- Submission of PowerPoint files
 - Deadline: 14 July
 - The slides are published as JAXA-SP
 - Please submit a PowerPoint file (Do not submit a PD). Read-only PowerPoint is also acceptable.
- The 53rd Aircraft Symposium (20-22 November)
 - Organized session "APC-III"

Acknowledgements

- We would like to thank all participants for submitting data.
- We also would like to thank for the following corporations,
 - Grid generation: Dr. Kazuomi Yamamoto, Dr. Mitsuhiro Murayama, Dr. Yasushi Ito (JAXA), Mr. Kentaro Tanaka (Ryoyu Sysmtems)
 - Grid deformation : Dr. Kanako Yasue (JAXA)
 - Web, Pre/Post processing: Kenji Hayashi, Keiji Ueshima, Takahiro Yamamoto (Ryoyu Systems)
 - Experimental data: Shunsuke Koike (JAXA), Yosuke Sugioka, Taku Nonomura, Keisuke Asai (Tohoku University)

141

Grid ID **Turbulence Model** Spec Core Time Memory SA-noft2-R-QCR2000 3h6m 21.4G SST-2003 3h24m 29.7G SST-2003-sust 3h36m 29.7G SST-2003-sust-QCR2000 4h6m 29.7G HexaGrid EARSM 4h48m 29.4G EARSM(w/o nonlinear) 3h54m 29.4G EARSM-QCR2000 4h12m 29.4G SPARC64XIfx(2GHz) (w/o nonlinear) (JAXA Supercomputer А 96 System generation 2 SA-noft2-R-QCR2000 2h20m 26.1G SORA-MA) SST-2003 8h56m 27.4G SST-2003-sust 8h56m 27.4G SST-2003-sust-QCR2000 11h48m 27.4G MEGG3D EARSM 14h6m 27.2G EARSM(w/o nonlinear) 13h30m 27.2G EARSM-QCR2000 15h 27.2G (w/o nonlinear) 142

Computational Information

Computational Information

ID	Grid	Turbulence Model	Spec	Core	Time	Memo	ory
A	UPACS	SA-noft2-R-QCR2000	SPARC64XIfx(2GHz) (JAXA Supercomputer System generation 2 SORA-MA)	96	1h26m	21.4G	
		SST-2003			1h42m	22.4G	
		SST-2003-sust			1h54m	22.4G	
		SST-2003-sust-QCR2000			2h6m	22.4G	
		EARSM			2h24m	22.2G	
		EARSM(w/o nonlinear)			2h	22.2G	
		EARSM-QCR2000 (w/o nonlinear)			2h6m	22.2G	
	Custom (Cartesian based)	SA-noft2-R-QCR2000			3h29m	26.8G	
		SST-2003			10h42m	28.3G	
		SST-2003-sust			13h6m	28.3G	
		SST-2003-sust-QCR2000			13h30m	28.3G	
		EARSM			16h18m	28G	
		EARSM(w/o nonlinear)			13h	28G	
		EARSM-QCR2000 (w/o nonlinear)			14h6m	28G	1/13

Computational Information

ID	Grid	Turbulence Model	Spec	Core	Time	Memory
C O	Custom (MEGG3D+BCM)	SA	SGI UV2000	160	168h	18G
D	Custom (Octree Cartesian)	SA-noft2-R-QCR2000	Xeon E5-2695 v4	144	5h20m	60G
E	HexaGrid	SST-2003	Intel Xeon CPU E5- 2697 v4 @ 2.30GHz	36	18h30m	27.3G
F	HexaGrid	SST-2003	Intel Xeon E5-2697 v2 (2.7 GHz) (九州大学hakozaki)	384	50h	613G
		SS/SST-2003 Hybrid			50h	613G
	Custom (polyhedra)	SST	Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz	28	19h30m	85G
J	HexaGrid	SST	Intel Xeon E5-2695 v4 2.10GHz	144	54m	65.4G
	Custom (polyhedra)				1h12m	76.3G

Computational Information

ID	Grid	Turbulence Model	Spec	Core	Time	Memory
К	UPACS	SA-fv3(Cmat)	Intel E5 - 2697 V2 - 2.60 GHz	96	1h50m	
		SST-2003(Cmat)			39m	
		SSC-EARSM(Cmat)			2h38m	
	MEGG3D	SA-fv3(Cscal)		72	15h28m	
		SA-fv3(Cmat)			4h28m	
		SST-2003(Cscal)			13h18m	
		SST-2003(Cmat)			4h47m	
		SSC-EARSM(Cscal)			15h17m	
		SSC-EARSM(Cmat)			11h38m	
		KE-YS-1993(Cscal)			13h17m	
		KE-YS-1993(Cmat)			11h37m	
		S-BSL-EARSM(Cscal)			11h29m	
L	HexaGrid	SST	XEON E5-2650 v4 @ 2.20GHz	24	48h	120G

145