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Preface

Activities and scientific achievement of Space Plasma Simulation Facilitiy are
reviewed. This facility has been managed under Laboratory Space Plasma Commit-
tee since 1969 and has been used in cooperative programs with universities and
institutes all over the country. Experiment equipments and instruments are summar-
ized in chapter 2 and scientific results are reviewed in chapter 4. Its contribution to
an education of graduate students is also pointed out. A list of publication is attached.
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C-1~-C-4: Air-core coils

Fig. 3-1 Schematic diagram of DC plasma production

device.
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2-3 EtiRIZ, EER&ER
2-3-1 FYORA—7, AE)—ROA=FRUIPS> 1> FLO—%
@ 7633 (SONY « TEKTRONIX FEE) e =)
00MHZ (7 > 7RAE) DAY —« Ra—FTIAW 7527 « 4
2EMEMT 2L 2ch DRIBEASTTEEL 75 2,
FE/ S AT =7 50 cm/psec (400) (( )13 Rednced Scan) )
T 150  » (2,222)
@ TS-8123 (&E4%))
100 MHz (K{k) %€V —+ 2 23— 77 GPIB WRESNTHWEDT, 32 2—
Y= EDERAREL 25> T 3,
Writing Speed 2500 cm/usec
X #ffe-eee 20 ns/div~0.5 s/div
Y &1 mV/div~5 V/div, 2ch
® 7844 (SONY + TEKTRONIX FH8Y)
400 MHz (A1%) @ Dual Beam ®# > o 22— 7
X e 10 ns/div~5 s/dv
Y éy-eeees TA19 72 7« 1 > (400 MHz)
10 mV/div~1 V/div 50Q A}
@ 555 (SONY » TEKTRONIX #f#1)
30 MHz Dual Beam ®»# > o z o -7,
X#ee---- 0.1 us/div~5 s/div
® V-108 (Hi74y)
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IMHz D xA®)—+« Ra—-7
X Efyeeeee 1 g /div~5 s/div
Writing Speed : 0.8 us/cm
® 323 (SONY : TEKTRONIX #t%Y)
ZEFEAARODAMHE=Y TAERAOA YO X2 -7,
X Efye-ee 5 us/div~1 s/div
Y e 0.01 V/div~20 V/div
@ 5510 (FKEL
DC~10MHz ®# > 0 % 17— 7,
X Effeeeee 1 us/div~0.5 s/div
Y e 10 mV~10V /div
V-1010 (H7%%)
100MHz OA >0 Aa—7"T» 5,
©® b+F7v¥zrbra—4610B (Biomation %) : 34

HED L7 > Y=y MERPER UER 2 EHEA/DET 2 (7 > 7R 0.
1 pus (&)
SR LEEAETEOA YO A a— 72 XY, SCR THRT 3,
Oy 7y FTYZLHET (6 Y b X256 7—F) AJgE,
OFCEREFM] 1 20 4 BH~10% (18 v > v)
OILH SR F B« DC~2.5 MHz
OF 77V vy vy VAN ZVA7r—150mV~5V (10 L > ¥)
2-3-2 EEEENAS
@ Image Converter Camera (HADLAND PHOTONICS LIMITED)
Image Comverter Camera 3B HDOER, Fl2 IHEHRRELEHNCERD, i
LD T2HXA7THA,
Bl D i3 NER/AER
srEEE 10 line pairs/mm (10° 7 L — 4)
o274 L TIE

o doBE M A > P — | LB | SECEIEH | B0 E T

o= e . PS
T2TAL F (1‘%}@%))) 7L — A (8%5]) (16%) mlyg@ﬁ}fﬁﬂ

2/5T 2 X10° 1 us 5 us 40us 80us 2.5us

1/6T 1 X10° 200ns 1 us 8 us 16 us 570ns

2/7T 2 X107 10ns 50ns 400ns 800ns 95ns
WMLUEL

4yEREE 12 line pairs/mm (0.1 mm/usec)
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WA A A i RGOSR | A AL sk ] ) I 4E 15 4]
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@ 152m/m {2.8
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ARBIZODA AT LEEEDOA AT T, BIRD « MUV ELIDTZ 7 « £ v a2fitz
Twa,
BER D 77 7« 4 > Madel 9B, 26B RUH L L 77 7' 1 > Model 5B D ftAkix

77T A 9B 268 5B
7O R & | 0.5~10us 50~500ns 0.5~10us
£f>F—-T7L—LA 5 ~500us 0.5~20 us —
5] # 3 5 -
2 W9 #EOfE 16 line pairs/mm 16line pairs/mm —
FANDE E TR 50ns 20ns 20ns
We O oor MEGE - - 0. 5ns

KHFEHRELT
@® 10”7 f45

@ 15”7 156

PHEEFI N TV S,

® Kerr Cell # A5 (KAPPA &)

A3 10 gsec~5 nsec DEFHDOBHEHFR A b D Kerr IR 2 FH L L EBESHOHRR %
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Yy w S —IZ30kV OFED/SIVAZEIIL Ty ¥ vy — %%, Kerr Cell ¥ v v
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AENE 5 AL THERT 5,

e 0.8"X1.5”
SASTRA A 200

This document is provided by JAXA.



1984 £ 3 B 77 AR« mHEE R RS 29

HH 13

RG-8/U High-Voltage

@ FD:J}LI(IQLSMS Power Supply

Kerr Pulse Gen.

Shutter 1

J _ 4 Thyratron Control

J\ Unit

T VA K

2-3-3 RiRESINET/ BREEST

@ Electro Magnetic Analyzer (EMC #-51)

A2z 1 (GHZ) ~10.5 (GHz) 0EBR#EE . RF ANBERERBNED 7 54 R
PO X DDESEmix &4240 (MHz) OLFANLERE N 2, 20Ok, BiC

60 (MHz) O LFiZEZEIN:&, LOGT7 > 72 B RIKEN S,
BIE R R HGES, 1~10.5GHz
AT —102 dBm
BEHE-WEsr7,
@ A7 bFFhTFF74%—TRA4122B (¥ ¥ 5 FRIFE)
AXRT MV TFIAHFEE, Iy Fr T e Voar—F -, BEEY Yy —E
L OB EINTWEA, FIcHEERT.
B J& 3 # i B——100 (kHz) ~1500 (MHz)
L R EREE ——+10 MHz DAY
A¥ v HE  ——100 MHz/div~2 kHz/div KU A0 — A F v >
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HE 15

@ SFHET & b o X—5— (BERBIFERT)

BRI L 50 HER, AL VEREOBENBERES LRI N, LKL
WA NART FLHEEINS,

2-3-5 A o oigTFikEt
A %513 100 (GHz), 10 (GHz) #0OF¥itT. FICEEE 75 X~ OBEERE I #H
ENb, FEBEREZ»T N, 7742 ar D<A 7 a2 B
SN, TIRAVEEICEAMMHEEOELEY T T « 5y —> D LELTAH YR
a—7hkicidskl, ZORELY I XAvEELAET A, T2 100GHz-10 GHz
HIED 7 542 b rOEERT.

© VC-713 (VARIAN #)

ELECTRICAL
Frequency Coverage! «++++++++rrreerrermmmiiiii.. 80to 110 GHz
Tuning Range’ eaCh tube’ mint ................................. 2 GHZ
Output’ IMMNIITIUIIL e cerersreesrertensaruaeerasacnsseanessnaanaras 200 mW
Beam Current, at 2500 beam voltg «=-=seeereeeeeeeeeeennenn 20 mAdc
Electronic Tuning Range, min ««eeeeeeeeeeeeseemmmmmmnenne 150 MHz
Heater Voltage «oooooreeererermmmminenieeiiii. 6.3+03 V
Heater Current, typical .......................................... 1.0 A
O 10 VB (H1Z%)
= I 500 300 AV
T8 JF BE JE ceeeeeeeeereerereeeereeeeiiiei s 45 25 mA
x - B e e 434 43
FE P BL e 10 10 GHz
I) ~ 3 % t‘t ...................................................... _300 7335 V
s Vaj
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THat 7 a vy 2Bk TR,
HH-W®W /8 %2R,
2-3-6 L FL—>ar-7O0—7SP-18 (REERFH)

e B 105

50 mW
80 mW
20 MHz
0.46 MHz/V

yrFLr——t LT Nal 2Ly BHEESR T, =420 F—3F68138 9.4 (%)

TN, rise time 50 (ns) LATD 7Y « 7o 7HNE ST 5,

2-3-7 HIRX+ A—%— Model-330S (?ITX3IH)
BIEL > F 3 G~30 kG
2-3-8 AL b -TO—=7T
@ P6021 (TEKTRONIX #4)
O JEE B ——120 (Hz) ~54 (MHz)

OmRANER —15A EZK
oRk ——2mA/mV, 10mA/mV OY]H &z

@ AMS503 (TEKTRONIX %)
O J& i #E H——DC~50 MHz
Ok E —1 mA~50 A
® CT-5 (TEKTRONIX #!)

KEFHEDAV Y b 7a—77T, BiIAOP6021 LELETHEATLA2LDOTH S,

O AR —12 (Hz) ~20 (MHz)

S iSO
7 1’ . I }j!””"‘ F—ad b b “
s = % s il YL s ”
Ti1 11 fui Y
T

- | R TERIPRTIE] s -
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OB vk ey F——1 (A/div) ~1000 (A/div)
O i K& — i AJ1/1000 (A)
7N A ANTT/5%X100 (A)

2-3-9 7 AHR
BBETLVEIATOELORBIES T, 7L ERH A 71T L2 ZRICEFHIE R,
TIARHEROH L CBRITFRE L CGEHEN S LD ko, XET AL, X
MENFET 2 EATORBT =5 —, RFHICO 7 2 FERREFCHEGIIFEE =
Y=l THEMTH S, 77 AR EEMHTIX, FETLEA A5, VIR, £=27%
— TV RUBEE 7 AR £ 2 TV 5,

O FrEARAT
et 7 v v £ (LLLTV) (i L#Es)

T/ A5 — CTC-9000
BRIEHEARE 1077 lux
ik e R 144X119%37.5 mm, 6kg

BBGERBTLED AT (V=—)
N Z—F Vv ERRXT (7F4) . EBF » VTR (T &
@ VTR
linch VTR (Ampex VPR-IC)
1/2 inch +#—7>1) —1 VTR (#TF)
U-matic VTR (Sony)
B-max (FHZ)

® TVE=¥y—
20inch#5—®=% 1&
10inch ® / 7 o 35
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@ BEv T AR
EFA T AP A—T —
EF4 Ay —F—
RNFHT=T F T4
EFt s 4~ —
EFAYATIA S —
2-3-10 {E5REH

O Ny —

SV ABE
AV Y )

O#EfFE—F

214 B
214 A

(YHP#®) 4 H
28
—0.3V~100VD 51V v F
—25 (ns) ~10 (ms) 6LV F
—HE U A=, F— b, AEAT. FE)

e R 10%

ONNA 5T 41 4—10 (ns) ~10 (ms)
@ (254 WG-202 A (HELAH)

FE s EEEE 10 (kHZ) ~50 (MHZ) THE 2 VEIEH IR 0.1 V~1 u VDORE]
THhO 2 B4 E—F > R13300Q. 50Q. 75Q %> Twad, EHIFN

(400 HZ, 1kHZ) KRUAER L DT o s,
@ 7rrryavedail—F—

O Model FG-330 (FHE%) =
O Model 454A (%7K EE =
O Model 5200A (KROHN-HITE #&) 15
&R ORI TEHOBED x> Tw5,
oW B W % WO iy g ' —
FG—330 0.1~ 1MHz 100 Vp-p MAN, GATE
(50Q f147) WY —, CONTSWEEP
454A 0.005~100 kHz 300 Vp-p START K 7 12 & % 546 M
(BB K2 b7
5200A 0. 00003~ 3 MHz 10V MAN, GATE
W k) —, CONT SWEEP

2-3-11 F—4%4—LI1—%5—

@ R-250 (TEAC ##1)
F :1%my4mm
N : 7¢ch
a8k - A :1ch—DR A3 300HZ~150kHZ

2~7 ch—FM /50 DC~10kHZ
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AHA > E—=%> 2 1100 kQ

AR . +0.1dB~+20dB
@ R-270 CTEA (%)
5 — :1%H%~mms
F ¥ > 3 . 14ch
sass . mA SR lch——DR A3t 300Hz~150kHz

2 ~14 ch—FM /3 DC~10kHz
AJTA Y E=%> A 1100 kQ
AV ©+0.1dB~+20dB
2-3-12 R L 3—4—
OwnrFE=%1La—% WR-3000 (FELHIE)
O 25ch#~_> L a0—%—Ti#FRkiE +10 mmp-p
OfffXH A —F 50~1mm/sec & min
OWIELY > F 0.5~10V/cm
OANEH 1MQ
O HIFEdsx " HE
O AR 0~40 Hz
@UrFr57 8562 (=)
O8ch A >v*La—¥—TskRIE 40 mmp-p
OfED AE—F  1~500mm/s & min
OWIFEL > F Smv/cm~100v/cm
O AN 1MQ
O B sEH DC~50Hz (IEME»Y 40 mm DHF)
®@ vZrFHkY 8K20 (=X
O4ch 4 > F L a—¥—TidekiEE 40 mmp-p
Ok D A —F 1~500 mm/s & min
OBIEL >»F 5mV/ecm~100 V/cm
O ANES 1MQ
O FEEHEE DC~50 Hz (RIEAS 40 mm D)
@ Mark V. (ELZHIZR)
O 8ch D& > L a3 —¥—T&kiEME 40 mmp-p
OMEN A —F  10~500 mm/s & min
OWIELY ~»F 10mV/ecm~100V/cm
o AN’ 1MQ
® TYPE 3046  (HEE&ERS)
OlchA >»*%vra—4%7T 240mm
OfED AF¥—FK 2~60cm/min & hr

This document is provided by JAXA.



36

2-4

2-4-

5 H7 Bl o BF %2 B W A

OWIEL »F 500 £ V/em~100 V/cm

o AR 1 MQ

O i DC~5 Hz (#RME»S 50 mm O £)
X-Y v 2—%— PRO-12 (B&M)

O&E X4 0.5mV/cm~20V/cm

OW%fElEL 0.5~10s/cm

X-Yva—%— 3077  (F&E)

ORENL Y 0.1mV/ecm~10V/cm

OF%fE#E  0.5~10s/cm

RSP T

1 HR&E

g B10E

HREBEL L TR, AANVTV =08 —RR 7, 7744 K> 7RO O MHRE
Ry 7THMbD > T b,

@

7 —K e+ K>7 3133C (SARGENT-WELCH #:#)

Specifications
Pumping speed for nitrogen
Pumping speed for hydrogen
Blank-off pressure
Backing pressure required (McLeod) for above
Typical backing pressure (thermistor)

L
[

1500 1/sec
1100 1/sec
1x10° Torr
1 X10~* Torr
1 X107% Torr
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HE19

ST L 1000 X800 % /1007
#H o . 200kg
BEHE-QINE%RT,
@ #%—++HK>7 (PFEITERH&) 1H
HESHE 1 1901/
ST~ 800 X 600 X 1107
#H oo 30kg
® 27744 «Kr7” (HELIX#&) 14
A B2 FBEIR I L 72 absorber 124 A 2 IRE S8 THR T % &V 9, FEHIC clean 2 B2
REZEDHTLDOTH S,
CRYO-TORR(R) 8 CRYOPUMP

Weight (approximate) 45 1bs (20.4 kg)
Pumping speeds
Water 4,000 liters/second
Air 1,500 liters/second
Hydrogen 2,000 liters/second
Argon 1,200 liters/second

S 22 ¢ X500 (v FED)
50X50%x50% (2> b a—ER)
B i 130kg (v NED)
50kg (2> b o—E
BEH-ONE % RT.
@ 6IEEEY” YH-500 (HAHEZS®) 246
OHFLHE—490 (1/sec)
@FEFFH—10"" (Torr) {HL b 7 v 7{#FH
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QT EES—H#11.9 (kW)
@ HIkE——3 (1/min)
EAS N RES 600 < 800 < 800"
® 47 WML E > 7 UHV-04SY  (fEETSIVERFEL
OHFRHEE  1001/s
@FNERE 2 X10°° Torr
@FTEESN  14kW (200V)
@Fr#EAksE  1.21/min
S 610690 X 900~
2-4-2 HZCRE:EEHRIZ:
O =HEEH
EEEEZE (HAREZ2E])

@

®

oI, G1-T----- 5 X107~ 1 X1077 (Torr) 4&
oKX, G1-TL2------ 5 X107~ 1 x10°% (Torr) 2+&

[

¥ (HAHEZESD

ORI GP-2DH 0.001~20 Torr 1%&
O GP-2T 0.003~20 Torr 2%

TN7 7 barsr—2 (NORTON $#l)
ORI 820 5 x107°~1000 Torr 14
V=07 4775~

HeV—727477%— (B4 #X, MSE-110.
BHEESFEHEAY 7 AU — 2 75 2 % MSE-110 13 E #3020 BB 4 5 L
PREET, 70— 2N 7 AR FG 8 X107 atm cc/sec DRREEREAE L, &

ORNWBRABDO R THR L BRELRKETSH 2,

ARt R B L N - B THREIM OB LR TS .

A7 A KE#ESFEE D 6inch, 4inch. 2inch. 1inch

ok TEE, iE, 2axE, TFE

EEF 2N —
44 >F (HE)

Py
,_E'[g

300 ¢ <7001 mm (8, 6, 4 inch X — b f)

L
21

15

FE E105
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i) 79 AR LIV B2 CENTHEBEGLL 2 A RS A & % Dis-
sociative Excitation Transfer OBRENEH S N Z DYEBELFEH S NI,
EXPERIRENTAL PROCEDURE

A schematic diagram of the experimental apparatus is shown in Fig.1. A
vacuum vessel is composed of pyrex glass tubes 6 inch in diameter evacuated to the
pressure of 4 X107® Torr. The plasma gun is a coaxial type and the distance from the
gun nozzle to the center of interaction region is 1 m. Time-resoved photographs are
taken and a double probe, magnetic probes and a spectrometer are used as diagnostics.

A plasma stream contains turbulent magnetic and electric field and, in order to
eliminate them, a floating grid can be placed in front of the plasma gun. A fast-acitng
gas valve is used to introduce a target gas, a column-shaped gas cloud is formed
perpendicularly or antiparallel to the plasma steam. The radius of the gas column
expands gradually. Gases used are Co:, Hz, He, N;, Ar and air.

The target gas denisty at the center of interaction region is about 10'® particles/cm
3 when the plasma stream impinges on it. The target gas comes to the center of the
interaction region about 300 usec after the opening of the F.A.V.

The hydrogen plasma stream of T.~3.5 eV, N;~8.5x10%/cm?,  V,~6 X10°
cm/sec is obtained with the grid mentioned above, and without it, we have T.~6 eV,
N;i~4X%x10"/cm?, Vo,~2%X10"cm/sec, where T, N; and V}, are the electron temperature
of plasma, its ion density and the plasma velocity, respectively. The hydrogen plasma
stream comes to the center of the interation region about 18 usec after the firing of
the plasma gun when the gird is used, and it arrives much faster (~5 usec) without it.

'
'

= $eonr
N

%

............

Plosmo Gun

Camera
Spectrometer

Fig.1 Schematic diagram of the experimental apparatus.
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EXPERIMENTAL RESULTS
Figure 2 shows a series of time-resolved Kerr Cell photographs of the interaction

of a hydrogen plasma stream with a CO. gas cloud with the grid in front of the plasma
gun. The exposure time is 1 usec. No interaction is observed at z=0 usec, where
7 is the time interval between the firing of the plasma gun and the opening of the Kerr
Cell shutter. At =5 gsec a circular luminous part is observed at the interaction
region. This would be due to the ionization and excitation by the precursor electrons.
This luminosity once gradually decreases, that is to say, the number density of the
lonized and excited CO. decreases (r=15usec). At 7=30 usec, a very luminous
straight shock an order of magnitude slower than that of the plasma stream. At z=
40 usec this shock front moves past the center of the gas cloud and a stationary
parabolic shock front is observed in front of the gas column. The neutral gas density
gradually decreases along its axis from the muzzle of the gas port, so that the part of
the straight shock front near the muzzle, where the neutral gas density is high, is
almont stopped there forming a parabolic shock front, but the part of the straight
shock front far from the muzzle moves past the neutral gas cloud since the gas density
there is not enough to stop the shock wave. These situations are shown schematically
in Figs. 2 (b) and (c). The process described above is confirmed by the phototgraph
taken from the direction perpendicular both to the axis of the neutral gas column and
the plasma stream. At =55 gsec the straight shock front goes out of sight, and only
the stationary parabolic shock front of weak luminosity is observed. Later on, the
shock front gradually disappears.

Time exposure photographs of the interaction of plasma stream with a gas cloud
are shown in Figs. 3(a)and (b). Figure 3(a) is the one which corresponds to a quiet
plasma stream with a grid between the plasma gun and the gas cloud. The phenome-
non in this quiet plasma stream is stable and reproducible as shown in Fig. 3 (a). A
parabolic wake of a stationary shock wave can clearly be observed in front of the gas
cloud. When the grid is taken out the plasma tream becomes turbulent and the
interaction becomes unstable as shown in Fig. 3(b). What is most interesting in this
photograph is the presence of a ray structure similar to that of actual comets. This
ray structure is not reproducible from shot to shot, and as shown in Fig. 3(d), turbulent
magnetic field signals are obtained in the plasma stream by two magnetic probes
immersed in it.
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Fig. 2

79 XS - RO

Time-resolved photographs of the interaction
of a quiet plasma stream with a gas cloud (Kell
Cell photographs of the interaction of the
hydrogen stream with a CO, gas cloud). Expo-

sure time is [x sec.
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Fig.3 Time exposure photographs of the interaction of plasma stream with a
gas cloud and the oscilloscope display of the magnetic field (dB/dt) in
the streaming plasma. (a) and(c) Quiet hydrogen plasma with a grid in
front of the gun muzzle. (b) and (d) Turbulent plasma without a grid.
(c) and(d) (Upper trace) Magnetic field parallel to the gas column axis,
and perpendicular to the plasma stream, 13 G/usec/div. (Lower trace)
Magnetic field perpendicular to the gas column axis, and parallel to the
plasma stream, 7G/usec/div. Sweep 10 usec/div. Plasma stream

comes from the left.

4-1-2 HWIHPERUIHITETIXIHE L) A% 2 3> (Reconnection Phenom-

ena in a Magnetic Neutral Point Discharge)

(1) WBXPHERICEITBEMME (BBF145~49%F)

KGHE EDBRRR [ KE7 v 7] LHIBREGE R BT % Magnetic Substorm ¥R
ROANZALD—=DE L TRBENTLAHBRAPESCBITSY) 232> 3> (Recon-
nection) IR A EBEETEHRL 72, ZRTORKRTMES (8 B 75 X~ % AS L%
MW - TERERT &,

i) #WeE M (Neutral Sheet) D4R

ii ) Neutral Sheet ® Tearing Mode = & 2 gitE

i) ZAUZPED EFED A & HIE K A A > gk
DEEI S, ZOYHER A H = XL DI EBRE 75 AR 258D 4 4 > N
NDIGHADEET &1, ZORICHKEL 72 Divertor HER 75 XA~ ASEBALEEL T

W o 7z,
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EXPERIMENT LAYOUT

A schematic layout of the experiment is shown in Fig. 1. Four pairs of current-
carrying conductors are used to create a quasi-steady two-dimensional quadrupole
magnetic field with a neutral line in the center. The current through these conductors
is excited by the discharge of a slow capacitor bank (2 kV, 2400 #F) and it rises to a
maximum value of 15 kA/rod in 175 usec. A plasma is produced by a plasma gun and
is injected into the current excitation region and its density ranges from 10'% to 10**/

Fast Acting Gas Valve

o
10- 20KV
20uF
1’*_/ Plasma Gun
2 9
be—AAAAAAAAA
Pump
preeeed AN,
Plasma Sheet

18kV
2.5uF] 3 -

=
—

- )
A

==

-

3

Electrodes

Analyzer
Plasma
Current
X Conductor Rods
Conductor
Current '-UTU—U—‘
18 KV
2.5 uf

Electrode F‘"H I R

Plasma
T C:j trom
0 Plasma Gun
-—
—L— 4-~—5°cm~~—--—<]
Conductor rod

2 KV

2400 uF

Fig.1 Schematic layout of the experiment
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cm’. At the peak of the conductor current, a fast capacitor bank (18 kV, 2.5 4F) is
discharged to excite a plasma current through the plasma along the two-dimensional
neutral line between two meshed copper electrodes and thus a plasma current sheet
is formed. The plasma current flows in the opposite direction to the current flowing
through the conductors. The thickness of the formed plasma sheet is less than 1 cm
and its width and length are 10 and 60 cm, respectively. X rays are observed by an
Nal scintilliation counter and the energy spectzum of ions is measured by an electros-
tatic energy analyyzer.
ANOMALOUS RESISTIVITY

Figure 2 shows typical oscilloscope traces of the voltage between the meshed
electrodes and the current through the plasma. From this figure, it is clear that about
2 usec after the initiation of the plasma current discharge, a steep voltage hump
appears and the magnitude of the hump often exceeds the initial charging voltage on
the capacitor. As reported in our previous paper, this hump is attributed to the sudden

Fig. 2

Appearance of the anomalous resistivity in the
plasma sheet. The upper trace is the signal of
the plasma current (Ip) (8 kA/div) The voltage
between two meshed electrodes (2kV/div).
Sweep: 1 usec/div. The charging voltage on

the capacitor (2.5 ¢F) for the plasma current

Fig. 3

excitation Vp=9.5kV, the conductor current

(which creates the external quadrupole mag-  Oscilloscope traces of the voltage between two

netic field) Ic=10kA/rod, hydrogen plasma, electrodes are shown when the conductor cur-

the initial plasma density no=1X10"/cm?®. rent (for the external magnetic field) is varied.
Vp=10kV, no=1.3x10"/cm? helium plasma, 2
kV/div/usec/div.
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increase in the plasma resistivity. In an example shown in Fig. 2, the total energy
dissipated in the plasma sheet during the appearance of the hump is about 35 J. This
value is 30% of the initially stored energy in the capacitor and is anomalously large.

The anomalous resistive voltage hump appears earlier and its height increases, as
(i) the plasma density is decreased, (ii) the charging voltage on the capacitor for the
plasma current excitation is increased, or (iii) the external quadrupole magnetic field
is increase. Oscilloscope traces in Fig. 3 clearly show the dependence on the external
quadrupole magnetic field.

When the anomalous resistive voltage hump appears, a hard x-ray emission is
observed in an Nal scintillation counter (Fig.4). The electron temperature is esti-
mated from the absorption curve of the x-rays and rises to 10 keV. The dependence
of the electron temperature on the experimental parameters is the same as that of the
height of the resistive hump.

ION HEATING

Near the peak of the anomalous voltage hump, a high energy plasma cloud is
ejected along the sheet plane and travels across the magnetic field an shown in Fig. 5.
The energy distribution of the ions of this plasma cloud is measured by an electrostatic

g l t 1 0.2~2.0usec
I
E ! 7 . — 1.Ousec
(8.) ; ' |T|
[
P
1
[
|t \
|
o
. \ II 72 . 0.1~0.5usec
= 1; | Ty ~1.0usec
| f
®
1
b
Y ad ]
T W\t
Tk *2
|
§% i
-3 ] .. .
EE |' Ts time of flight
(c) L | Ts - ~ 1.0 pusec
5% !
I
Sul 'L -T's
ro e Ty -

L2

Fig.4 Signal of hard X rays and high energy ions, (a)
voltage (Vp) between the two electrodes, (b) X
-ray signal from an Nal scintillator (¢) ion sig-
nal from an electrostatic energy analyzer.
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ion analyzer. The distance between the plasma sheet and the analyzer is 3m. In
such a system, we should be careful to avoid spurious effects of the simple electric
potential difference. Most of our experiment is performed in such a way that the anode
electrode (which is connected to the positive terminal of the capacitor) and the
analyzer are electrically connected to the ground. There fore, it is expected that the
potential of the plasma sheet becomes negative to the analyzer and the observed ion
energy spectrum shifts toward the lower energy side than the spectrum in the plasma
sheet. By comparing with the ion spectrum obtained with the cathode electrode
grounded, the shift due to the simple potential difference is found to be less than 400
eV. This value is not so large as to give a serious effect to the ion energy spectrum
measurement. Hydrogen plasma is mainly used in this measurement.

In Fig. 4, the temporal origin of high-energy ions is shown by a schematic
representation of the voltage between the electrode, x-ray signal, and output signal
from the ion electrosatic analyzer. The strong ion and electron heating starts from
the time (¢2) which is a little later than the starting time (¢;) of the anomalous
resistivity by z..

Typical energy spectra of the ejected ions are shown in Fig. 6. The output signal
from the analyzer is proportional to E (dN/dE) (where dN/dE is the energy
distribution of the ejected ions). The average energy of the ejected ion is defined as

Ti*=3 E—Z%dE/fom% dE

As we measure ejected ions from the plasma sheet, there would be a question of
whether the average energy of the ejected ions (77*) should correspond to the ion
temperature of the plasma in the heating region (i.e., in the plasma sheet). As will be
described later, a considerable portion of the ions in the plasma sheet is heated and

Plasma Sheet

High Energy
Plasma Stream

Conductor Rods Magnetic Field l.ine

Fig.5 Schematic picture of the plasma sheet and the
direction of the high energy plasma stream
ejcted from the sheet is shown by arrows.
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A 10
T*=0.4ke\ To=11ke\

%= 0.5ke\
E E E
kel L 5% ke
(a)ne=15x10%cm' (b)Y ne=9.2X10"cm'  (¢)ny=58%10"Yem*

10) 10
T*=3.4keV
T*= 6.0ke\’
e " A E L 1 i 4 1 A AE
=35 v 10 1T I ke
(d) n, = 1.5%10% em’ (e) no = 7.4x10Yem’

Fig.6 Dependence of ion heating on the initial plasma
density no. Ti is the average energy of the
ejected ions. EdN/dE is taken as the ordinate.
The charging voltage on the capacitor for the
plasma current excitation Vp=13 kV, the con-
ductor current Ic=15kA/rod, hydrogen
plasma.

ejected outward, and there seems to exist a fairly good correspondence between the
average energy of the ejected ions (77*) and the ion temperature in the heating region.
Measurement of the Doppler broadening of HellA14686 due to the thermal motion of
helium ions also supports this correpondence.

The dependence of ion heating on the plasma density is shown in Fig. 6. Ions are
strongly heated in the low-density region (#,<10'*/cm?®) and T:* extends up to 6.0
keV. As the density »o is increased, the average ion energy (7:*) decreases. By
measuring the spatial distribution of the ejected ions, the ratio of the number of the
heated and ejected ions during the heating time to that of ions in the initial plasma
sheet (N¢;/No) can be estimated and the dependence of this ratio on the plasma
density (#,) is shown in Fig. 7. As the plasma density (#,) is increased, this ratio
decreases sharply. In the low plasma density region,, a considerable part of the ions
are heated and ejected from the plasma sheet.

The dependence of 7:* and N.;/ N, on the charging voltage (V,) on the capacitor
for the plasma current excitation are shown in Fig. 8. By increasing the charging

voltage (V,), the average energy of the ejected ions ( 7;*) increases more steeply than
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. T*
%': keV
04 o
6.—
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0.2 2~
0
Fig. 8
Dependence of the average energy of the eject-
ed ions (Ti) and the ratio (Nej/No) on the
1‘;(10:; : T 1w charging voltage Vp on the capacitor for the
Fig. 7 plasma current excitation. The ratio (Nej/No)
ig.

is the ratio of the number of ejected ions during

Dependence of ratio of the number of ejected
ions during the heating time to that of ious in
the initial plasma (Nei/No) on the initial
plasma density. The experimental conditions

are the same as that of Fig. 6.

the heating time to that of ions in the initial
plasma. The conductor current (which creates
the external quadrupole magnetic field) Ic=11
kA/rod, initial plasma density no=7x10'?/cm?®

and hydrogen plasma is used.

linearly. However, the ratio N.;/ N, is almost constant for V, above 10 keV and for
Vp below 5 keV, it becomes negligibly small. The external magnetic field dependence
of T.* is shown in Fig. 9. As the external quadrupole magnetic field is increased, the
ion average energy 7.* increases.

In summary, ions are heated to higher energies as (i) the plasma density (1) is
decreased, (ii) the charging voltage (V,) on the capacitor for the plasma current
excitation is increased, or (iii) the external quadrupole magnetic field (/.) is increased.
The parameter tendency shown above is the same as that for the anomalous resistivity.

We also measure the ejected plasma cloud by an electrostatic double probe. Its
velocity is obtained by varying the position of the double probe and is 10® cm/sec.
This value agrees very well with the velocity (27:*/M)'? obtained from the ion
analyzer. By measuring the spatial distribution of the ejected plasma, we can esti-
mate the total amount of energy carried by ions which are ejected from the plasma

sheet. From this rough estimate, 2.8 X10'® ions with mean energy 56 keV are
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T.*)
keV

0 ; 10 5L
kA/rod
Fig.9 Dependence of the of the average energy of
ejected ions (Ti) on the external magnetic field.
The experimental conditions of the upper curve
are the charging voltage on the capacitor for
the plasma current excitation Vp=17 kV and
the initial plasma density n,=4x10'*/cm®.
Those of the lower curve are the charging
voltage Ve=10.5kV, initial plasma density in-
jected from the gun no=5.5x10'%/cm?®, and the
initial hydrogen filling pressure Po=7.6x10"*
Torr. Hydrogen plasma is used in both cases.
In the lower curve, the vessel is filled by neutral
hydrogen gas before the plasma current excita-

tion.

produced and the total ion energy becomes 10 % of the initial stored energy in the
capacitor. This result shows that in our experiment, ions are heated with a high
efficiency and a considerable part of the magnetic energy supplied by the capacitor
bank is converted into ion energy.
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sB, Vsup E R ICEBIIRNAEROE 1 AP0 Y — 7 EREIZFNEFH

Isg (kA) =12XVsg (kV),

Isue (kA) =1.8XVsus (kV)
T%bﬁ%. P, VSB, VSHB&;,

3< P <350mTorr

0=Vs=3.0kV, 0=Is=36kA

50= Ve =20kV, 9.0=Isus = 36kA
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_The Apparatus
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20kV 10uF 6kV 3600uF

Fig.1 The Apparatus

The Time Sequence of the Experiment
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Fig.2 The Time Sequence of the Experiment
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The Parameter Space of the Plasma
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Plasma Current Density
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4-1-3 EEET7SIXTIZL2EEBSBOEX (Experimental Study on Mass Separa-

tion by Plasma Centrifuge) (FBF0465FE~51%)

BiG R L BMEREN T, BEPRCERE2WML S CERENE 77 A~vik, o—Vv
Y AHIXBIZ & o CHEENREEIC 42 % (AR 77 A=), BERICHE D Z O L D BREIEE
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He o5 2 Hid, BHERTOFND 1.68 512 E L. ZOFBRE2 Y T > 235 BFEICE X
ZTHDE, DEERITLI2 R0, TAVF—FFKIF, 650keV/U>® Lix3,
EXPERIMENTAL LAYOUT

A schematic view of the rotating plasma device is shown in Fig. 1. A vacuum
chamber is made of two stainless-steel coaxial tubes, one of which is an outer electrode
of 10 cm inside diameter and 22 cm length, and another is an inner electrode of 1 cm

outside diameter and 22 cm length. Between these electrodes a d.c. electric field is
220

Moss analyzer

’
4

Valve Gas inlet
Pump ¢= I," "e,’od . 304 '0'}>00¢
electrode ring 1 i
—Y I, (<= cootina woter
Insulator Outer electrode Pressure probe
Power supply 450 A [
L] d.c. power supply

SRVIA 750

Fig.1 Schematic view of the rotating plasma device.

This document is provided by JAXA.



66 FTHHMFEN R ®S FE BLOF

applied (2kV, 1A, max). Four magnetic coils create a steady longitudinal magnetic
field of 7.5 kGauss (max). A resistor (750Q) is needed for stabilizing the discharge.
Gas is introduced from one side of the chamber and is exhausted from another side.
Two diagnostic ports are located in the center of the wall of the outer electrode,
through which samples of the gas are taken out and probes to measure pressure and
velocity are inserted. Probes can be inserted axially through the side port as shown
in Fig.1. Because it is difficult to make a stable uniform discharge in the axial
direction, a ‘ring’ 1 cm long and 3 cm in diameter is inserted at the center of the inner
electrode so that a discharge should concentrate in the center of the chamber. If this
ring electrode is not used, a discharge is apt to take place along the side insulator wall
and generates impurity gases from the side walls. In our experiment plasma is
generated steadily, and a considerable amount of heat is dissipated in the chamber so
that a water-cooling system is needed.

We use He and Ar gases mixed in various ratios. Samples taken from the outer
electrode are guided through a pipe 3 mm in diameter and 2.5 m long, into the vacuum
chamber and there the ratio of He/Ar is measured by a mass analyzer. We use this
long pipe in order to avoid the effect of the main magnetic field on the mass analyzer,

Inner electrode Quter electrode

!
]
Pressure probe

! Ring (7] Pirani gauge

v
—— A 8 C D
— OO0 G
——

Pressure

Fig.2 Schematic view of the velocity probe and typi-
cal pressure change with the angle between flow
and the aperture of the probe.
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and also to maintain the pressure difference between the experimental region and the
mass analyzer chamber.
EXPERIMENTAL RESULTS
Rotating velocity

In order to measure rotating velocities, we use a velocity probe which is made of
a glass tube, 5 mm in diameter with an aperture 2 mm in diameter on the side of the
tip. Because in our rotating plasma most part of the gas is neutral and the pressure
on the surface of the velocity probe in the flow depends on the angle between the
direction of the flow and the surface normal. If we point the aperture of the probe in
various directions against the flow and read the presssure, we can obtain the rotating
speed. In Fig. 2, we show typical pressure changes when the aperture is faced at
angles of 0°, 90°, 180°, 270° against the flow, respectively. As can be seen from this
figure, the pressure has a maximum value at §=180°. This means that the gas in the
chamber cannot be treated as a perfect fluid. In fact the Reynolds number R is about
1 for He and 10 for Ar, when the velocity is taken to be 100 m/s and the typical length
0.5 cm (a diameter of the pressure probe). When R<1, Oseen approximation can be
applied (Lams, 1932) and we can obtain the pressure distribution as

1072

1 | )
102 10° 10
B.I, gouss-A

Fig.3 Dependence of the dynamic pressure (p-po) on
the driving force (B * I).
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where
u : vicosity coefficient ; »: velocity of the fluid ; «: radius of the cylinder.

This expression can explain the pressure change of He shown in Fig.2. There-
fore this approximation is considered to be a better one for He in our experiment.
From this expression we can say v, p— po. The experimental results show b —Docx
B-1Ir (Fig. 3), then we can say v, B+[r and it agrees with the theoretical result. By
using we can obtain the velocity. Its maximum value is about 200 m/s for He gas.
For Ar, Oseen approximation cannot be applied for any higher velocity because R >
1. The lag of the curve from the linear dependence in Ar is considered to be caused
by this effect.
Experiment on mass separation

We have performed experiments on mass separation in our rotating plasma device
with a He-Ar gas mixture. When the gas begins to rotate, the ratio of He/Ar changes.
We observe this change at the outer electrode a quadrupole mass analyzer. We
choose the initial ratio of He/Ar:% only due to the convenience of observation.
After several experiments in various ratios we find the result described below is
unaffected by the initial mixing ratio. When the plasma starts to rotate the ratio
changes gradually and it takes about 30s to reach an equilibrium. This is because the
sample needs time to reach the mass analyzer through a long pipe. About 2 min after
the start of the operation, various impurity gases (H., carbohydrates) begin to evapo-

17— 0o P=05 Torr
A& P=6 Torr
- O P =20 Torr
1.5
22 T
NN
4L 3
1.2}
(-
10 | | | I | | | |
0 | 2 3 4q 5 6 7 8

B.I, kg.A

Fig.4 (a) Dependence of the separation factor on B+ 1.

This document is provided by JAXA.



1984 4£ 3 H 77 AR o MR R R 69

Ar /He
(Ar/He);.\

B.I, kg.A

Fig.4 (b) Dependence of the separation factor on B -
1 compared with the theoretical result.

rate from side insulators. In order to avoid the impurity effect, the ratio at 70s after
operation is measured in the following data. We define the separation factor S by the
Ar/He density ratio during operation divided by that before operation (:%) and
observe its dependence on magnetic field and discharge current.

(Ar/ He)operation
S =
(Ar / He )initial

In Fig. 4(a) the dependence of S on fhe driving force B ¢+ I is shown at various pressure

values. In Fig. 4(b) we show this dependence compared with the theoretical resulit.
From these results we conclude that the separation factor increases linearly with B+ 1
and their maximum values are
S=155+£0.13 (P=0.5~20 Torr)
(B=75kG and I =1.0A) .
4-1-4 FTE TS XIH & WBFHISOMEIER (Interaction of a Steady Plasma
Stream with a Magnetic Dipole)
K75 X~ KBS : Solar Wind) &, HhBERELE & OMEEIERIC & > THERO F:I

This document is provided by JAXA.



70 THEBFHERMRSE BHE B105

WIS ESERINTEY, CROEBRRICB T2y Ial—yari3FeLT75X
YHEFEO/NNVAT T ARFEHACTITONTE ., ZOFRTIE 7S X<iEL LT TP-D
7o XA<EE (HEREBR) 056077 X=idc AARF I X ) SUE TR %17 - 72
BRCHR D MHAFRBBICESR 2 N2 20K 2 79 X~ « v —2AE2FAR L O T
b5, INREKEFICE T2 BESHEE 77 X~Ich5 2 2 BRNRE S A2 ECH
B35 % L BN O FHO RIKDHHL 75 X~ h TOHRERFIC b IEL T 2,
In the earth’s environmental space, the interactions between a flow of charged
particles and the geomagnetic dipole field result in various interesting phenomena such
as the formation of magnetosphere, collision-free shock waves and plasmapause, the
excitation of aurora and so on. In recent years these phenomena have been investigat-
ed in detail by direct measurement using a number of space vehicles. So far experi-
ments to simulate these phenomena have been performed using a pulsed high density
plasma flow, and a simulated magnetosphere has been observed by time-resolved
photography (Alfvén, 1963 ; Cladis e/ al., 1964 ; Kawashima and Ishizuka, 1964 ;
Kawashima and Fukushima, 1964 ; Osborne e/ /., 1964). This experiment is to study
the details of these geophysical phenomena in the laboratory using a steady plasma.
The general layout of the experimental device is shown in Fig. 1. A steady state
plasma is produced in TP-D device (Takayama, 1966). A plasma diffuses out from the
discharge chamber (left side) into the experimental region through a small aperture (7
mm in diameter) at the center of the anode along a guiding magnetic field. In this
device, the experimental region is separated from the plasma production region by the
anode orifice so that the plasma in the experimental region is quiet and stable. The
guiding magnetic field is terminated at the entrance of the experimental region and the
plasma expands along the diverging magnetic lines of force in the experimental region.
The residual guiding magnetic field there is about 100 gauss. A small magnetic dipole
(a cylindrical permanent magnet of 13 mm in diameter and 13 mm long, and the

BRASS
CHAMBER
/— PYREX TUBE

MAGNETIC
] DIPOLE

CAMERA

Fig.1 A schematic layout of the experimental device.
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+60V +100 v +500 v

Fig.2 Schematic drawing of the interaction of a
steady plasma fiow with a dipole magnetic field
when a positive voltage is applied with respect
to the wall.

magnetic field intensity of about 800 gauss at the surface) was set in the center of a
cross-shaped metal chamber of 100 mm in inner diameter and 350 mm length (shown
with bold lines). Observations were performed using a photographic camera through
a window. The gas used for the discharge is helium ; the plasma density is about 10°
cm™?®; the electron temperature is about 15eV, and the metal chamber is filled with
helium or argon gas at a pressure of 8~9x107* Torr. A voltage up to 800 V is applied
between the dipole and the chamber wall.

The plasma in the absence of the electric field flows around the dipole according
to the combined magnetic field of the guiding magnetic field and the dipole magnetic
field, and a forbidden region (a dark space) is observed near the dipole when the dipole
is directed in the opposite direction to the guiding magnetic field.

When a positive voltage (with respect to the wall) is applied to the dipole, small
bright parts appear adjacent to both poles of the dipole.

These bright parts grow as the applied voltage is increased as schematically
shown in Fig. 2 and form an ellipsoidal shape with a longer axis perpendicular to that
of the magnetic dipole, and a dark region appears around the surface of the dipole.
Here, it is drawn in such a way that a plasma comes from above in order to simulate
the geophysical situation. This ellipsoidal shell expands with the increase of the
applied voltage, and the expansion rate is greater in the direction of the dipole axis

This document is provided by JAXA.



72 FOH B 0T R P W FE BIE

Fig. 3 Fig. 4

Photograph of the interaction of a steady Photograph of the interaction of a steady
plasma with a dipole magnetic field when a plasma with a dipole magnetic field when the
positive voltage with respect to the wall (+500 applied voltage is negative (—500V) with
V) is applied to the dipole. A plasma comes respect to the wall.

from above.

than in the radial direction. The shell becomes an almost completely spherical shape
when the applied voltage is about 500 V (Fig. 3). With much more increase of the
voltage the sphere changes to an ellipsoidal shape with a longer axis parallel to the
dipole axis.

When the applied voltage is fixed and the plasma density is increased, the shape
of the bright shell is compressed in the direction of the dipole axis, while the radial
diameter of the ellipsoidal shell is not changed.

When the polarity of the applied voltage is inverted, that is, the dipole potential is
negative to the wall, a spherical dark space surrounding the dipole is observed as
shown in Fig. 4. In this case, the variations of the spherical shape with the change of
parameters are similar to those of the positive cases, but the boundary is not so clear
as in the former case.

4-1-5 BERETSXATeKRKHEHYA 2 0BREDHEEEROHE
(Study of Interaction between High Power Microwave Pulse and High Dense Magnet-
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EXPERIMENT

A. Experimental layout

The experimental layout is shown in Fig.1. A steady arc plasma (He) is
produced in a plasma source region between the anode and the hot cathode, and the
plasma diffuses into a differentially pumped experimental region along magnetic field
lines. The plasma density at the center of the plasma column is about 10''/cm?® and
the electron temperature is several electron volts. There is a stationary electron
beam of 1.2 A, 400 V through the plasma column along the magnetic field. The
plasma is confined in a magnetic mirror field produced by coil I -1V and the diameter
of the plasma column is about 1 cm. A high power microwave pulse with frequency
£=9.36 GHz is transmitted transverse to the plasma column from an open-ended
waveguide and the direction of the electric field of the microwave is either parallel or
perpendicular to the magnetic field. The maximum power and the duration of the
pumping microwave pulse are 10 kW and 7-10 usec, respectively. Microwave emis-
sions from the plasma are detected by a spiral antenna and are analyzed by an electric
field analyzer (EMA 910) with a measurable frequency range from 1 to 10 GHz. The

Microwave  Attenuator Anode Intermediate
Generator / ) lectrodes
i Waveguide \ | Oxide Coated Cathode

Spiral Antenna
Diamag.Coil (10Turns)

Fig.1 Schematic layout of the experiment.
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b I t:
Simultaneous
Emission

!
Delayed

Emission

Fig.2 Signal of the microwave emission of the second
cyclotron harmonics from the plasma. The
freguency of the pumping wave is five times the
cyclotron frequency and the pumping wave is
applied from time t; to the time t.. 12.5 usec/
div.

plasma density is measuredd by a double probe and the x tays from high energy
electrons are detected by a Nal scintillation counter and the energy of high energy
electrons is obtained by the absorption method of x tays. The input energy into the
plasma from the microwave is measured by a 10 turn diamagnetic coil.

B. Delayed emission (type I, II)

When a high power microwave pulse is injected into the magnetized plasma under
the condition of fo=nfc.= fp; where (f, is the pumping frequency, fc. is the electron
cyclotron firequency, fe is the electron plasma frequency, »=2,3,4,5), we observe the
microwave emission (type I delayed emission) which appears after the termination of
the pumping microwave pulse, in addition to simultaneous emission during the pump-
ing time (between f, and ¢, in Fig. 2). The simultaneous microwave radiates continu-
ously during the pumping and has a broad frequency spectrum peaked at cyclotron
harmonics under the pump frequency (9.36 GHz). The delayed microwave radiates as
a short chaotic pulse train and its delay time ranges up to 100 usec.

The delayed emission has a peculiar feature in its frequency spectra. Figure 3
shows the frequency spectra of type I delayecd emission when #» is varied. For each
harmonic number #, the frequency spectrum has sharp peaks at the cyclotron har-
monics (mfee) (m=1,2,...n). Asis clearly shown in this figure, the emission at the
second harmonic is the strongest and the emissions at fc. (fundamental) and #fe.
(pumping frequency f,) are much weaker than the others. The maximum intensity of
the delayed emission is several tens of mW, whereas that of the simultaneous emission
is several hundered mW.

When the microwave pulse is pumped under the condition of fo=#nfce=1.5 fpe
(underdense plasma), small side peaks below the peaks of type I delayed emission
become larger, while the peaks of type I emission (mf..) are supperessed. These side
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Fig.3 Frequency spectra of type I delayed emission.
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Fig.4 Frequency spectrum of type Il delayed emis-
sion in case of n=2.

peaks are called type II delayed emission in our experiment. Type II delayed
emission appears continuously immediately after the termination of the pumping and
the duration time is 30 gsec at most. The radiation intensity is the same order of
magnitude as that of the type I delayed emission. The frequency spectrum of type
II delayed emission for the case of »=2 is shown in Fig. 4 where the type II delayed
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emission is clearly distinguished from the type I delayed emission, and it ranges from
1.5 fee to 2fce (= /o). More generally, the frequency specturum of type II has broad
peaks between (er%*)fce and (m+1) fee.

Emissions with frequency above nf = f, are not measured because their frequency
exceeds the measurable range of our receiver (EMA 910).

The following conditions are required for the excitement of the delayed emissions
with respect to the magnetic field strength, plasma density, power of the pumping
wave, and particle confinement. Figure 5 shows the parameter region for the appear-
ance of the delayed emissions when the magnetic field strength and plasma density are
varied. The resonance condition of cyclotron harmonics (fo= #fce) must be strictly
satisfied and the plasma density must be<10'?/cm?®[ie., /o= fee (electron plasma
frequency)]. The plasma density has an approximately parabolic distribution in the
radial direction and the plasma density in Fig. 5 refers to the density in the center of
the plasma column. The most desirable plasma density region for type II delayed
emission is about half of that for type | delayed emission. As we shall discuss later,
slight, but definite difference makes the interaction of the microwave with plasma
clearly different, and therefore, can give rise to the two types of delayed emissions
with different frequenc spectra. The third condition for the delayed emission to appear
is a requirement on the power of the pumping wave. As is shown in Fig. 6., there
exists a clear threshold level of the pumping wave power and when the pumping power
is increased above this critical level, the delayed emission appears and increases
sharply. The threshold value is almost the -same for all resonance number (n=2, . ..

1680 k
: |
® 1670 i
to=2fce= \
s |
\JYPE-1_s ]

16601 ~—
| i j
16500 1 2 3

DENSITY (10*2/cm*)

Fig.5 The possible region of the magnetic field
strength and the plasma density where the
delayed emission appears in case of fo=2fc.
(n=2)
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Fig.6 Dependence of the delayed emission on the
power of the pumping microwave.

5). The type I delayed emission has a lower threshold power value (6.3 kW) than
type 11 (8.0 kW) and the simultaneous emission has a much lower value (3.7 kW) than
type I.  The fourth condition for the delayed emission to appear is that the magnetic
field configuration must be a magnetic mirror. The radiated power decreases as the
mirror ratio is decreased and never appears in a straight magnetic field configuration
(mirror ratio=1). The simultaneous emission, on the contrary, is not sensitive to the
mirror ratio at all.

DISCUSSION

The delayed emission appears after the complete termination of the pumping
microwave when the frequency of the pumping wave'is equal to the harmonics of the
cyclotron frequency and is near the plasma frequency. The formation of the delayed
emission requires three processes; microwave power absorption by plasma, energy
storage in plasma, and microwave emission from plasma.

Plasma is usually heated effectively at the electron cyclotron frequency due to
electron cyclotron resonance heating, but in our experiment, a different mechanism of
plasma heating should exist, because the plasma is strongly heated at higher electron
cyclotron harmonic frequencies as well as at fundamental cyclotron frequency and
there is a definite threshold in the energy absorption. It is plausible that the plasma
is anomalously heated by parametric instabilities. The condition of fo=nfce™ frefor
type I delayed emission corresponds to that of decay instability between Bernstein
modes, whereas the condition of fo=nfce=1.5/pe (underdense plasma) for type II
delayed emission corresponds to that of kinetic instability. The energy absorption by
the strong decay instability deposits most of the pump energy in the electrons and leads
to highly energetic tails on the electron distribution function. Absorption of the
kinetic instability leads to a heating of the main body and not to the energetic tails
produced by resonant absorption. The experimental results agree well with these
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interpretations.

The experiment when the magnetic mirror ratio is varied indicates that the hot
electrons produced by the high power microwave pulse are trapped in the magnetic
mirror and that the input energy is stored as in the perpendicular hot electron form.

The energy stored in the plasma is released by emitting the delayed emission.
Under the condition where the perpendicular hot electrons exist in a cold Maxwellian
plasma, electrostatic instabilitities are excited by the anisotropic velocity distribution
of hot electrons. Post shows that there are two types of electrostatic instability due
to double humped velocity distribution (type A) and temperature anisotropy (type B).

The electrostatic wave is converted into an electromagnetic wave through the
plasma density gradient. Based on an investigation, oscillations near the upper hyarid
frequency will be converted from longitudinal electrostatic waves to transverse
electromagnetic waves in an inhomogeneous medium. Since the plasma column has a
steep density gradient, the electrostatic waves below the plasma frequency excited
near the center of the plasma column surely arrive at the density region where the
conversion condition is satisfied.

Similar experiments in space have been carried out by the Alouette II and ISIS I
satellites which contain a sweep frequency rf sounder of 400 W. The receiver on the
satellites observed long duration (many milliseconds) electrostatic signals immediate-
ly after the termination of a short rf pulse (100 usec). The frequency spectra of the
“resonances” are quite similar to those of the delayed emission (type I, II). Many
interpretations of these phenomena have been proposed. The resonances at cyclotron
harmoics have been interpreted in terms of the reception of Bernstein waves excited
by the rf pulse traveling with the satellite. From our experiment, we consider that the
resonances at cyclotron harmonics are the result of an instability driven by a secon-
dary peak in the distribution function for electron velocities perpendicular to the
magnetic field (type I). The resonances near the half cyclotron harmonics have been
interpreted in terms of the Harris instability, which is similar to our interpretation of
the type II delayed emission.

The main properties of these instabilities are explained in terms of the theory with
a two-component plasma of perpendicular hot electrons and cold background plasma,
but triggering or suppressing of both type of delayed emission by the electron beam
modulation 1s especially interesting. The existence of the parallel electrons
makes the delayed emission appear more easily. In order to analyse this problem, we
must calculate the dispersion relation with a three component plasma of perpendicular
hot electrons, background cold plasma, and parallel electron beam.

This document is provided by JAXA.



1984 £ 3 A 7T AL - RNRER R RS 79

4-1-6 53/ NV RAENBROAXBHREFEC—L TS XVYOHEAER (Interaction of a
short-pulse Relativistic Electron Beam with a Plasma) (B3%0 49 f£~54 &)
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I . Microwave Emission and Plasma Heating
EXPERIMENTAL LAYOUT

A schematic view of the experimental setup is shown in Fig. 1. A vacuum
chamber is made of brass tube of 10 cm in diameter and 1.2 m in length. Six magnetic
coils, which are placed axially at intervals of about 18 cm, create a steady longitudinal
magnetic field of 1.6kG (max). The magnetic field is nearly uniform but slightly
rippling along its axis, creating magnetic mirrors with the mirror ratio R»>1.3.

A plasma is produced by a laser plasma gun or a carbon plasma gun.

When the vacuum chamber is filled with plasma, the relativistic electron beam is
injected axially through a Titanium anode foil. We use a Febetron as a relativistic
electron beam source. A 600 kV (max), 40 ns pulse is created by the discharge of a
Marx generator, and it is applied to a ‘short pulse adapter’ through a pressurized gap

X=RAY DETECTOR
DIAMAGNETIC
00P
l 5

AGNETICL
00

FEBETRON

TITA mmw M /)
FOIL 4{)
MICROWAVE \
ECEIVER
X—RAY DE CTOR LASER
]

SCHEMATIC VIEW OF THE EXPERIMENT

Fig.1 Schematic view of the experiment
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switch (SW,in Fig.3). In this sub-system, the energy is once stored in a coaxial
Blumlein line and then, by the self-firing of another switch (SW3), a very short pulse

of 4 ns is formed. The output pulse is applied to a diode, and a relativistic electron
beam is emitted as a field emission. We use a stainless steel cathode and a 10 or 20
um thick Titaninum foil anode. The gap between the cathode and the anode foil is
around 3mm. The current of a beam produced in this system is around 2 kA and its
pulse width is 3ns (FWHM).

EXPERIMENTAL RESULTS

Propagation of a relativistic electron beam

A relativistic electron beam current and a time variation of a magentic field dB/
d¢ due to the beam are measured by injecting the beam into a vacuum chamber.
Typical oscilloscope traces of these signals without plasma are shown in Fig. 2,
together with a voltage signal measured by a capacitive divider in a short pulse
adapter.

The propagation of the electron beam in plasma is studied by Faraday cup and
magnetic loop measurements. Figure 3 shows magnetic loop signals in the case when
the relativistic electron beam is injected into plasma (Figs 3a-c). A signal without
plasma is also shown for comparison (Fig. 3d). Time scales are all 5 ns/div.
Plasma heating

An energy transfer from a relativistic electron beam to plasma is investigated by
using diamagentic loops. A plasma diamagnetic signal is considered to show W+« S
(=upkT » S), the perpendicular plasma energy in unit length along the external
magnetic field.

The dependence of the plasma heating upon the initial plasma density is investigat-
ed. Results are shown in Fig. 4, where the plasma energy increment (JWr -+ S) wvs.
the initial plasma density (#,) is plotted. From this figure, we can see that the beam
energy is transferred to plasma most efficiently when the plasma density is around 2 X
10"%cm™®. In the low density region (#,<2Xx10"*cm™®), the plasma energy increment
increases with the increase of plasma density #,, and in the high density region (7,=
2x10"%cm™), it decreases with the increase of #,.

Microwave emission measurement

In Fig. 5 are shown frequency spectra of Emission C. Frequencies corresponding
to an electron cyclotron frequency and its harmonics are shown in each spectrum. In
these spectra in Fig. 5, we can find strong microwave emissions near the frequencies
of electron cyclotron harmonics (# ¢ fee, n=2,3--+). It should be noted that the
fundamental (/> f..) is very weak compared to the harmonics. In frequency spectra
of Emission B, we have also found strong microwave emissions near electron cyclotron
harmonics (2 fee, 2=2,3...). The amplitude of these emissions is about 20 dB larger
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Fig.2

Fig. 3

Typical oscilloscope traces, time scales are all
10 ns/div. (a) Voltage at a capacitor in a short
pulse adaptor ; peak corresponds to around 500
kV. (b) Beam current measured by Faraday
cup; pulse width is around 3ns (FWHM).
Peak current is 2 kA. (¢} Time derivative of
magnetic field dB/dt without plasma measured
by a magnetic loop: it corresponds to a time
derivative of beam current.

Oscilloscope traces of magnetic loop signals
with and without plasma.

a) With plasma (np=3%10">cm™?)

b) With plasma (ne=1Xx10"”cm™?)

c) With plasma (np=4Xx10"" cm™)

d) Without plasma ; external magnetic field B
Bo=1.2 kG
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than that of Emission C.
II. Beam Transmission through a Magnetic Barrier

A schematic view of the experimental setup is shown in Fig. 1. The drift tube is
an 8-cm diam. metal tube, constricted to 3-cm at the strong magnetic field coil. The
strong magentic field is provided by the discharge of a 30 k] capacitor bank through
a solenoid, and is as high as 110 kG at the center of the coil. The discharge period is
sufficiently long (about 5 ms) to allow complete field penetration through the drift tube
and provide a constant magnetic field over the beam pulse duration.

The relativistic electron beam is injected into the drift tube through a 20-xm-thick
titanium anode foil, along the longitudinal magnetic field (5kG max.). The total beam
current transmitted through the strong magnetic field is measured by a Faraday cup,
which is spparated from the drift tube by a 50-um-thick aluminized Mylar window and
ewacuated inside. Figure 2 shows the beam current measured by the Faraday cup.

The transmission of the beam through the strong magnetic field (110 kG) is shown
in Fig. 3 as a function of the hydrogen gas pressure. Here the guiding magnetic field
is about 2kG. From Fig. 3 we can that the beam is efficiently transmitted through the
strong magentic field in the very narrow pressure region around 0.7 Torr. Measure-
ments with other background gases yield the same results, except for a change in the
pressure corresponding to peak transmission (ppea). A correlation of the gas pres-
sure at peak transmission with the ionization cross section for 300 keV electrons is
illustrated in Fig. 4, and we find that the product of both is constant.

This result indicates that when the beam current (/,) is not larger than the Alfven
current limit (74), namely, /,/Ia<1, the density of the plasma created by the beam may
be estimated by considering only the direct ionization due to collisions between the
beam electrons and gas atoms. Since this condition is satisfied for the beam in our
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Fig.2 Relativistic electron beam current waveform
recorded by a Faraday Cup. Sweep speed is 5
us/div and peak current is 1.5 KA.
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. Fig. 4
Transmission of the beam through a strong &

magnetic fieli (~110kG) in hydrogen. Tran-  Correlation of the peak transmission pressure
smission is calculated by the ratio of the beam  with the ionization cross section of various
current transmitted through a strong magnetic  gases for 300 keV electrons.

field to that without a strong magnetic field.

experiment (/,//,~0.07), the produced plasma density is estimated as

npOC DGly

where p is the gas pressure, and o; is the ionization cross section for the beam
electrons. Accordingly, the results illustrated in Fig. 4 suggest that the plasma density
produced is the same for all gases at the peak transmission pressure, in other words,

the beam is efficiently transmitted through the strong magnetic field only for a specific
plasma density.
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In order to understand these results, we will consider the propagation of an
electron beam in a gas. When an electron beam is injected into a gas, both space-
charge neutralization and current neutralization must be considered. Taking into
account such neutralizations, the total in the radial direction on an electron at the
surface of a cylindrical electron beam is expressed as

Ne®

F:A‘star [((1—/)=B*1— fu)],

where N is the number of beam electrons per meter, 7 is the radius of the beam, 8=
v/c, v and ¢ are the velocities of the beam electrons and light, and f and fm are the
charge and current neutralization factors, respectively. The first term on the right is
the electrostatic requlsive force due to the beam space-charge, and the second is the
magnetic pinch force due to the magnetic field of the beam current itself. In a low
pressure range, the plasma density created by the beam is low (f<1) and no current
neutralization occurs (f»~0). Therefore the beam expands in the radial direction,
because 8<1. As the produced plasma density is increased, the conditions f»~0, 1—
f~p? are satisfied, and the totoal force is nearly zero, that is, the radial forces cancel.
Then the beam drifts without expansion or compression, and the velocity vectors of
the beam electrons are aligned in the direction of transmission. Under higher pres-
sures, since the current neutralization is not complete (0<f,<1) because of the
damping of the reverse current due to collisions with background gas molecules, while
the charge neutralization is almost maintained (f~1), the beam is compressed in the
radial direction.

In order to confirm this conjecture, we will calculate the total force factor [ (1-f)
-B*(1- f») ] by measuring the electric field due to the net space-charge and the self-
induced magnetic field due to the net current. The electric field and the self-induced
magnetic field are measured by an electrostatic probe and a magnetic loop or current
shunt, respectively. Figure 5 shows the force factors calculated from these measure-
ments, where the electron energy is 300 keV, g?~0.1. The light solid curve (a) is the
repulsive force factor due to the net space-charge, and the dashed curve (b) is the pinch
force factor due to the net current. The total force factor calculated from these force
factors is indicated by the dark solid curve (c). Since the current neutralization
starts after the charge neutralization, we can determine the point point at which the
repulsive and pinch forces balance. The repulsive force decreases as the gas-pressure
increases and balances the pinch force at p=~0.7 Torr, that is, the radial forces cancel.
If no current neutralizdtion occurs, the pinch force due to the self-induced magnetic
field increases rapidly ; however, as the current neutralization starts from p~0.8 Torr,
the pinch force is reduced in the high pressure region indicated by the hatchmarked
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area. From this figure, we can conclude that the efficient transmission of the beam
through a strong magnetic field in a very narrow pressure range is attributable to the
balance of radial forces.

The condition under which force neutralization occurs can be written as

7

f: e

7 1-£

where #, are the plasma and beam electron densities, respectively. Since #, and g are
constant for a given beam, the force balance is accomplished by a definite plasma
density. This agrees with the result for peak transmission through strong magnetic
fields in various gases (Fig. 4).

In a high pressure range the beam transmission is lower than that expected from
the force factor. This can possibly be attributed to the interaction of the beam with
the produced plasma and the collisions between the beam electrons and neutral atoms.

The discovery of the efficient transmission of an intense relativistic electron beam
through a strong magnetic in a very narrow pressure range, as des pibed above, has a
variety of applications in thermonuclear fusion research, such as in the focusing of
multiple intense beams on a central target in REB pellet fusion, in the plasma heating
of open ended systems by REB injection, etc. Studies on the transmission of more
intense electron beams through much stronger magnetic fields will be done in future.

4-1-7 FAN—98TS5 XTI AFHEENRERE (Divertor Type Plasma Injector)
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Fig.5 Dependence of force factors on hydrogen gas
pressure F*=~0.6 for 300 keV electrons. The
circles and solid points are the repulsive and
pinch force factors, respectively, calculated
from the experimental data. The dark solid line
is the absolute value of the total force factor.
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Injcetion of Plasma Through a Divertor

On the basis of the results of the neutral-point discharge described in the previous
chapter an experiment was performed to inject hot plasma into a magnetic bottle
through a divertor. A schematic layout of the experiment is shown in Fig.la. A
straight magnetic field is produced by a pair of coils S, and S, where the magnetic field
strength on the axis is 1200 G. To form a magnetic field configuration similar to a
divertor, a 100-turn coil D is placed between the coils S, and S; and is excited by a slow
capacitor bank discharge. By changing the current I, through the divertor coil D, the
location of the magnetic neutral point is shifted and the configuration of the magnetic
field is varied. The distance of the magneticneutral point from the axis according to
the divertor current Iy is shown in Fig. 3b (curve (1)).

A bydrogen plasma produced by a coaxial plasma gun is injected from outside
along the axis of the magnetic field. The initial density of the injected plasma is 103
-10'*/cm® and the electron and ion temperatures are 5-10 eV.

The current through the neutral point of the divertor field is induced by a fast
capacitor discharge 2.4 uF, V1=13.5kV)through a pair of single-turn coils T, and T,

Probe 1

Pump

Plasma ~ _
Gun -

3-turn
Detector Coil

fen}

Camera

Probe 2

Fig.1 Schematic layout of divertor injector experi-
ment. Coils Sy, S;, and D are used to generate a
divertor-like magnetic ﬁéld, and the single turn
coils T, and T. excite the induced plasma
current through the magnetic neutral point. The
direction of the currents through the coils is
indicated in the picture, and that of the induced
plasma current is the same as that of the coil D.
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Fig.2a  Oscilloscope traces of the output signal from
two double probes P, and P.. P, and P, are
located at distances of 25.0 cm and 31.5 cm from
the heating region, respectively. The ordinate 0.
78X10'*/div for Py, and 0.16 x10'/div for P,,
respectively. t=o0 corresponds to the discharge
of a fast capacitor bank. I,=124A, V+=135
kV, initial plasma density n,=10'*/cm?
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Fig. 2b Spatial distribution of the diffusing plasma
measured by the double probe P,. r is the dis-
tance from the axis. In=124A, V:=135kV.

whose inner diameter is 9 cm, and the interval between them is j cm. The direction
of the induced current is the same as that of the current through the divertor coil D,
and period of the discharge is 5.1 us. The magnetic field generated by the coils S,, S
. and D is altered by the current through the coils T: and T..

Two electrostatic double probes are used to measure the injected plasma. The
induced plasma current through the neutral point is measured by a 3-turn coil wound
around the vacuum chamber under the coil S. A Rogowski coil is also used to measure
the current through the single-turn coils T, and T, and its output signal is used to
compensate the 3-turn coil signal so that the 3-turn coil should detect only the induced
current. An image-converter camera is set at the point as is shown in Fig. 3a to take
a series of five timeresolved photographs of plasma behaviour the interval of which is
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Fig.3a Dependence of the average energy of the

diffusing plasma on the divertor current Ip. Vr
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Fig.3b Dependence of total energy carried by the
diffusing plasma on the divertor current Ib.

0.5 us.

Figure 2 shows oscilloscope traces of the output signal from two double probes P
and P,. P, islocated nearer to the heating region, and their radial positions are both
on the axis. From the time difference between two signals, we can estimate the
average energy of plasma heated and injected through the neutral point of the divertor
field. The radial distribution of the plasma diffusing along the magnetic field lines is
measured by the double probe P, by moving it radially and it is shown in Fig.2b. It
shows a maximum on the axis of the magnetic field. By changing the positions of two
probes radially, it is found that the variation of the energy of the diffusing plasma is
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negligible over almost all region of the plasma distribution.

The 3-turn coil detects the induced current which is about one third of that through
the coils T, and T,. It also detects the diamagnetic signal of the diffusing plasma :
Since we know the density distribution of the diffusing plasma and the magnitude of
the magnetic field under the coil, we can estimate the thermal energy perpendicular to
the magnetic field lines. It is about 90 eV when the divertor current Ip=124A.

By changing the current through the divertor coil D, the distance of the magnetic
neutral point from the axis can be varied, and it is expected that the plasma is most
efficiently heated when the position of the magnetic neutral point coincides with that
of maximum electric field. The dependence of the average energy of the injected
plasma on the divertor coil current I is shown in Fig.3a. It shows a broad maximum
between Ip=100A and 250A, and the maximum average energy is more that 200 eV.
The total amount of energy carried by the injected plasma is estimated by integrating
the double probe signal, and its dependence on the divertor current Ip is shown in Fig.
3b. It shows also a broad maximum with respect to the divertor current but the peak
is a little more sharp.

4-1-8 =2>NT S5 X7 D Merging (Merging of two plasma Columns) (B8#0 51

~57 £F)

BIABICHA T WS DD 77 A EREH DD 7T X< Merging T % BRIk
275 X DIBRRIIFHEEMC BT 2 KBERE LOBIL Y 7 X~ HOERO SHULH
W7 ARINBPREE A0 ) axrrvya L BEL, XZFOGHE L TERE
FICBTA2BE TS XA2DEA, F—F A7 XvOMBC b FHTERZ2 bDTH S,

EERZ, OO IAVERENERENLIBEREGL2HBE T 2 EBEREMEI T
A E N, o077 AOES 2 LIS, 77 A~ EBE, BROSMH 5 Merging

Table 1.Parameters of our Experiment
and a Divertor Injector for a Fusion Reactor

Experiment Fusion reactor
Minor radius or radius of circular 5cm 200cm
magnelic neutral line
Toroidal magnetic field strength 1kG 100kG
Magnetic field gradient at neutral point 0.25kG - em™! 2 = 4 kG-em!
Plasma density in pinched current sheet 5 X10"em 3 1 X10%em ™
Section of pinched current sheet 4em? 10 - 20cm?
Numder of injectors set in a torus 10
Number of injectors set in a torus 6 X10' 1.2-2.4%X10%
Average energy of injected particles 200 eV 10keV
Plasma current 13kA ~ 1 MA
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DOBHE NI X 7z, X Merging 125> T4 ¢ 2 R T?D Magnetic Energy O#0% & 7
7 AOMBMEHIE N, FEFHECBI2Y I 2v—y 3 Y EBRE TS XAv~DIGH
DHEB A FE BRI,
Experimental Apparatus
The plane view and the cross sectional view of the experimental apparatus are
shown schematically in Figure 1 and Figure 2. The apparatus consists of the
magnetic coils, a plasma gum, 6 inches glass vacuum chamber, two electrodes, a copper
shell and pumping system. The discharge was done in the inner region of the shell.
The six independent conductor rods in the shell were furnished in parallel with the
axis of the shell. The surfaces of the conductor rods and the copper shell were
covered with the black insulator which prevented the reflection of the light from the

Fig.1 Schematic view of the experimental apparatus

(cross section)

Insulator

10 WA

image
conv,
camera

Pla

Lo by

| X

10 pr , 20 kv

Fig. 2 Séhematic view of the experimental apparatus

(plane view)
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plasma. The two electrodes had the same shape as the cross section of the peanut,
and were made from the copper mesh with 1 mm? in diameter, 5X5 mm section. The
apparatus was evacuated by the turbo molecular pump and the base pressure was 1X
107® Torr. The experiment were performed with the filling gas of several m Torr.
Argon, Helium and Hydrogen were used. A direct inoization of the gas by a
discharge was employed to produce plasma. The plasma current was excited between
two electrodes by capacitor bank 10 xF, 20 kV. The half period of the plasma current
discharge was 9.0 usec and the maximum plasma current was 50 kiloampere. The
plasma current returned through the copper shell which surrounded the plasma
columns. The plasma columns were stabilized both by the copper shell and by the
mirror force of the returning current in the shell.

The diagonostics of the plasma were done by the image converter camera through
the transparent window. The exposure times in the framing photographs were 50
~500 nanoseconds.
Experimental Results

There were three key points in this work : the first was to produce the two
independent plasma columns separately, the second was to analyse the motion of the
two plasma columns and the third was to control the position of the two plasma
columns artificially. Figure 3 shows the cross-section of the plasma columns. And
this is the photograph taken at 4 usec after the beginning of the discharge. The
exposure time was 0.5 usec. This photograph indicates clearly that the two plasma
columns were produced separately.

The two plasma columns approached together and then joined to be one plasma
column. This merging process was investigated in Figure 4. Figure 5 is the streak
photograph through the image converter camera. It shows the motion of the two

Fig.3 The framing photograph which shows the cross
section of the two plasma columns. 4 gsec
after the initiation of the discharge.
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POSITION

0 5 70
TIME (}Jsec)

Fig. 4 Fig.5
The framing photographs which indicate the The typical streak photograph which shows
spontaneous merging the relative motion of the two plasma columns.
a) 2usec b) 3usec ¢) 4psec d) 5pusec  The bright strips indicate the centers of the
e) 6 usec f) 7 usec plasma columns.

plasma columns. The bright stripes in the Figure 5 are the centers of the two plasma
columns. The time evolution of the plasma columns is clearly shown.
A very precise measurement of physical parameters such as magnetic field, current
density and plasme density was performed as shown in Figs.6(a)~(c)
4-1-9 KBTS X7 (Solar Wind) & HIRRSGNOEEIER (Simulation of a Solar
Plasma Stream with a Geomagnetic Field)
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Plasma Density
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Precise measurement of plasma parameters in
Merging Plasma Column
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Type| Magnetic field

Thickness of illumination

Intensity

P.D. P.position [mm)

A closed filamented + 20~40
B closed wide with sharp boundary + + 45~55
C closed filamented + 60~70

conjectured sharp boundary 80~110

open field
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Return Current Collection Experiment

Space shuttle has only a limited area of conductive surface which will be useful for
the return current collection. Possible return current collectors on the shuttle is
shown in Fig. 1. The main engine nozzles are the largest, and others have not a large
contribution. The objective of this experiment is to verify how much of return
current flows in each part of conductive surface and whether it is proportional to the
surface area.

A 17 cm long shuttle model with metal surfaces at the corresponding places was
used in this experiment. Plasma flow from an coaxial plasma gun was used. Its
plasma parameters were n~10"'/cm?® Te~5eV flow velocity~8 km/sec and plasma
duration~100 zsec. The plasma density was so chosen to keep the parameter S of
Debye length length (14) /Scale of shuttle (L) =S should be kept invariant (S~10-%),

Fig. 2 shows that how return current is distributed over the shuttle surface for
various values of angle of attack #. From this figure, it is clear that the contribution
of the main engine nozzles is the largest even in the case of the nozzles in the wake
(6=0°). Though the effective current collecting area relative to the main engine is
3 to 5 times the actual conductive area for hinges and wheels, the return current
collected by the main engine is dominant so long as the engine nozzle is facing, in some
way, to the plasma.

Electron Beam Emission Experiment Using A Completely Isolated Shuttle Model

In order to simulated the charging phenomena, a completely isolated shuttle model
has been produced. This model is free from any external power and signal cables. It
is battery powered havning a small telemeter and command system. Only interactive
object with surrounding wall is an insulated suspension wire . Table 1 shows its
characteristics and Fig. 3 shows the block diagram of the system and a photographic
view of the shuttle model is shown in Fig.4. An electron beam current is 10 mA
maximum and its energy is 1,000 eV.

The charging voltage due to the beam emission was measured as a function of the
background pressure and it is obtained that the model shuttle is charged up to the beam

This document is provided by JAXA.
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Fig.2 Return current distribution over the shuttle
surface for valious valuen of angle of Attack 4.

voltage when the background prossure is below 10~® Torr. The beam current depen-
dence is slight, though there is a tendency that the charging is more suppressed for
higher beam current. This implies that the plasma production by the beam is non-
linear process and the plasma production rate increases more than linearly.

The return currest distribution is shown in Fig. 5. When the background pressure
is high, the return current is coming onto the shuttle surface uniformly so that the
contribution of the main engine nozzle is the largest. On the other hand when
background pressure is low, the plasma production by the beam has a negligible

This document is provided by JAXA.
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Table 1. Specification of space shuttle model completely
isolated from the wall

length 50cm

(1)
(2) surface brass covered with insulator
(3) beam energy 0 1 keV
(4) beam current 0 100 mA
(5) beam duration 5 msec
(6) telemeter system
analog signal 105 ~ 110 MH=z
discrete signal 135 MHz 155 MHz
(7} battery Ni-Cd
(8)  system start laser beam
first-on

second-off

(VACUUM )
P—GUN BAT HEATER
PLAS Lo
SYSTEM LASMA (8V) RecuLATER [
— T
BAT | HIGHVOL TAGE
RECORDER (") PSUPPLY
4
SFER HGHVOLTAGE
SWITCH
s CONTROLLER . -
{CONTROLLER } BEAM V-MONITOR
A BEAM A-MONIT
SW| HeatER |eeambBEAM] Gan M A-MONITOR
CURRENT |VOLT | ON
T l
PULSE 2cn MO AMP J RC COLLECTOR
o | 7Y -
acH R CURRE
ANALOG
STGNAL] AMP __| _-
(TELEMETER) (TELEMETER)

Fig.3 Block diagram of a laboratory space shuttle
experiment completely isolated from the cham-

ber wall.

Fig.4 Photograph of model space shuttle with subsys-

tems.
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RETURN CURRENT
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Fig.5 Return current distribution on the shuttle for
various values of the background pressure.

contribution to the return current. Consequently, the return current distribution is
such as shown in Fig. 5 and most electrons emitted from the gun comes back to the
most adjacent conductive surfaces. The fraction of the current flowing in to the main
engine nozzle is extremely small because it is in the shadow with respect to the
electron gun.

4-2-4 E— LT XVHBNERYIHE (Laboratory Experinent on Beam Plasma

Discharge) (BB%056 £~ )
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DR OAT, BPD DA = AL RHAL T RWELRLTED, ZOMKHA
ERVLTND,

4-3 WL & HEERVEFERBARUT 27 « TERAEHEBORMRERURR
4-3-1 EFRTSXVBENBEESTORRE (Direct Display Plasma Density and
Temperature Meter) (BB%0 45~48 £F)
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Priciple and Experiment

It has already been well established that when a low frequency AC voltage
superposed on the DC voltage is applied a Langmuir probe, the AC current takes its
maximum value at the infllection point of the Langmuir DC voltage-current character-
itic and the phase of the second hamonic component of AC current is reversed at that
point. This point moves higher towards the space potential of plasma as the fre-
quency becomes higher. The principle of the development of direct display plasma
density-temerature meter in this experiment is based on this property. The DC
voltage is automatically fixed at the inflection point by detecting the phase reversal of
the second harmonic component of AC current. If the voltage-current characteristic
is ideal, the DC and AC currents at the space potential of plasma can expressed as

S
Ipc= ’LG nS ¢ :KE“,

2 m
ine =i+ Ioc,

where ¢ : electronic charge
m . electron mass
n: plasma density
S : probe area

KT.: electron temperature

v: AC voltage

This document is provided by JAXA.
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From these expressions, the density and tempeerture are given by

~ 2lpc o [2KT.
= 75 i
e "V mm
KT.=cp» 1oc. (4)
lac

Generally, the Langmuir characteritic of ordinary probes is not ideal, and the
space potential does not always coincide with the inflection point on the voltage-current
characteristics stated above. Consequently, it is assumed here that the DC and AC

currents at the inflection point can be experessed as follows using two geometrical
constants G, and G :

Ioc*= Gy + - enS B Te (5)
2 m
iAC*:G2°'[(€%"IDC* (6)

This experiment is to verify that constants G, and G, do not depend on plasma
parameters and to develop a device to display directly the plasma density and tempera-
ture by fixing the DC voltage automatically at the inflection point on the Langmuir

Langmuir
Probe

) < Density

Diff. Operational Density
Ri Amp. 1 kHz (AC Current Output) Circuit N
Selective ——< Temperature
Amplifier

2 kHz ] (3kH2 Output)
Selective
R, [ Amplifier ‘
1 kHz Frequency I)ouhlej
Oscillator Phase Shifter
Ak
DC

(2kHz Reference)
VWV Voltage

Controller

Phase
Comparator

Rectifier
Amplifier

.

1

Fig.1 Schhematic diagram of a direct display plasma

density and temperature meter based on the
Langmuir probe method.
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characteristic. A schematic diagram of this experiment is shown in Fig. 1.

A noiseless plasma produced by a back-diffusion type plasma source in a large
vacuum chamber (2 m in radius X3 m in length) for space 2 m long is produced in it,
and the plasma density can be varied from 5X 10*/cm? to 2%X10%/cm? and the electron
temperature is about 0.2eV. Plane probes of various sizes are used in this experi-
ment. An AC voltage of 1kHz is imposed on a Langmuir probe through a tranformer
T.. An DC voltage is applied to the probe from a voltage control circuit. The AC
current is detected through a differential amplifier, and its fundamental and the second
harmonic components are separated with each other by the use of band pass filters.
The fundamental component is amplified and taken out as it is. The second harmonic
component is also amplified and put into a phase sensitive detector. The phase of the
signal is compared with a reference second harmonic which has been created by a
non-linear circuit, and the DC voltage control circuit is controlled by the output of this
phase sensitive detector. Figure 2 shows oscilloscope trace of the applied voltage to
the probe after the circuit is switched on. The upper trace is the voltage when the
probe is not in a plasma and it increases according to the charging time constant for
a capacitor C in the schematic diagram of circuit shown in Fig. 1. When the probe is
immersed in a plasma, the applied voltage first increases as in the upper trace, but it
is stopped at the inflection voltage of Langmuir characteristic. The phase locking of
the DC voltage at the inflection point on the Langmuir characteristic works very fine.
The electron density and temperature are directly tranformed into the density and
temperature by the use of operational circuits. Actually, the density and

Fig.2 Oscilloscope traces of the applied voltage to

the probe electrode after the switch of the
circuit is turned on a) Without plasma b) With
plasma

Sweep : 0.5 sec/div

Vertical : 2 V/div

This document is provided by JAXA.



114 Tl R O T WG R BT

temperature thus obtained contain constant factors and should be compared with
those obtained from the ordinary analysis of Langmuir probe characteristic. From
egs. (5) and (6 ), the electron density and temperature can be given as

n= 2[DC 7? (7)
Gi+eS BT
YV zm
o Inc*
KTe=Gy» cv s " (8)
lac

Experimentally, n*= G, « n and KT./G. are obtainable instead of » and K7, them-
selves and these values should be compared with those obtained by the ordinary
analysis of Langmuir characteritic. An experimental verification of the constancy of

n*(em?) Y
10° e
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Fig.3 Dependence of
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obtained in this direct display system on the
plasma density n, obtained by the ordinary
analysis of Langmuir characteristic.

Od;— X e X e e
x

(o] o

03F —L.
o ‘o ° ©
Ga a A a
0.2t
& " ry

o1 X 1 2cmx2cm Plane Probe

O : 10cm?® Plane Probe

A : 30cm® Plane Probe

O 1 v i 1
10° 10* 100 10* 107

n (/em*)

Fig.4 Dependence of G on the plasma density n.
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G, and G, is shown in Figs. 3 and 4. Figure 3 shown #* versus the density #o obtained
by the ordinary analysis of Langmuir characteristic and #* is a linear function of #
for each probe. Figure 4 also shows that ( is a constant for each probe in the density
range of 5X10°—2x10°/cm®. The temperature was also varied and it has been
confirmed that the constancy of factors G, and G is satisfied.

If the voltage-current characteristic of Langmuir probe is similar with respect to
plasma parameters, the constancy of Gi and G is obvious. Usually from our experi-
ence, it cannot be said that the shape of Langmuir characteristic is exactly similar,
depending on the scale of Debye length with respect to the probe size. But the
experimental results shown above indicate that even if a probe characteristic displaces
from the similar shape, the location of the inflection point and the gradient d/dV there
does not change so much, resulting in the constancy of G and (s in the density range
of 5%10°—10°/cm® which is typical in the ionosphere. The performance of the
automatic fixing of the probe voltage at the inflection point has been also verified in
much higher density plasmas, such as in a TPD device and a DP device. The
confirmation of the constancy of Gi, G: in such a high density plasmas is now under
investigation. The time response of this circuit was studied by varying plasma
density stepwise and we saw the time variation of the output from this circuit. When
we use a 1 kHz, the time response thus obtained is about 20 msec. In order to improve
the time response of the device, a higher frequency was also employed and so far an
experiment with 80 kHz has been successful. The time response has been improved
to about 500 gsec in this device.

4-3-2 TEEEBA A > RUPHATEEORFFAEEBNFHF (Development of rocket
instrument to measure the temperatures of ion and neutral gas in theio-
nosphere) (AB%¥047 F£~50 )

FHEAER L TWAET, 14, Y ADRE, BEOWEZ, EREE D dynamics
2T 2 FORERTH S, 77 AXEEEFREIIODV T, P EIEILS R,
% DF— I HIBINT VDB, A4 Y RUTHES AREICOWTIIEHTS 2 HESR
OEFIENLTE D, F—F bPanvn, AFETEoy v M ERED 2 ETETRAT
2 - L AFELT, B RROBEYO FHRBNCKT 7 4 7 27 ¥ — % & < J7ik (shadow
method) 12 & 2 BIER KL, HEF RAC OV TIEBMAZ %, 1420 TE
MBSy 727 7u—7%27 4725 —LTHL, HHEERRETZOWET A M &
T 7., FMERIL, K-10-9, 10, 11 S TITbh, Zho DREDOEHE 7 7 4 )V
pEo . HECBLTIE, TS ARCA 4 VREE, BFRELEF-BLTVD
#3, Eslayer %% £ Tix CIRA1972 DET V& D, BELNH 200K LR L TWwS Z e
Hulanr:,

Principle of Measurement

The velocity of spacecraft in the ionosphere is usually supersonic or at least
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comparable to the thermal velocity of ions and neutral particles there. As seen from
a spacecraft, the surrounding medium is moving with the velocity of the spacecraft.
When an obstacle is placed in a streaming medium, a shadow is formed behind it, and
its structure is dependent on the ratio of the thermal velocity of the streaming particle
to the stream velocity (Mach number), so long as the mean free path of the streaming
particles is larger than the size of the obstacle.

If the Maxwell distribution (drifted Maxwellian) is assumed for the particles, the
reduction of the density ¢» and the flux 8F;, behind the obstacle (F igure 1) are given
by

on(x,y, 2)

_ ol M V> ? e {_,Mﬁ
‘52<27zk7> fsodx‘)d“fo VEexp g,

. [ VE(x = x0)*+ [V (y — o) — Vioz sis ¢J? (Vo cos w)Z]}dv Q
z* °

) 7ﬂ2&<f‘%ﬁ‘>3“2 . ¥ s {_ M
d\FZ(Xy Y, Z)_ 2:2 27[kT «[;0 de dyo./(; V eXp ZkT

. [ V2 (x = x0) 2+ [V (y —y0) — Voz sin ¢ )

> +(V —V,cos w)z]}dl/ (2)

respectively, where

So integration over the area of the obstacle ;

n density of the particles ;

M mean mass of the particles :

T temperature of the particles :

(x0, ¥o) coordinates on the obstacle plane ;

V' stream velocity ;

¥ angle between the normal to the obstacle and the stream direction.
Ton and neutral temperatures can be deduced from (1) and (2) when % and oz or F,
and JF; are measured. This principle has already been verified in laboratory plasma,
and the ion temperature of streaming plasma from a plasma gun could be measured.
Instrument

lon temperature measurement. The ion density reduction in the shadow is

measured by two Langmuir probes. The ambient ion density is measured by the upper
(upstream) Langmuir probe, and the ion temperature is determined from the ratio of
the disturbed density measured at the lower (downstream) electrode to the ambient
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Fig.1 Schematic drawing of the shadow method for
the ion and neutral particle temperature mea-

surements and coordinate systems used.
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Fig.2 Block diagram of the new direct display system
of electron density and temperature (mode 1)
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density. The two Langmuir probes are both ring-shaped gold-plated copper, 1 mm in
thickness, 110 mm in outer diameter, and 45 mm in inner diameter. A new direct
display system of the electron density and temperature measurements (mode 1) was
employed in the ion temperature measurement together with the ordinary Langmuir
method of applying a sawtooth voltage on the probe (mode 2). A block diagram of
mode 1 is shown in Figure 2. An ac voltage (1 kHz) is superposed on the swept dc
voltage of the Langmuir probe system. A second harmonic component 1, of the ac
current is detected, and the swept dc voltage is automatically fixed at the inflection
point of the Langmuir current voltage characteristcs at which the phase of the %,
reverses. The electron density and temperature can be obtained from dc current and
ac current at the inflection point of the Langmuir characterisics.

The relation between the Mach number of the rocket and the ratio of the ion

10
0.9t
0.8
0.7+

0.6F

Ratio

0.2

Mach Number

Fig.3 Relation between the Mach number of the
rocket and the ratio of the ion density measured
at the upstream electrode to that measured at
the downstream electrode calculated by using
(1) for various attack angles. Relation
betweem the Mach numer of the rocket and the
ratio of the neutral flux measured with the
shutter opened.
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density measured by the upstream electrode to that measured by the downstream
electrode calculated by using (1) is shown in Figure 3.

Neutral particle temperature measurement. The neutral density is measured by an
ionization gauge located below the lower Langmuir probe, and a mechanical shutter
(diameter, 45 mm) is buried in the center of the upper Langmuir probe. The shutter
is driven by a solenoid. The neutral particle temperature is determined from the ratio
of the density of neutral particles measured with the shutter closed to that measured
with the shutter opened. The fiux of the neutral particles into the ionization gauge
chamber is directly proportional to the density measured by the ionization gauge.
Consequently, the density ratio »(shutter closed)/# (shutter opened) measured by the
ionization gauge is equal to the flux ratio F:(shutter closed)/F;(shutter opened),
which is a function of the neutral temperature through (2). In the case of our
instrument the number of neutral particles that enter the chamber after reflection by
the upper and lower walls of the Langmuir probes is smaller by 2 orders of magnitude
than the number that enter the chamber directly. The relation between the flux ratio
and the Mach number of the rocket is calculated, shown in Figure 3. The ionization
gauge is composed of cathode (electron emitter), grid (electron accelerator), plate
(ion collector), and four meshed electrodes at the entrance of the chamber on which
a retarding voltage is applied in order to avoid the disturbance of the ambient plasma
to the neutral density measurement. Moreover, alternating current of 30 Hz is used

SENSOR —— ———Langmuir probe
S fd e — Shutter

e — [ angmuir probe

{‘.
N

P Z
& T n
i ) i =Y [ .
| Z g 1-H wremw——[ . G. Chamber
| AN
‘ 2 K
‘ z 720V
Z e Z I
L z z é/ Z Cutter

180 1

Fig.4 Schematic illustration and photograph of the
isntrument on board the K-10-10 rocket .
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for the cathode heater current in order to modulate the emission current, and only the
30 Hz component of the ion current is detected. In this way the measurement is
completely free from effects of the ambient plasma because its time variation is
usually much slower than 30 Hz. The ion current at the plate is given by L,=G+n+I
e, Wwhere # is the neutral density, 7 is the emission current from the cathode, and G is
the geometrical constant of the ionization gage. The geometrical factor G in our
experiment is 107" in mks units. The neutral density is directly proportional to the
ion current when the emission current is kept constant, and this has been confirmed by
the laboratory test in the neutral density range from 1.5%10"/cc to 1.5x10'°/cc. In
our rocket payload the emission current was controlled automatically to be kept
constant so as not to be affected by the change of the ambient neutral density.
Since the rocket is launched from the ground, the ionization chamber should be
sealed off on the ground in our experiment. The seal was opened mechanically at
altitude of 90 km. A diagram and photograph of the instrument on board the K-10-10
rocket are shown in Figure 4.
Experimental Results

— — = lon Temperature
———— Neutral Temperature

175 ~—-—— Klectron Temperature

150}

Altitude {km}
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no
133
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Temperature (°K )

Fig.5 The measured ion and neutral temperatures
are plotted together with the electron tempera-

ture measured from the same payload.
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A Japanese two-stage rocket K-10-10 was used in this experiment, and it was
launched from Uchinoura, Kagoshima, Japan, at 1815 Japanese standard time on
September 22, 1973. The rocket achieved an altitude of 240 km, and the nose cone of
the rocket was opened at an altitude of 70 km. The result is shown in Figure 5,
together with the electron temperature at that time measured from the same payload
(K. Hirao et al., personal communication, 1974). Ion and neutral temperatures agree
very well, and they also agree well with the electron temperature, which shows that the
exospheric temperature was about 500°K at that time. The solar flux was 89.6 solar
flux units on September 22, 1973.

4-3-3 O4 v MEEBT T XIIESNFF (Developement of a plasma Accelera-

tor for Rocket Experiment)

%%%¢Kn7yhK%ﬁéhtf%f?ﬂﬁ%#%fﬁf?%ﬂﬁb,7?f7@?
%?ﬁ?@ﬁ@,%%EV?X?t@mﬁﬁﬁmiéﬁﬁwﬁﬁ,ﬁ?@%ﬁ%@ﬁ%%
FNDT 7T 4 TEBROBD T T X IEBRORFEZIT o 72,
T?XVME%ﬁjy?Vﬁ,%%%%E%ﬁ,m%%X4v%,75%7%%@%&
CHIEERE 2 5 R & L, REBOVEEER Ui AGRER, HZERBRLITOA.

BIF O FE 2 m03

D) NI LA ARBR IV Ty Ny Y A ERT A F

i) EERECRT 2 RENREMIT HF
DS HD, HEIEELHEELL 2D THS.

DTS A EEE, K-9M-46 S5 (1974.9) KU K-9M-51 =8 (1975.9) ICHEE
x4, UTIORLBRICIZIZFIIO B2 E L 72,
DESCRIPTION OF APPARATUS

A controlled active experiment with a plasma gun has been made by the mother-
daughter rocket system as shownn in Fig. 1. The plasma gun used in this experiment
has a capacitor bank which comprises 23 pieces of 0.035 ¢F cylindrical capacitors,
being charged to 8 kV by a high voltage power supply (DC-DC converter : Primary 28
V, secondary: 9kV, 1mA). The gun is a coaxial carbon type with inner and outer
electrodes of 6 mm and 28 mm diameters, respectively. The discharge occurs across
the carbon surface inserted between inner and outer electrodes. Characteristics of the
plasma stream are : velocity 5% 10° cm/s, density at 1 m from the gun 10'°/cm?, time
duration 20 s, electron temperature 5-10 eV, angular spread 90° and total number of
ejected parrticles 10'® jon and electron pairs.

EXPERIMENTAL RESULTS

The rocket was launched at 20 : 40 on September 15, 1974 from Kagoshima Space
Center. 91s after lift-off, the daughter rocket was separated from the mother rocket
at an altitude of 150 km. The separation speed was monitored by a planar multi-hole
slit attached to the daughter rocket which passed between a LED-Phototransistor
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Fig.1 Schematic Illustration of the Plasma gun
experiment by Rocket in the Ionosphere.
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Fig.3 Delay time of the Plasma signal with respect to
the Plasma gun light signal as a Function of the
Distance between the mother and daughter
rockets.
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system at the separation. The separation speed of the daughter rocket was about 80
cm/s. The first discharge of the plasma gun was initiated at 104s and afterwards,
regularly every 12.4s.

The effect due to the plasma gun discharge observed in electron temperature probe
(TEL) is shown in Fig. 2. The standard TEL signal is a two-step curve in one 0.3s
period. Superposed on it, rapid time varying signals are observed, coinciding with the
light signals.

The delay time 7 is plotted versus the number of shots (mutual distance between
mother and daughter rocket) in Fig. 3 and a linear relationship is found. The velocity
obtained from this figure is about 10° cm/s, much slower than that of the plasma
stream measured in a vacuum chamber at a prelaunch test. It is concluded from these
data that the signal on the TEL probe is generated when the plasma stream has
actually arrived at the TEL probe. The amplitude of the signal decreases as the
plasma gun departs from the mother rocket. The reason why the second and the third
shots are not shown is explained in Fig. 4. During these second and third shots, a low
energy electron beam (several eV) was emitted from the rocket body in another
experiment on-board the same rocket. When the electron beam is emitted the elec-
tron temperature probe (TEL) signal itself is strongly disturbed and the amplitude of
the plasma gun signal on it increases considerably (Fig. 4). In Fig. 5, the amplitude
of signal (V) is plotted as a function of the shot number (N), and it is found that V
is proportional to the inverse square of N. This indicates that the signal amplitude
is proportional to the inverse square of the distance between the daughter and mother
rockets.

4-3-4 EXO0S-B (U 21TA) BABFHNRIH (Developemnst of an Electrom Gun on

Board EXOS-B (JIKIKEN) (B3F1 47~53 )

HKEYVOMEEFESE (U510 A (EXOS-B) | Ki/NMIoEBEFHLEEH SN, =24
L F — 100~200 eV £ — 2B 0.25~1.0mA T, HKE77 XA~ L EFE—LADOMALE
% B~EE ORI, 77 X ighveE A THNCFHZEMCER L TARER L OXEEH
N, ZOYBREHERYT 2EAENE L D TH S, BTHOMREOERIINR

i) EfFG/NENOHY —FE—5ORF

i) BFHEENSTEEROBAEO —ACEHNs N, i) OAY—-FE—5 D
FENE L T E AN TH D, BN UBRRED IW BEICHIR S W0 TERER
LIETOEERA S A > b2 KBECHEARBL 2. ZOBREN-MEOEFRERASFHE SN
[UxFA (EXOS-B) i@ s T B ZEL 72, [U X3 A (EXOS-B) ] ix 1978
E 8 HIZITEITF s % ORMERSE 2 EAE LT, BETHEFFRBEROERIIITEA
B EFIUIREETEEBIL TB Y, TIORLEREERESEON TS,

Instrumentation
An electron gun on board “JIKIKEN” is a Pierce type axi-symmetric parallel
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beam electron gun with Wehnert electrode. The beam diameter at the exit is 5mm
and the beam divergence is about 3 rad. Both the beam current and beam voltage can
be changed in 4 steps as in the following.

I=0.25mA, 0.5mA, 0.75 mA, 1.0 mA.
and
V'=—=100V,—125V,—150V,—200V.

They can be controlled either by discrete command (DC) or by organized command
(OG). In the DC command we can select beam current and beam voltage arbitrarily
so that 16 combinations are possible, while in the OG command they are changed
stepwise automatically with the intervals of 8 or 32 sec.

Because the main objective of “JIKIKEN” Satellite is the studies on the wave-par-
ticle interaction in the magnetosphere, the instruments for the scientific observation
consist of two groups ; 7.e., wave measuring instruments and particle measuring ones.
They make simultaneous observations as to the spatial and temporal variation of both
electric and magnetic field and particle energy distribution. The wave measuring
instruments installed on “JIKIKEN” are Stimulated Plasma Waves (SPW), Natural
Plasma Waves (NPW), Doppler Detector of Artificial VLF Waves (DPL), Impedance
and Electric Field (IEF), and Magnetic Field (MGF). Hereafter, we use abbreviated
nomenclatures as NPW, IEF, MGF ¢/c. NPW measures naturally and artificially
generated plasma waves, taking four modes as NPW (V), NPW(VL), NPW(S) and
NPW(A). NPW(V) and NPW (VL) detect a wide band of VLF range (750Hz~10
kHz), while NPW (S) and NPW (A) make swept frequency analyses in the LF and HF
ranges (10 kHz~200 kHz; 180 kHz~3.0 MHz), with a narrower band width (1kHz)
for the case of NPW(A). IEF measures the plasma electron density, electron temper-
ature, plasma impedance and electric field with the four modes of the operations as IEF
(DD, IEF(C), IEF(S) and IEF(D). IEF(I) is the mode for the measurement of the
plasma impedance from LF to HF range by using a swept frequency impedance probe
technique, and the plasma density is measured very accurately from the detected upper
hybried resonance frequency. IEF(C) mode is for the measurement of the electric
field. IEF(S) and IEF (D) are the operation of the single and double Langmuir probes,
respectively ; both uses a swept or fixed bias voltage to obtain the electron density and
temperature. MGF measures the magnetic field by using a flux-gate magnetometer.
The particle energy distribution is measured by ESP (Energy Spectrum of Particles).
ESP measures the energy distribution of electrons, ranging from 5eV to 11keV ; and
also the energy distribution of ions ranging from 20eV to 30 keV. Among these
insutrumentations, NPW (A) and IEF(I) are mainly used in the present experiment.
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Experimental Results
Typical frequency spectra of the waves received in NPW receiver, when the CBE
system 1is operated in the maximum beam voltage and beam current mode (V = —
200V, I =1.0mA), is shown in Fig. 1. A significant interaction between the surround-
ing plasma is clearly seen in this figure. In Fig. 2, a dynamic spectrum of excited
waves is shown ; the received wave amplitude is represented being modulated in Z-axis
of a CRT display tube. A strong wave excitation is taking place coinciding with the
operation of CBE. It is found that five types of the waves appear making interaction
with CBE electrons through the magnetospheric plasma.
4-3-5 EXOS-B (L& JA) BEAKMF I A A¥ -7+ 51 FOMER URE
(Developement and Test of Particle Energy Analyser onboard EXOS-B)
(RBF0 47 F£~53 &)
WSEHRARORI#EHE U 51 A (EXOS-B) 13 1978 FIRITETF e nomn s igs
ENTKFIANF —FHBOSIbFEE L TA4>DL 2 VX — IR OB KL VR ERH
oz, T3V F—-SHBEIBERANO L DT, LG b D DT ORIz EIE %

Fig.1 Schematic diagram of charged particle detec-
tors.
A : Collimators B : Hemispherical
electrostatic analyzer (for electrons) C:
Cylindrical electrostatic analyzer (for ions)
D: Channeltron and its support E:
Sweep voltage power supply, high voltage
power supplies for channeltrons, charge
amplifiers, and pulse discriminating and shap-
ing circuits. F: Surface of the satellite.
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Instrumentation

Charged particle detectors (ESP) are composed of an electron sensor, an ion
sensor and electronic circuits. The electron and ion sensors measure electrons and
ions in the energy ranges from a few eV to 10 keV and from 10 eV to 30 keV,
respectively.

ESP installed in the satellite is shown in Figz 1. It is composed of charged
particle energy analyzers, a sweep voltage power supply for analyzers, channeltrons,
high voltage power supplies for channeltrons and pre-amplifiers. The electron sensor
is composed of a front collimator, a hemispherical electrostatic energy analyzer whose
inner and outer radii are 28 mm and 32 mm, respectively, and a channeltron as a
detector. The ion sensor is composed of a collimator, a 60°-cylindrical electrostatic
analyzer whose inner and outer radii are 58.5 mm and 61.5 mm, respectively, and a
channeltron. Optical axes of both electron and ion collimators are parallel and
installed in the satellite so that they are perpendicular to the satellite main axis of
inertia. Both collimators extrude from the satellite surface by about 15 mm. Char-
ged particles entermg the analyzers through the collimators are deflected by the
electric field (Eoc? for the electron analyzer, Eocln—l* for the ion analyzer), and
particles having the appropriate energies can pass through the analyzers and impinge
on to the channeltrons.

A high voltage of about 3.0 keV~4.0 kV is applied to the output terminal of the
electron detecting channeltron, and accelerating voltage of about 300 V is applied to
the input terminal in order to maintain the counting efficiency nearly constant over the
measured every range (Paschmann et al. 1970). For the ion detecting channeltron, a
high voltage of —2.8 kV~—4.0kV is applied to the input terminal making the detec-
tion efficiency nearly constant, and the output terminal is set nearly at the ground
potential.

Data

The most convenient presentation from of data is a so-called E-t (energy-time)
diagram. The example of the 20-minute data at Rev. 143 (November 6, 1978) is
shown in Fig. 2 in which the sun angle (the angle between the orientation of the sensor
collimator and the Sun) and the particle pitch angle are also presented. Abscissa
scale is time (UT) and the orbital positions of the satellite are also presented every 2
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EXOS-B ESP DATA  REV.0143  78/11/ 6 conts 1625 msec
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4-3-6 O4 v MREBAEFINERRVEHAZENEFE (Development of Electron Beam
Accelerator and Associated Diagnostic Instruments) (B8%0 50 £~53 )
giloyr vy N ERLEFEHEMTOE FE— LARHEREZITS 20, BEAETILESR
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NEFE—L52WE L BRSNS 0y v FEBO turbulent IRET, BEESET 7
AeHEREN ZENRuE I T3,
Experiment Configuration
A list of rocket experiment that have been done is shown in Table 1. Experi-
ments started with a low power electron beam experiment in K-10-11 and 12. High
power experiment was done in K-9M-57 and 58 using 300 W and 1.5 kW electron beam,
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Table 1
List of electron beam experiments on Japanese rockets
MAXIMUM BEAM
ROCKET LA[{?&HJNG ENERGY & DIAGNOSTICS
’ CURRENT
K-10-11 1975.9.24 300 V LANGMUIRE PROBE
14200 LST | 3.7 mA C.W. (BIAS—0.5V 4+ 3V)
K-10-12 1976.1.18 200 V FILOATING PROBE
14 220 LLST 2 mA LANGMUIRE PROBE
(BIAS—12V~+5V)
C.W.PULSE RECEIVERS VLF (0~30kHz)
(100 ms) HE (1 MHz~10MHz )
K -9M - 57 1976. 8. 31 3kV FLOATING PROBE
04 055 LST | 100 mA (RANGE+10V  —100V)
LANGMUIRE PROBE
(BIAS+10V  —50V)
PULSE (180 ms) | PHOTOMETERS 3914A 5577A
RECEIVERS VLF (0~10MHz)
K-9M - 58 1977.1.16 5kV FLLOATING PROBE
21 745 LST | 350 mA (RANGE+10V  —200V)
LANGMUIRE PROBE
(BIAS+10V  —50V)
PULSE (130ms) PHOTOMETERS 3914A 5577A 8446A
K-9M -6l 1978.1.27 2 kV FLOATING PROBES
20200 LST | 35mA (RANGE+10V~ —400V)
LANGMUIRE PROBE
(BIAS +10V ~—100V)
C.W. ELECTRON ENERGY ANALYSER
K -9M - 66 1979.1.21 1kV ELECTRON ENERGY ANALYSER
1806 LLST | 1 mA Max C.W. RETURN CURRENT COLLECTORS
K -9M - 69 1980.1.16 1kV WAVE DETECTOR
(INT. 12200 LST | 30mA Max C.w. FLOATING PROBE
COLABORA- CHARGE PROBE
TION WITU
usu) LANGMUIRE PROBE
(TETHERED MOTHER AND
DAUGHTER)
S-520-2 | 1981.1.29 1 kV WAVE DETECTOR
(INT. 30mA C.W. FLOATING PROBE
COLABORA- CHARGE PROBE

TION WITH
usu)

LANGMUIRE PROBE
(TETHERED MOTHER AND

DAUGHTER)
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respectively. Since phenomenon associated with high power electron beam is too
violent to analyse the charging phenomena, the beam power has been reduced to an
intermediate level of tens of Watts (1~2kV, 10~30 mV).

K-9M-69 and S-520-2 were intended to perform a mother-daughter rocket experi-
ment with a tethered wire, though they were partially successful.

Diagnostics were mostly floating probe and Langmuir probe. The floating poten-
tial of the rocket with respect to the space potential is measured by either the output
of the floating probe or the shift of the Langmuir V-I characteristic of Langmuir probe.
The V-I characteristic usually shifts toward negative when the vehicle potential rises
positive. The floating potentials determined by both methods agree with each other
fairly well. The spatial distribution of the floating potential was measured in K-9M
-61 and S-520-2 deploying a multiprobe.

Experimental Results

Typical experimental results of the floating probe measurement are shown in Figs.
1 and 2. Fig. 1 shows examples of low power beam experiment of K-10-11, 12 and K
-9M-61, while Fig.2 shows a high power experiment results. It is clear that the
floating potential shows a violent variation for a high power beam. This indicates a
strong discharge is excited when a high power electron beam is emitted. For low
power beam experiments, data are very stable and reproducible. Generally, the

<
€
§ 30 o
— o
3 o
@ 178--170km 20
0 170~ 160 E °
A 160--145 b o
0145126 @ 10 o °
+ 126104 °
o
5P
4 f v O\ el 50 100 v
‘é Potential Difference Measured by Floating Probe (V)
= 3 ® o o+ ‘\\ Sl -
@ mA
é 2 0a0 « 3 °
@ —
1{ O+ 5 2
0 5 10 1 °
Potential Difference measured
by Langmuir Probe (V)
b 0 5 10 \Y%

Fig.1 Potential shift of rocket measured by Langmuir
probe for low power experiments.
(@) K-10-12
(b) K-9M-61
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Fig.2 Potential shift of rocket for high power experi-
ment of K-9M-58.
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Fig.3 Electron temperature increqse of ambient
plasma by the electron beam emission (K-10-
11)

floating potential increases as the beam current is increased and the density of space

plasma decreases (i. e. altitude decreases).
The electron temperature is measured by Langmuir probe and a plasma heating
by the electron beam is observed in K-10-12 and K-9M-58 (Fig. 3). It should be noted
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that the Langmuir characteristic has a high energy tail forming a two component
plasma.

4-3-7 AR—RT ¢ MEBEABFE—LINERENAFE (Test of an Electron

Beam Accelerator System for a Space Shuttle Experiment) (BBf152F~ 56
F)

HREGD A ~— A ¥ v b UEE KBRS EE SEPAC (Space Experinent with Particle
Accelerators) i 1983 4 10 H 28 HiZiT EWF o ic A=A v ¥ PV 9 SiICEEH S Lz
B, COHRTTEELBBO—DOTHLETE— LLHE Y X 7 L 0/NBERABR TONT,
7o BARHME L BER T 40, 46 SEED A X— A F v N — %, HEOBRAEABREERV
NASDA O KBIA =R F = 8= TITbitie, 77 AVHEEREDOZ 2 AWV T
TN RBEIEITELTIR 7Y —RAA v FEDOEGR VL O AZRER, a8 L
HEERHEDLE LD TH S, B SEPACEBEOMBEIILITOED TH 5.

Scientific Objectives
Scientific objectives of SEPAC are;
i) to study the vehicle charging in space and charging neutralization by using
plasma and neutral gas plume,
ii) to study the beam-plasma interaction in space, in particular,
wave excitation in VLF to HF frequency range in the interaction of the
electron beam with the non-linear beam-plasma interaction,

iii) to study the beam atmospheric interaction exciting artificial aurora and airglow

and

iv) to trace the magnetic field configuartion of the magnetosphere and detect the

field aligned electric field.
SEPAC Hardwares
SEPAC consists of the following subsystems :
i) Electron Beam Accelerator (EBA)
ii ) Magnetoplasma Arcjet (MPD)
iii) Neutral Gas Plume Generator (NGP)
iv) Power Supply for EBA and MPD (PWR)
v ) Diagnostic Package (DG)
vi) Monitor TV (MTV)
vii) Control and Data Management System (CD)
The block diagram is shown in Fig. 1.
Electron Beam Accelerator (EBA)
i) Electron Beam Accelerator (EBA)
It consists of Electron Gun (EBA), Gun Power Supply (GPS) and High
Voltage Converter (HVC). EBA and GPS is intergrated in one unit.
Beam energy : 0~7.5 keV Variable
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Fig1(a) System Block Diagram.

SEPAC

Spuaca  Faperimenid with Particle Accslernions

Fig. 1(b) Schematic Layout of SEPAC with Flight
Model Hardwares.
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Beam current: 0~1.6 A
Maximum Output power : 12.5 kW
Average Output power: ~1kW
Perveance: 2.5x107¢% (A/V?*?)
Pulse width: 1 msec~1sec (High Power)
1 msec~CW (Low Power)
Deflection Capability : +30°
Beam Diameter : 20 mm at the exit
Cathode : impregnated cathode
ii) Magnetoplasma Arcjet (MPD)
It consists of MPD-A]J and Capacitor Bank (CAP) intergrated in one unit
together with NGP below.
Energy stored: 2k]J
Discharge Pulse Width : Imsec
No. of ion-electron
pairs produced per shot : 10" pairs
Plasma density
1 m from MPD: 10'*/cm?®
15m from MPD: 10°/cm®
Plasma flow velocity : 2x10*/sec
Beam spread: +20°
Electron Temperature : 3~5eV
Ion Temparature: ~Te
Gas: Argon
iii) Neutral Gas Plume Generator (NGP)
It is integrated in MPD subsystem.
Gas: Nitrogen
Pulse width : 0.1sec
Ejected Velocity :  400m/sec
Ejected Number of
Molecules/shot : 10** molecules/shot
iv) Power Supply for EBA and MPD (PWR)
It consists of Battery Package (BAT) for EBA and Charger (CHG) for MPD
and BAT.
Charger for MPD: 500V 1kW
Battery Package for EBA : 450V 4AH
Endurable to 15C 1sec discharge
v ) Diagnostic Package (DG)
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It consists of several intruments as described below :
vi) Monitor TV

This is a high sensitivity TV camera to monitor the near field and far field
views of the electron beam profile in space.

Field of view :28.7°x21.7°
Sensitivity :0.01~10° 1ux
Spectral response  :3900~7000 A
Frame rate :30Hz

vii) Control and Data Management (CD)

It consists of Dedicated Experiment processor (DEP), Interface Unit (IU),
and Control Panel (CP). Its functions are;

Control of SEPAC Hardwares by sending a sequence of commands,
Control of SEPAC instrument and scientific data,

PCM 512 kbps

Analog 4.2 MHz

TV Video signal

Communication with the Spacelab Experiment Computer (EC),
Display of SEPAC status and data on DDU (Data Display Unit) of EC,
Control of IU and DEP through DDU key board of EC, and
Management of data coming from Space Shuttle through EC.

All SEPAC instruments other than CP are located on the pallet. SEPAC is
controlled by the payload crew through the DDU of EC and CP of SEPAC. The
layout on the SL-1 is shown in Fig. 2. CD subsystem is developed in NASA
MSFC and other subsystems are developed in Japan. Total weight is about
400kg, and the average electric power consumption is about 1kW.

SEPAC OGP GRILLE SPECTROMETER
SEPAC EBA. | gmes < IECM
ACTVECAVTY . Al LT
RADIDMETER LB 10N STATE DETECTOR

MICROWAVE gAYy I
SCATTEROMETER , <8 o SEPAC W1V

- IMAGING

ELTROMETER
v EPAT MPD
SCINTILLATION t
COUNTER

FLUX SENSOR

SEPAL PWR -
SEPAC HVE N P~
EXPOSURE BOX ASSEMBLY CISOTOPIE STACK

HORIZON
SENSOR

Fig.2 SEPAC on SL-1 pallet.
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4-3-8 O4 vy FEREBRT7IVv—ILBFIRXLF—FHEDERE (Development of
Hadamard Electron Energy Spectrometer) (BBF052 f£~54 £F)

7 F = VR e WKL TR I, RO A NLF —gR L EE LD, —
HOMEBOMNEL —HICEELZEE T, LYLLOMEROESH L WVITHSEORI bIF
5922 k<, AR PUVEBAICHETES LLIOFE»RH 5, K-Tar v b
IO & 5 BRI L LT B AT MR T E B EEREO S BIcBHiT 54
FEOHALBECHD THEL T0a, AFETIE, a7y b»sDEFE — ARHFCREER
LT BBETOZANT —SMAEBEAT 200, PNIEBETEHEREMED =2 V¥ —0ié
EBFL, F 2o N—T A MTEZOMREEFEIEL /2. BE T AL X — T8RO SHREIT 1/
10 T Geometrical Factor 13 5 X10 *cm*ster THH, T AL F—1L > FiF, 130eV~14
keV % 6 ERBEICEIL T b, AiZ K-IM-66 SHICEE s, FRHEEINE TR
AEES S RORBREF ANV —SMmEFEIT 5 Z LTI L 7,

3.2 AER

P T—ILBFIRINF DR

BEHlalnT L7 VEFITANF -0 FATFIRARBE L V¥ —59
Wies, 79— A7 EZOWMEE, MHB» S D,

(1)BEEANF —othee

AT O 2 AV F — e I3 E T E— LD aRIC b ETAR LD &, 2L F
—DEVICEDETOMBMPRELL I EE2MBLTHS, ZOPTHRMOBHEL A L F
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M1 (D) IAERTHEA LTI Y=L RAZERT., ZOT7YI—LTAYIFES
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DL MRE LT 72,
Hor b 70—TI2L 2 IBBRERDEE S MAE

M2 cRENEMie T, IHIIEEBCLZEEBI VRV ELT, EFE—L0DIT %
WE—=400 e VTTREBEOAL Y N YO —TOHNEZEDIBDTHL, ZOM»S
AEY 724X OMNEIET, VF¥—2HA¢ B+H180 E TRAERLTWVS,

4-3-9 FY—0O4 vy P EEL AT LADEE (Development of Tethered Payload Sys-

tem) (BBF0 54 F~56 5F)

ARz ayry b EEER VA Y EOU L EEEFOEL, Moy y MREICEREEEZE
MUT7 4 Y iCERERL, FHEMCRBRELEILE5EBIL, ZONEEZHENLD
LFR2LDTHSE, ZHICE>T, TAHIRNVERKRA v AT —HO & 6%, EBEE
ISR S 1L 2 BHIRRES, ¥ —ATRIREMIZET 2. AL, TFRICH VXB HE,
KEFHEEMOLBHEHENDOICHABEZ SN TS, TF—u 7 v b EERY AT A,
A v UL, BEMHON TSI AvA v E—F Y AR T S DOEFHES, B
TRICEREXHMNT 2 BEEERT R BB REE» SR> Tw b, HioV A v —&
HHFEISILE L OB E T, BV A YRR E 2 BEL THEBREBYEL, 7
LAY DA L—RIHBT 5 20 OBEMEE % o oA L 2. AR, KE=2Y
PNSLRE, RS v 74— R RFLEDO]EMHFEEL L TITOIL TS DT, S-520-2, K-9M
-69 ERETOEEEDE, 1983 Fi2IE, KEATV A b X TNASADu v b 2HLTHE
B Thil, 74 YOMEER, Y 100m UTTH-78, H3REOERTIE, TE
Y 400 m OEICKIIL 72, oy y MEAOESEEEMER I NAEERDO b7 TN
LDk, THEOR, FFHORERBsNTES T, BEOEERNTEINL TV,

The tether mechanism consists of the following components :
i) Tether wire
i i) Spool
iii) Casing with exit hole
iv) Length monitor
v ) Brake mechanism
The development of the tether mechanism was performed based on the following
philosophy :
i) Wire stored in the mechanism shall be as long as possible.
ii) The deployment shall be smooth be smooth and stable.
iii) Wire shall not be damaged during the deployment.
During the development, we encountered various difficulties but we believe that
we have solved them well and the system is now established.
The drawing of Tether Mechanism employed in K-9M-69 is shown in Fig. 1.
4-3-10 a4 MEEE CCD 7L EH A5 DRF (Development of CCD TV Camera
for Sounding Rockets) (BBF056~57 £F)
EABGRE FOMRE A S 2 L R, N BREOTLVEAN AT 28Hllo Yy

This document is provided by JAXA.



142 Tl R O 28 AT R BE H10F

Connector

Teflon plates

Wire guide

<
L.

Wire lock mechan

Fig. 1
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REEERE =Y —, RRHK A —u 7 OEGIENAEL 25, KIFRTIE, 32X32EHED
CCDETFRVINOXINVEHED 7 + F A A —=—F 7V ARTERHNT, NITVAXT%
BIFEL, ZDXFHEBEIT o/, XTI, BFER, EFAT S, A/DarN—%—,
TVU—LAEY, TUA=F AV F—7 24 Ao EN, 40 1ET I EEZE
KT AHIENTED, X2 FTH ATIE, S-520-2 SEICEE 1, SEsnfFor
v FOEBIEEHTF Oy FEICOBBN VA Y —DEFRHRKET S 2 LKL 7.
100100 EiFEA £ 71, K-OM-T3 SRICEE S, oy y Fho@bshie v v 7~
75 (5m) DEFHEFHZ A ENTENR, VA Y =727 FI3HERE, BMOTREVTN
ACIREIL 72 2 L 3B o LR SRS I 5 7,
TV Camera System

The camera system is made up of PDA optical sensor with F 1.5 TV lens, analog
signal processor board, digital processor with 500 kbit memory and PCM interface.
A flashlight is also installed in the system to observe the wire antenna even in the dark.
They are assembled in a package of 200 mme¢x 80 mmh. The weight of the package
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is 2.1 kg.
i) Optical Performance

A two-dimensional 100 X 100 matrix photodiode array (RETICON RA 100X 100) is
used as the image sensor, which can be operated with high sensitivity, high speed, and
low blooming with respect to comparable CCD devices. The sensitivity of the element
is shown in Fig. 1. The dynamic range of the sensitivity of the camera is measured
to be 38 dB at room temperature. The spectral response ranges from 400 nm to 1550
nm peaked at 850 nm. The camera lens is 8.5 mm focal length F 1.5 with fixed focus
at 2.4m. The field of view is 40%x40 (X-Y full angle) .
Alternative frame scan rates of 10.5 and 52.8 Hz are selected to get a wider dynamic
range (50 dB). The dot resolution is 4 bits (16 steps), with low video level exagger-
ated, as shown in Fig. 2.

ii) Electrical Performance

The electronics consist of video signal processor, calibration signal generator, A/
D converter, buffer static RAM (10 x4 Kbit), main dynamic RAM (8x64 Kbit), CPU,
PCM telemeter interface, flashlamp controller and power supply. The functional
block diagram is shown in Fig. 3. The PDA control and video signal processing are
performed by the analog processor board. Two clock signals of 105 kHz and 528 kHz
are alternatively supplied to the image sensor for dot scan. The calibrator generates
a saw tooth analog level to give a density test pattern, which is used to check the
digital board logics. The analog video signals are converted into digital signals and
memorized in the RAM, together with frame and line status. The video data and
associated real time monitors (camera operation monitor and flashlight monitor ) are

e
PHD | _[Analog Video [Static Micro PCH ) /\ |
sensor[ " Processor] /D ’m . CPUJ‘“ ~"interface
i L g
( Dynomic
| RAM
i Fov 40"
‘ o TV CAERA
: WIRE ANTEWNA 7] -
Flasher J 15 v =—Voitage T
gontrol T ~15 vV ‘:&@MJ N
De/DC
5V onverter

Fig.3 Block diagram of camera electronics. All
functions are controlled by micro CPU.

/THA

|

K-9M-73

Fig. 4 K-9M-73 payload configuration. TV camera
looks downward to observe the wire antenna
and TMA ejection.
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combined and transmitted to the ground via PCM/FM hybrid telemeter. The bit rate
assigned for the TV camera is 12.8 KBPS. The frame data acquisition is nominally
performed every 4.2 sec in accordance with the PCM bit rate. Using the main
memory (500 kbit), faster data acquisition is possible for continuous 10 video frames.
The fast data acquisition every 1.2 sec is performed when the wire antenna is being
extended in the K-9M-73 experiment. The flashlight (6 watt) can be synchronously

R R

Fi-1% B S

Fig.5 Typical pictures of the wire antenna motion.
Since the antenna moves with high speed, the
image of the wire streams and it can be seen
only when it reflect the sun light directly
towards the camera. From the trajectory of
the wire tip (holizontal white line), the antenna
motion can be clearly seen.

This document is provided by JAXA.



146 FHRFHER®RS BE F105

operated during the data acquisition. The average power consumption of the camera
system is 12 Watt.
iii) K-9M-73 Experiment Result

The K-9M-73 sounding rocket was launched at 18 : 20 on January 15, 1982 from
Kagoshima Space Center. The payload configuration is shown in Fig.4. TMA
chemical release, electric field measurement using four 5m-antennas and Jobian
electromagnetic wave measurement were successfully carried out. The TMA was
ejected from the rocket for 16 sec at the height from 75 km to110 km. It was observed
by the TV camera through a small window (20 mm W x40 mm#) in the rocket skin.
The nose cone was removed at 150 km and after that the extension of the wire
antennas was performed during 10.1 secs. The typical pictures of the wire motion are
shown in Fig.h.
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