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The dynamics of slender cylinders in axial flow subject to conventional boundary conditions
is recalled first. This is followed by brief reviews and discussion of new developments in (i)
the dynamics of unconventionally supported cylinders, e.g. cylinders free at the upstream
end and supported at the downstream one, (ii) the dynamics of cylinders subject to both
internal and external flow for applications in oil and gas drilling and production, as well
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1. DYNAMICS OF CYLINDERS IN AXIAL FLOW

Consider a cylinder, modelled as a beam, in axial flow. At low flow velocities, the cylinder is subject to
flow-induced damping. At higher flow velocities, however, it may become subject to static and/or dynamic
fluidelastic instabilities.

Let the cross-sectional area of the cylinder be A, its length L, diameter D, mass per unit length m,
and flexural rigidity EI; let also the mean axial flow velocity be U . For a horizontal system, neglecting
pressurization and gravity effects as well as dissipative forces, the simplest form of the equation of motion
is
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where M = ρA is the virtual or added mass per unit length for lateral motions in unconfined flow, ρ being
the fluid density. CN and CT are the coefficients of the viscous forces acting on the cylinder in the normal
and longitudinal direction, respectively, and CD is the lateral force coefficient for zero axial flow; Cb is
the base drag coefficient in case of a free end. The form above supposes that the downstream end can
slide axially or is entirely free; more generally, L − x above must be replaced by

[
(1− 1

2δ)L− x
]
and Cb

by (1 − δ)Cb, where δ = 0 if the downstream end is free to slide axially or totally free, and δ = 1 if the
supports are fixed and do not allow any extension.

Comparing equation (1) to equation (A.1) for a cylinder or pipe with internal flow, we note that, apart
from the terms associated with viscous forces, there is complete correspondence in the first, second and
third terms, as well as the last one. Here, however, M is not a physical mass, but an equivalent mass of
the external fluid flow according to the slender body approximation.

If the cylinder is subjected to an externally applied tension T and pressurization p, then a term equal
to −

{
δ
[
T + (1− 2ν)pA

]
(∂2y/∂x2)

}
would have to be added in the equation of motion , where ν is the

Poisson ratio. Also, if the cylinder is vertical instead of horizontal, gravity and hydrostatic effects have to
be taken into account.

Moreover, if the flow past the cylinder is laterally confined by proximity to the flow-containing channel
or by the presence of adjacent structures, the added mass M is no longer equal to ρA but to χρA, where
χ =

[
(D2

ch +D2)/(D2
ch −D2)

]
> 1, in which Dch is the diameter of the flow channel; for unconfined flow,

Dch → ∞ and χ = 1.
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Taking these effects into account [refer to Päıdoussis1),2)] and now considering a vertical geometry with
the cylinder hanging in downward flow, the nondimensional version of the equation of motion may be
written as

∂4η

∂ξ4
+
{
χu2 − δ [Γ + (1− 2ν)Π]−

[
1
2ε cTu

2(1 + h) + γ
] [
(1− 1

2δ)− ξ
]

− 1
2 (1− δ)cb u

2
} ∂2η

∂ξ2
+ 2χβ1/2u

∂2η

∂ξ∂τ
+
[
1
2ε cNu2(1 + h) + γ

] ∂η
∂ξ

+
[
1
2ε cN β1/2 u+ 1

2ε c β
1/2

] ∂η

∂τ
+ [1 + (χ− 1)β]

∂2η

∂τ2
= 0, (2)
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The approximation cN = cT = cf is sometimes used, as in the calculations for some of the figures to be
discussed next.

Additional parameters need to be introduced for cantilevered cylinders, presumed to be terminated by
an ogival end-piece, notably f which is a measure of how well streamlined the free end is. The simplest
free-end boundary conditions are that at ξ = 1 the bending moment is zero and the shear force is
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in which f → 1 for a well-streamlined end, and f → 0 for a blunt one; χe = (1/AL)
∫ L

L−l
A(x)dx, l being

the length of the end-piece.
In this paper, the dynamics is discussed with the aid of Argand diagrams of the dimensionless complex

eigenfrequencies of the system, ωj , as a function of the dimensionless axial flow velocity, u. A typical such
diagram for a pinned-pinned cylinder in axial flow is shown in Figure 1. The imaginary components of the
first- and second-mode eigenfrequencies, Im(ωj), j = 1 and 2, are plotted versus the real parts, Re(ωj),
as a function of u. Here,

ωj = [(ρA+m)/EI]
1/2

ΩjL
2, (6)

and Ωj the jth radian eigenfrequency; u is defined in (4).
Displacements of the cylinder in the jth mode are expressed as ηj(ξ, τ) = F (ξ) exp(iωjτ),

where ξ = x/L and ωj = Re(ωj) + iIm(ωj); τ is the dimensionless time. Thus, η(ξ, τ) ∝
exp[−Im(ωj)] exp[iRe(ωj)τ ]. If Im(ωj) > 0, motions are damped, whereas if Im(ωj) < 0 they are
amplified. In the latter case, if Re(ωj) �= 0, the amplified motions are oscillatory, and hence the instability
is termed flutter; if Re(ωj) = 0, we have nonoscillatory amplified motion, i.e. a static divergence — or
simply divergence, for short.

Thus, in Figure 1, oscillations in the first mode are damped for u < π approximately. For
u > 3.1406,Re(ω1) = 0 is reached, and the locus of the first mode bifurcates on the Im(ω)-axis; one
branch crosses the origin at slightly higher u, say u = ucd. Thereafter, Re(ω1) = 0, and Im(ω1) < 0 for
that branch of the solution, indicating that a static divergence has occurred at ucd.

At higher u, the first-mode locus which had split into two, as shown in the diagram on the left of
the figure, recombines on the Im(ω)-axis and then leaves it, such that Im(ω1) < 0 while Re(ω1) > 0,
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f0025 Argand diagram for ω, similar to that of Figure 2.4, but for β = 0.48, ε cf = 0.25, δ = χ = 1, c = α = h
= γ = � = � = 0 (Païdoussis 1973a).

according to both sets of calculations. However, the post-divergence characteristics are a little different,
both qualitatively and quantitatively (ucf is ∼10% lower for the system of Figure 2.4).

p0300 Next, the dynamical behaviour of a system in confined flow, as described by Equation (2.21), is
illustrated in Figure 2.6 – basically for the same parameters as in Figure 2.4, but with χ = 4 and
h = 1.5, reflecting the confinement. Qualitatively, the dynamics is broadly similar. Of particular interest
are (i) the dramatic reduction of ucd from 3.14 to 1.57 approximately, and (ii) the increase in the
flow-induced damping.† The onset of coupled-mode flutter is also lower, at ucf � 3.14 rather than
ucf � 6.31. Interestingly, the critical values for divergence scale with χ as u � π/

√
χ , and similarly

for coupled-mode flutter (cf. Section 3.41) – refer to Equation (2.36) and the discussion around it.
Moreover, in this case of higher confinement, there is an additional coupled-mode flutter, involving the
third- and fourth-mode loci (the fourth-mode locus has been suppressed in the figure, for clarity).

2.3.1(b)s0080 Basic dynamics for cantilevered cylinders
p0305 The dynamics of a cantilevered cylinder with a fairly well-streamlined free end (f = 0.8) is illustrated in

Figure 2.7. Free motions are damped at small u. At sufficiently high u, however, the cylinder firstloses

†fn0065 Here it is recalled that ζ = I m(ω)/Re(ω); although I m(ω) is lower in this case, Re(ω) decreases with u much faster.
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Figure 1: Argand diagram of complex frequencies, ω, of the lowest two modes of a pinned-pinned cylinder in
unconfined axial flow, as functions of u for β = 0.48, ε cf = 0.25 (cf = cT = cN ), δ = χ = 1, c = h = γ = Γ = 0;

Ref 23).

indicating amplified oscillation (flutter) at a value of u a little higher than u � 6.281.∗ The second-mode
locus is always stable in this case, indicating damped oscillation in that mode throughout.

The flutter in Figure 1, which arises from a statically unstable state, is nowadays commonly referred to
as a Päıdoussis coupled-mode flutter, as originally christened by Done & Simpson3),4), in contradistinction
to classical coupled-mode flutter.5),6)

The dynamics of a cantilevered system is illustrated in Figure 2. Here it is seen that the system loses
stability by static divergence in its first mode at a value of u a little higher than u = 2; it then regains
stability in that mode at u � 5. For u � 5.2, however, stability is lost in the second mode by single-mode
flutter via a Hopf bifurcation. Stability is regained in that mode at u � 8.6, but meanwhile flutter in the
third mode has occurred at u � 8.25.

Changing the system parameters, e.g. β or εcf , alters the dynamics, but the qualitative behaviour
generally remains the same. In the case of a cantilevered cylinder, two parameters have a profound effect
on the dynamics: f , the free-end streamlining parameter (f → 1 for a well-streamlined free end, and f → 0
for a blunt end), and cb, a form drag coefficient at the free end. For a sufficiently blunt end (f → 0, cb > 0)
a cantilevered cylinder remains stable, no matter how high u becomes.

It is of considerable interest that for systems subject to a sequence of instabilities as predicted by linear
analysis and as shown in Figures 1 and 2, the nonlinear dynamics is not radically different; i.e. the second
and higher instabilities predicted by linear theory actually materialize in the nonlinear realm, as they do
in the experiments, though the sequence of the bifurcations involved may not be quite the same. In this
regard, the routes to instability and the dynamics are quite different from that of the kindred system of a
pipe conveying fluid4),5).

The behaviour of tapered cylinders in axial flow may also be quite different from that just described,
because the boundary layer around the cylinder can become quite thick, thus creating an ‘insulating effect’
vis-à-vis the mean flow.

∗Although this flutter is generated by coalescence of branches of the same mode, we still call it a coupled-mode flutter —
as would be the normal notation if the coalescing branches belonged to two different modes.
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Taking these effects into account [refer to Päıdoussis1),2)] and now considering a vertical geometry with
the cylinder hanging in downward flow, the nondimensional version of the equation of motion may be
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The approximation cN = cT = cf is sometimes used, as in the calculations for some of the figures to be
discussed next.

Additional parameters need to be introduced for cantilevered cylinders, presumed to be terminated by
an ogival end-piece, notably f which is a measure of how well streamlined the free end is. The simplest
free-end boundary conditions are that at ξ = 1 the bending moment is zero and the shear force is
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in which f → 1 for a well-streamlined end, and f → 0 for a blunt one; χe = (1/AL)
∫ L

L−l
A(x)dx, l being

the length of the end-piece.
In this paper, the dynamics is discussed with the aid of Argand diagrams of the dimensionless complex

eigenfrequencies of the system, ωj , as a function of the dimensionless axial flow velocity, u. A typical such
diagram for a pinned-pinned cylinder in axial flow is shown in Figure 1. The imaginary components of the
first- and second-mode eigenfrequencies, Im(ωj), j = 1 and 2, are plotted versus the real parts, Re(ωj),
as a function of u. Here,
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and Ωj the jth radian eigenfrequency; u is defined in (4).
Displacements of the cylinder in the jth mode are expressed as ηj(ξ, τ) = F (ξ) exp(iωjτ),

where ξ = x/L and ωj = Re(ωj) + iIm(ωj); τ is the dimensionless time. Thus, η(ξ, τ) ∝
exp[−Im(ωj)] exp[iRe(ωj)τ ]. If Im(ωj) > 0, motions are damped, whereas if Im(ωj) < 0 they are
amplified. In the latter case, if Re(ωj) �= 0, the amplified motions are oscillatory, and hence the instability
is termed flutter; if Re(ωj) = 0, we have nonoscillatory amplified motion, i.e. a static divergence — or
simply divergence, for short.

Thus, in Figure 1, oscillations in the first mode are damped for u < π approximately. For
u > 3.1406,Re(ω1) = 0 is reached, and the locus of the first mode bifurcates on the Im(ω)-axis; one
branch crosses the origin at slightly higher u, say u = ucd. Thereafter, Re(ω1) = 0, and Im(ω1) < 0 for
that branch of the solution, indicating that a static divergence has occurred at ucd.

At higher u, the first-mode locus which had split into two, as shown in the diagram on the left of
the figure, recombines on the Im(ω)-axis and then leaves it, such that Im(ω1) < 0 while Re(ω1) > 0,
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f0025 Argand diagram for ω, similar to that of Figure 2.4, but for β = 0.48, ε cf = 0.25, δ = χ = 1, c = α = h
= γ = � = � = 0 (Païdoussis 1973a).

according to both sets of calculations. However, the post-divergence characteristics are a little different,
both qualitatively and quantitatively (ucf is ∼10% lower for the system of Figure 2.4).

p0300 Next, the dynamical behaviour of a system in confined flow, as described by Equation (2.21), is
illustrated in Figure 2.6 – basically for the same parameters as in Figure 2.4, but with χ = 4 and
h = 1.5, reflecting the confinement. Qualitatively, the dynamics is broadly similar. Of particular interest
are (i) the dramatic reduction of ucd from 3.14 to 1.57 approximately, and (ii) the increase in the
flow-induced damping.† The onset of coupled-mode flutter is also lower, at ucf � 3.14 rather than
ucf � 6.31. Interestingly, the critical values for divergence scale with χ as u � π/
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for coupled-mode flutter (cf. Section 3.41) – refer to Equation (2.36) and the discussion around it.
Moreover, in this case of higher confinement, there is an additional coupled-mode flutter, involving the
third- and fourth-mode loci (the fourth-mode locus has been suppressed in the figure, for clarity).

2.3.1(b)s0080 Basic dynamics for cantilevered cylinders
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Figure 2.7. Free motions are damped at small u. At sufficiently high u, however, the cylinder firstloses

†fn0065 Here it is recalled that ζ = I m(ω)/Re(ω); although I m(ω) is lower in this case, Re(ω) decreases with u much faster.

Paidoussis, 978-0-12-397333-7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is
confidential until formal publication.

Figure 1: Argand diagram of complex frequencies, ω, of the lowest two modes of a pinned-pinned cylinder in
unconfined axial flow, as functions of u for β = 0.48, ε cf = 0.25 (cf = cT = cN ), δ = χ = 1, c = h = γ = Γ = 0;

Ref 23).

indicating amplified oscillation (flutter) at a value of u a little higher than u � 6.281.∗ The second-mode
locus is always stable in this case, indicating damped oscillation in that mode throughout.

The flutter in Figure 1, which arises from a statically unstable state, is nowadays commonly referred to
as a Päıdoussis coupled-mode flutter, as originally christened by Done & Simpson3),4), in contradistinction
to classical coupled-mode flutter.5),6)

The dynamics of a cantilevered system is illustrated in Figure 2. Here it is seen that the system loses
stability by static divergence in its first mode at a value of u a little higher than u = 2; it then regains
stability in that mode at u � 5. For u � 5.2, however, stability is lost in the second mode by single-mode
flutter via a Hopf bifurcation. Stability is regained in that mode at u � 8.6, but meanwhile flutter in the
third mode has occurred at u � 8.25.

Changing the system parameters, e.g. β or εcf , alters the dynamics, but the qualitative behaviour
generally remains the same. In the case of a cantilevered cylinder, two parameters have a profound effect
on the dynamics: f , the free-end streamlining parameter (f → 1 for a well-streamlined free end, and f → 0
for a blunt end), and cb, a form drag coefficient at the free end. For a sufficiently blunt end (f → 0, cb > 0)
a cantilevered cylinder remains stable, no matter how high u becomes.

It is of considerable interest that for systems subject to a sequence of instabilities as predicted by linear
analysis and as shown in Figures 1 and 2, the nonlinear dynamics is not radically different; i.e. the second
and higher instabilities predicted by linear theory actually materialize in the nonlinear realm, as they do
in the experiments, though the sequence of the bifurcations involved may not be quite the same. In this
regard, the routes to instability and the dynamics are quite different from that of the kindred system of a
pipe conveying fluid4),5).

The behaviour of tapered cylinders in axial flow may also be quite different from that just described,
because the boundary layer around the cylinder can become quite thick, thus creating an ‘insulating effect’
vis-à-vis the mean flow.

∗Although this flutter is generated by coalescence of branches of the same mode, we still call it a coupled-mode flutter —
as would be the normal notation if the coalescing branches belonged to two different modes.
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FIGURE 2.7

f0035 Argand diagram of the complex frequencies, ω, of the lowest three modes of a solitary cantilevered cylinder
with a tapered free end in unconfined axial flow, as functions of u, for β = 0.5, ε cf = 1, δ = 0, χ = 1,
f = 0.8, χe = 0.01, cb = γ = 0 (Païdoussis 1973a).

FIGURE 2.8

f0040 The complex frequencies, ω, of a solitary cantilevered cylinder with a tapered free end in unconfined axial flow,
as functions of u, for β = 0.47, f = 0.8, εcf = 2.50, cb = 0.2, χe = 0.00667, χe = 0.00785, γ = 0.
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Figure 2: Argand diagram of the complex frequencies, ω, of the lowest three modes of a solitary cantilevered
cylinder with a tapered free end in unconfined axial flow, as functions of u, for β = 0.5, ε cf = 1, δ = 0, χ =

1, f = 0.8, χe = 0.01, cb = γ = 0; Ref 23).

2. UNCONVENTIONALLY SUPPORTED CYLINDERS IN AXIAL FLOW

The dynamics of ‘aspirating cantilevered pipes’, i.e. with the flow entering at the free end and exiting
at the clamped end, was first studied by Päıdoussis in the 1960s as a curiosity and then in 1985 in a
simplistic, as it turned out in retrospect, analysis related to ocean mining applications. Later, a number of
more elaborate models by Kuiper & Metrikine and Päıdoussis et al. predicted that the system is unstable
either at very low (infinitesimal in the absence of dissipation) flow velocities, or never, with the pendulum
of predictions swinging to and fro1). The latest is that, for high enough flow velocities, a very weak form
of flutter may arise, depending on the fine details of the flow at inlet; refer to Giacobbi et al.7) and section
4.3 of Päıdoussis5).

In the process, this ‘reverse flow’ problem was related to another, namely that of the reverse (aspirating)
sprinkler which has exercised the Physics community from the time of Richard Feynman on, with the same
reverses of opinion, as to whether it would rotate or not, and in what sense, as for the potential flutter of
the aspirating pipe; refer to Jenkins8).

Indeed, the study of fluid-structure interactions involving ‘reverse flow’ has become fashionable. Rinaldi
& Päıdoussis9) studied the dynamics of ‘free-clamped’ cylinders in axial flow; i.e. with the upstream end
free and the downstream one clamped, both experimentally and theoretically. For relatively low flow
velocities (U � 5 m/s, u � 0.36), flutter-like oscillatory motions of very small amplitude Arms were
observed, such that Arms/D ∼ O(10−3), of first-mode frequency and cylinder shape. The oscillation
was quite unsteady, with maximum amplitudes 2.5 times the r.m.s. values, similarly to observations for
aspirating pipes. Beyond a certain flow velocity, the oscillation amplitude decreased, while a steady bow
in the pipe developed and grew, following the classical route to divergence. Thus the system displayed
flutter-like oscillations at low flow velocities, and divergence at higher flow velocities. The effect of the
upstream-end shape was surprisingly weak.

The flutter-like motions occurred at u = 0.3 − 0.4, which is consistent with the predicted behaviour
(very small, marginally positive Im(ω1)) in Figure 3. However, the discrepancy between the experimental
critical flow velocity for divergence, ucd � 1.1 − 1.7, and the theoretical ucd > 2.4 is rather larger than
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Figure 3: Argand diagram of the lowest two complex eigenfrequencies of a free-clamped cylinder in axial flow for
f = 0.80 and cb = 0.60, as functions of u; β = 1.14× 10−3, γ = 17.6, ε = 25.3, h = 0.455, χ = 1.22, χe = 0.00792,
cN = 0.010, cT = 0.0125, and dissipative coefficients α∗ = 0.0003, µ∗ = 0.0358; Ref 9).

what could comfortably be attributed to the effect of imperfections; rather, suggesting imperfections in
the theory!

The dynamics of pinned-free cylinders was long considered to be not particularly interesting, because
the system was thought to be quite similar to a cantilevered one. The problem was re-studied recently
by Kheiri & Päıdoussis10), considering a flexibly supported cylinder, as shown in Figure 4, with varying
stiffnesses at the support. The pinned-free system was simulated by taking a large value for the transla-

The equation of motion for the system shown in Fig. 1 is obtained via the extended Hamilton's principle,

δ
Z t2

t1
ðT �VÞ dtþ

Z t2

t1
δW dt ¼ 0; ð1Þ

where T and V are the kinetic and potential energies of the system, respectively; δW is the virtual work associated with the
external forces acting on the system.

2.2. Kinetic and potential energies of the cylinder and virtual work associated with the fluid-dynamic forces acting on it

For an element δs of the cylinder (s is the curvilinear coordinate along the cylinder centreline) the kinetic and potential
energies, represented by T c and Vc, respectively, may be written as
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where x and y represent the coordinates of the element in a system associated with the deformed body, ∂ðÞ=∂t denotes a
partial derivative with respect to time and κ is the curvature of the neutral axis of the cylinder. Here, the potential energy
includes only the strain energy due to cylinder bending.

The virtual work δWc associated with the fluid-related forces acting on the cylinder may be written as (see Fig. 2)

δWc ¼
Z L

0
f½FL cosθþðFAþFNÞ sin θ�δxþ½FL sinθ�ðFAþFNÞ cosθ�δyg ds; ð3Þ

where FL and FN are the viscous forces per unit length in the longitudinal and normal direction, respectively; FA is the
inviscid force per unit length; θ is the angle between the centreline of the deformed cylinder and the x-axis; δx and δy are
the virtual displacements in the x- and y-directions.

For a cylinder subjected to a small horizontal lateral displacement wðs; tÞ from the straight position (i.e. w=L�Oðϵ̂Þ,
where ϵ̂≪1)3 and immersed in a fluid flowing axially with velocity U, the relative lateral velocity between the cylinder and
flow may be written as (Lighthill, 1960),

V s; tð Þ ¼ ∂w
∂t

þU
∂w
∂s

: ð4Þ

Fig. 2. An infinitesimal element of the cylinder showing the forces acting on it.

Fig. 1. A flexible cylinder subjected to axial flow and supported only at the upstream end by a translational and a rotational spring the stiffnesses of which
are represented, respectively, by k0 and c0.

3 It is noted that here we have yðs; tÞ ¼wðs; tÞ.
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Figure 4: A flexible cylinder subjected to axial flow and supported only at the upstream end by a translational
and a rotational spring of stiffnesses k0 and c0, respectively.

tional spring stiffness k0 and zero for the rotational spring stiffness c0. It was found that the cylinder is
unstable from essentially zero flow velocity, the instability being in the form of stationary yawing, as seen
in Figure 5; here ε∗ = 1

2εcf . At higher flow velocities, static/dynamic instabilities in the first and higher
modes of the system may occur. It was also found that, by increasing the length of the cylinder while
keeping all other parameters constant, the critical flow velocities for various instabilities asymptotically
approach constant values; in other words, increasing the length of the cylinder beyond a certain value affects
the stability of the system only weakly. Moreover, it was shown numerically and confirmed analytically
that there is a limiting value for the length of the cylinder, dependent only on the shape of the tapering
end, below which a zero-flow instability may not occur.
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FIGURE 2.7

f0035 Argand diagram of the complex frequencies, ω, of the lowest three modes of a solitary cantilevered cylinder
with a tapered free end in unconfined axial flow, as functions of u, for β = 0.5, ε cf = 1, δ = 0, χ = 1,
f = 0.8, χe = 0.01, cb = γ = 0 (Païdoussis 1973a).

FIGURE 2.8

f0040 The complex frequencies, ω, of a solitary cantilevered cylinder with a tapered free end in unconfined axial flow,
as functions of u, for β = 0.47, f = 0.8, εcf = 2.50, cb = 0.2, χe = 0.00667, χe = 0.00785, γ = 0.
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Figure 2: Argand diagram of the complex frequencies, ω, of the lowest three modes of a solitary cantilevered
cylinder with a tapered free end in unconfined axial flow, as functions of u, for β = 0.5, ε cf = 1, δ = 0, χ =

1, f = 0.8, χe = 0.01, cb = γ = 0; Ref 23).

2. UNCONVENTIONALLY SUPPORTED CYLINDERS IN AXIAL FLOW

The dynamics of ‘aspirating cantilevered pipes’, i.e. with the flow entering at the free end and exiting
at the clamped end, was first studied by Päıdoussis in the 1960s as a curiosity and then in 1985 in a
simplistic, as it turned out in retrospect, analysis related to ocean mining applications. Later, a number of
more elaborate models by Kuiper & Metrikine and Päıdoussis et al. predicted that the system is unstable
either at very low (infinitesimal in the absence of dissipation) flow velocities, or never, with the pendulum
of predictions swinging to and fro1). The latest is that, for high enough flow velocities, a very weak form
of flutter may arise, depending on the fine details of the flow at inlet; refer to Giacobbi et al.7) and section
4.3 of Päıdoussis5).

In the process, this ‘reverse flow’ problem was related to another, namely that of the reverse (aspirating)
sprinkler which has exercised the Physics community from the time of Richard Feynman on, with the same
reverses of opinion, as to whether it would rotate or not, and in what sense, as for the potential flutter of
the aspirating pipe; refer to Jenkins8).

Indeed, the study of fluid-structure interactions involving ‘reverse flow’ has become fashionable. Rinaldi
& Päıdoussis9) studied the dynamics of ‘free-clamped’ cylinders in axial flow; i.e. with the upstream end
free and the downstream one clamped, both experimentally and theoretically. For relatively low flow
velocities (U � 5 m/s, u � 0.36), flutter-like oscillatory motions of very small amplitude Arms were
observed, such that Arms/D ∼ O(10−3), of first-mode frequency and cylinder shape. The oscillation
was quite unsteady, with maximum amplitudes 2.5 times the r.m.s. values, similarly to observations for
aspirating pipes. Beyond a certain flow velocity, the oscillation amplitude decreased, while a steady bow
in the pipe developed and grew, following the classical route to divergence. Thus the system displayed
flutter-like oscillations at low flow velocities, and divergence at higher flow velocities. The effect of the
upstream-end shape was surprisingly weak.

The flutter-like motions occurred at u = 0.3 − 0.4, which is consistent with the predicted behaviour
(very small, marginally positive Im(ω1)) in Figure 3. However, the discrepancy between the experimental
critical flow velocity for divergence, ucd � 1.1 − 1.7, and the theoretical ucd > 2.4 is rather larger than
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Figure 3: Argand diagram of the lowest two complex eigenfrequencies of a free-clamped cylinder in axial flow for
f = 0.80 and cb = 0.60, as functions of u; β = 1.14× 10−3, γ = 17.6, ε = 25.3, h = 0.455, χ = 1.22, χe = 0.00792,
cN = 0.010, cT = 0.0125, and dissipative coefficients α∗ = 0.0003, µ∗ = 0.0358; Ref 9).

what could comfortably be attributed to the effect of imperfections; rather, suggesting imperfections in
the theory!

The dynamics of pinned-free cylinders was long considered to be not particularly interesting, because
the system was thought to be quite similar to a cantilevered one. The problem was re-studied recently
by Kheiri & Päıdoussis10), considering a flexibly supported cylinder, as shown in Figure 4, with varying
stiffnesses at the support. The pinned-free system was simulated by taking a large value for the transla-

The equation of motion for the system shown in Fig. 1 is obtained via the extended Hamilton's principle,

δ
Z t2

t1
ðT �VÞ dtþ

Z t2

t1
δW dt ¼ 0; ð1Þ

where T and V are the kinetic and potential energies of the system, respectively; δW is the virtual work associated with the
external forces acting on the system.

2.2. Kinetic and potential energies of the cylinder and virtual work associated with the fluid-dynamic forces acting on it

For an element δs of the cylinder (s is the curvilinear coordinate along the cylinder centreline) the kinetic and potential
energies, represented by T c and Vc, respectively, may be written as

T c ¼
1
2

Z L

0
m

∂x
∂t

� �2

þ ∂y
∂t

� �2
" #

ds; Vc ¼
1
2

Z L

0
EIκ2 ds; ð2Þ

where x and y represent the coordinates of the element in a system associated with the deformed body, ∂ðÞ=∂t denotes a
partial derivative with respect to time and κ is the curvature of the neutral axis of the cylinder. Here, the potential energy
includes only the strain energy due to cylinder bending.

The virtual work δWc associated with the fluid-related forces acting on the cylinder may be written as (see Fig. 2)

δWc ¼
Z L

0
f½FL cosθþðFAþFNÞ sin θ�δxþ½FL sinθ�ðFAþFNÞ cosθ�δyg ds; ð3Þ

where FL and FN are the viscous forces per unit length in the longitudinal and normal direction, respectively; FA is the
inviscid force per unit length; θ is the angle between the centreline of the deformed cylinder and the x-axis; δx and δy are
the virtual displacements in the x- and y-directions.

For a cylinder subjected to a small horizontal lateral displacement wðs; tÞ from the straight position (i.e. w=L�Oðϵ̂Þ,
where ϵ̂≪1)3 and immersed in a fluid flowing axially with velocity U, the relative lateral velocity between the cylinder and
flow may be written as (Lighthill, 1960),

V s; tð Þ ¼ ∂w
∂t

þU
∂w
∂s

: ð4Þ

Fig. 2. An infinitesimal element of the cylinder showing the forces acting on it.

Fig. 1. A flexible cylinder subjected to axial flow and supported only at the upstream end by a translational and a rotational spring the stiffnesses of which
are represented, respectively, by k0 and c0.

3 It is noted that here we have yðs; tÞ ¼wðs; tÞ.
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Figure 4: A flexible cylinder subjected to axial flow and supported only at the upstream end by a translational
and a rotational spring of stiffnesses k0 and c0, respectively.

tional spring stiffness k0 and zero for the rotational spring stiffness c0. It was found that the cylinder is
unstable from essentially zero flow velocity, the instability being in the form of stationary yawing, as seen
in Figure 5; here ε∗ = 1

2εcf . At higher flow velocities, static/dynamic instabilities in the first and higher
modes of the system may occur. It was also found that, by increasing the length of the cylinder while
keeping all other parameters constant, the critical flow velocities for various instabilities asymptotically
approach constant values; in other words, increasing the length of the cylinder beyond a certain value affects
the stability of the system only weakly. Moreover, it was shown numerically and confirmed analytically
that there is a limiting value for the length of the cylinder, dependent only on the shape of the tapering
end, below which a zero-flow instability may not occur.
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Eq. (26) is the equation of motion of a rigid pinned-free cylinder in axial flow. In this equation, the first bracket
represents the total mass (i.e. structural massþadded mass) moment of inertia, the second bracket the fluid-related
damping, and the third bracket the fluid-related stiffness. For a second-order linear differential equation in the form of
a€zþb_zþcz¼ 0 with a40, similar to the one presented in Eq. (26), it is well known that a negative c results in a divergent

Fig. 6. Variation of critical flow velocity (ucr=εn , where εn ¼ ð1=2Þεcf ) for static and dynamic instabilities of a flexible, neutrally buoyant (i.e. β¼ 0:5) pinned-
free cylinder as a function of εcf (εcf ¼ εcN ¼ εcT ). The numerical results obtained via Galerkin's method are shown as Δ for f¼0.7 and as ◯ for f¼1.0. The
solid line shows the results obtained analytically via the Adomian Decomposition Method; the dashed line shows the linear interpolation on the numerical
results. Other system parameters are cb ¼ 1� f , c¼0, χe ¼ 0:00667, χe ¼ 0:00785.

Fig. 7. A rigid pinned-free cylinder undergoing a rotational motion.

Fig. 8. A rigid pinned-free cylinder with the forces and moment acting (a) on it and (b) on the tapering end-piece.
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Figure 5: Variation of the critical flow velocity ucr/ε∗, where ε∗ = 1
2
εcf , for static and dynamic instability of a

flexible neutrally buoyant (i.e. β = 0.5) pinned-free cylinder as a function of εcf (εcf = εcN = εcT ), in the case

of cb = 1− f ; Ref 10).

Additional insights into the dynamics is afforded from consideration of the related problem of a pipe
conveying fluid, spring-supported at the upstream end by a translational and a rotational spring; refer to
Kheiri et al.11). It is found that there are ranges in which the critical flow velocity does not change with
varying either of the spring stiffnesses. It is also shown that, as the stiffnesses are reduced to low values,
the system behaviour approaches that of a free-free pipe: the critical flow velocity is diminished and finally
approaches zero.

3. CYLINDERS WITH BOTH INTERNAL AND EXTERNAL FLOW

The dynamics of this system was first studied by Cesari & Curioni12) and Hannoyer & Paidoussis13) for its
own sake and for applications in axial-flow heat exchangers. The two flows (the fluids and flow velocities)
are independent of each other. Later studies were motivated by applications to the drill-string system
used in oil and gas drilling pipes; in this case, the internal flow in a vertical pipe, after exiting the drill-bit
at the bottom, reverses direction and carries the drilled-out debris upward around the drill-pipe; thus, the
internal and external flows are related. This system was first studied by Luu14) and Päıdoussis, Luu &
Prabhakar15).

Argand diagrams for a realistic large-scale drill-string system (L = 1000 m) and a bench-top system
(L = 0.443 m) display qualitatively similar dynamics. Here the dimensionless flow velocities of the internal
and external flows, ui and uo respectively, are related, depending on α = Di/Do and αch = Dch/Do, where
Di and Do are the inside and outside diameters of the pipe, and Dch is the diameter of the drilled-out
channel. In this case we define two dimensionless flow velocities:

ui = (ρAi/EI)1/2UiL and uo = (ρAo/EI)1/2UoL, (7)

where Ai is the cross-sectional flow area of the internal flow, Ui the internal flow velocity, and uo is the
same as u in equations (4) with A ≡ Ao and U ≡ Uo.

For a wide channel (αch = 20), the dynamics is controlled by the internal flow, as ui is three orders
of magnitude larger than uo. For small enough ui, the effect of flow is stabilizing, but for higher ui it
becomes destabilizing (in this case at ui � 100). Similar behaviour is obtained for αch = 2, even though
in this case uo = 0.3ui. For αch = 1.1, however, where uo = 4.28ui, the external flow plays the dominant
role, destabilizing the system and precipitating flutter at ui = 0.96.
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Fig. 9. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 2:0.

Fig. 10. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of

the dimensionless flow velocity ui for ach ¼ 1:2.

Table 2

The critical flow velocities of the bench-top-size system, showing the effect of ach and of the pipe wall thickness

Pipe ach uicf

First mode Second mode Third mode

Thick-walled ðDi ¼ 6:4mmÞ 20 –a 6.8 –a

1.2 0.39 0.89 1.55

1.1 0.27 0.61 1.03

Thin-walled ðDi ¼ 9:525mmÞ 1.2 0.25 0.60 1.0

aFor uip10, at least.
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Figure 6: Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size drill-string-like
system, ωi, i = 1, 2, 3 as a function of the dimensionless flow velocity ui for αch = 2.0.
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Fig. 9. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of the

dimensionless flow velocity ui for ach ¼ 2:0.

Fig. 10. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of

the dimensionless flow velocity ui for ach ¼ 1:2.

Table 2

The critical flow velocities of the bench-top-size system, showing the effect of ach and of the pipe wall thickness

Pipe ach uicf

First mode Second mode Third mode

Thick-walled ðDi ¼ 6:4mmÞ 20 –a 6.8 –a

1.2 0.39 0.89 1.55

1.1 0.27 0.61 1.03

Thin-walled ðDi ¼ 9:525mmÞ 1.2 0.25 0.60 1.0

aFor uip10, at least.
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Figure 7: Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size drill-string-like
system, ωi, i = 1, 2, 3 as a function of the dimensionless flow velocity ui for αch = 1.2.

Similar behaviour is obtained for the bench-top system. As seen in Figure 6 for αch = 2.0, the system
is stabilized with increasing flow, as indicated by the increasing positive Im(ω) in all the three modes
shown. However, for large enough ui the effect of flow becomes destabilizing; the loci of the second and
third modes begin to bend, a preamble to the locus eventually crossing to Im(ω) < 0 (cf. Figure 2). In
this case, the critical flow velocity is uic = 6.8 (not shown).

In Figure 7, on the other hand, where αch = 1.2, the effect of the flow is destabilizing for all ui.
The system loses stability by flutter in the first mode at ui � 0.39. Thus, for large αch the dynamics
is controlled by the internal flow, whereas for small enough αch it is the external flow which determines
stability.

It should finally be remarked that the dimensionless critical flow velocities, uic, for both the large-scale
and bench-top systems are similar, despite large differences in the parameters, particularly L, because
the dimensional critical flow velocities for the longer system are proportionately smaller. Thus ui is a
successful scaling parameter.
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Eq. (26) is the equation of motion of a rigid pinned-free cylinder in axial flow. In this equation, the first bracket
represents the total mass (i.e. structural massþadded mass) moment of inertia, the second bracket the fluid-related
damping, and the third bracket the fluid-related stiffness. For a second-order linear differential equation in the form of
a€zþb_zþcz¼ 0 with a40, similar to the one presented in Eq. (26), it is well known that a negative c results in a divergent

Fig. 6. Variation of critical flow velocity (ucr=εn , where εn ¼ ð1=2Þεcf ) for static and dynamic instabilities of a flexible, neutrally buoyant (i.e. β¼ 0:5) pinned-
free cylinder as a function of εcf (εcf ¼ εcN ¼ εcT ). The numerical results obtained via Galerkin's method are shown as Δ for f¼0.7 and as ◯ for f¼1.0. The
solid line shows the results obtained analytically via the Adomian Decomposition Method; the dashed line shows the linear interpolation on the numerical
results. Other system parameters are cb ¼ 1� f , c¼0, χe ¼ 0:00667, χe ¼ 0:00785.

Fig. 7. A rigid pinned-free cylinder undergoing a rotational motion.

Fig. 8. A rigid pinned-free cylinder with the forces and moment acting (a) on it and (b) on the tapering end-piece.

M. Kheiri, M.P. Païdoussis / Journal of Fluids and Structures 55 (2015) 204–217 213

Figure 5: Variation of the critical flow velocity ucr/ε∗, where ε∗ = 1
2
εcf , for static and dynamic instability of a

flexible neutrally buoyant (i.e. β = 0.5) pinned-free cylinder as a function of εcf (εcf = εcN = εcT ), in the case

of cb = 1− f ; Ref 10).

Additional insights into the dynamics is afforded from consideration of the related problem of a pipe
conveying fluid, spring-supported at the upstream end by a translational and a rotational spring; refer to
Kheiri et al.11). It is found that there are ranges in which the critical flow velocity does not change with
varying either of the spring stiffnesses. It is also shown that, as the stiffnesses are reduced to low values,
the system behaviour approaches that of a free-free pipe: the critical flow velocity is diminished and finally
approaches zero.

3. CYLINDERS WITH BOTH INTERNAL AND EXTERNAL FLOW

The dynamics of this system was first studied by Cesari & Curioni12) and Hannoyer & Paidoussis13) for its
own sake and for applications in axial-flow heat exchangers. The two flows (the fluids and flow velocities)
are independent of each other. Later studies were motivated by applications to the drill-string system
used in oil and gas drilling pipes; in this case, the internal flow in a vertical pipe, after exiting the drill-bit
at the bottom, reverses direction and carries the drilled-out debris upward around the drill-pipe; thus, the
internal and external flows are related. This system was first studied by Luu14) and Päıdoussis, Luu &
Prabhakar15).

Argand diagrams for a realistic large-scale drill-string system (L = 1000 m) and a bench-top system
(L = 0.443 m) display qualitatively similar dynamics. Here the dimensionless flow velocities of the internal
and external flows, ui and uo respectively, are related, depending on α = Di/Do and αch = Dch/Do, where
Di and Do are the inside and outside diameters of the pipe, and Dch is the diameter of the drilled-out
channel. In this case we define two dimensionless flow velocities:

ui = (ρAi/EI)1/2UiL and uo = (ρAo/EI)1/2UoL, (7)

where Ai is the cross-sectional flow area of the internal flow, Ui the internal flow velocity, and uo is the
same as u in equations (4) with A ≡ Ao and U ≡ Uo.

For a wide channel (αch = 20), the dynamics is controlled by the internal flow, as ui is three orders
of magnitude larger than uo. For small enough ui, the effect of flow is stabilizing, but for higher ui it
becomes destabilizing (in this case at ui � 100). Similar behaviour is obtained for αch = 2, even though
in this case uo = 0.3ui. For αch = 1.1, however, where uo = 4.28ui, the external flow plays the dominant
role, destabilizing the system and precipitating flutter at ui = 0.96.
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dimensionless flow velocity ui for ach ¼ 2:0.

Fig. 10. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of

the dimensionless flow velocity ui for ach ¼ 1:2.

Table 2

The critical flow velocities of the bench-top-size system, showing the effect of ach and of the pipe wall thickness

Pipe ach uicf

First mode Second mode Third mode

Thick-walled ðDi ¼ 6:4mmÞ 20 –a 6.8 –a

1.2 0.39 0.89 1.55

1.1 0.27 0.61 1.03

Thin-walled ðDi ¼ 9:525mmÞ 1.2 0.25 0.60 1.0

aFor uip10, at least.
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Figure 6: Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size drill-string-like
system, ωi, i = 1, 2, 3 as a function of the dimensionless flow velocity ui for αch = 2.0.
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Fig. 10. Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size system, oi; i ¼ 1; 2; 3, as a function of

the dimensionless flow velocity ui for ach ¼ 1:2.

Table 2

The critical flow velocities of the bench-top-size system, showing the effect of ach and of the pipe wall thickness

Pipe ach uicf

First mode Second mode Third mode

Thick-walled ðDi ¼ 6:4mmÞ 20 –a 6.8 –a

1.2 0.39 0.89 1.55

1.1 0.27 0.61 1.03

Thin-walled ðDi ¼ 9:525mmÞ 1.2 0.25 0.60 1.0

aFor uip10, at least.
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Figure 7: Argand diagram of the complex dimensionless eigenfrequencies of the bench-top-size drill-string-like
system, ωi, i = 1, 2, 3 as a function of the dimensionless flow velocity ui for αch = 1.2.

Similar behaviour is obtained for the bench-top system. As seen in Figure 6 for αch = 2.0, the system
is stabilized with increasing flow, as indicated by the increasing positive Im(ω) in all the three modes
shown. However, for large enough ui the effect of flow becomes destabilizing; the loci of the second and
third modes begin to bend, a preamble to the locus eventually crossing to Im(ω) < 0 (cf. Figure 2). In
this case, the critical flow velocity is uic = 6.8 (not shown).

In Figure 7, on the other hand, where αch = 1.2, the effect of the flow is destabilizing for all ui.
The system loses stability by flutter in the first mode at ui � 0.39. Thus, for large αch the dynamics
is controlled by the internal flow, whereas for small enough αch it is the external flow which determines
stability.

It should finally be remarked that the dimensionless critical flow velocities, uic, for both the large-scale
and bench-top systems are similar, despite large differences in the parameters, particularly L, because
the dimensional critical flow velocities for the longer system are proportionately smaller. Thus ui is a
successful scaling parameter.
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Further work on this topic has recently been done, related to yet another application: the dynamics of
the kilometer long pipe-strings used in salt-mining applications (Ratigan16); Moditis et al.17); Päıdoussis2))
for storing and later retrieving hydrocarbons in solution-mined caverns. Pumping fresh water into
underground salt deposits dissolves the salt, generating brine-filled caverns. If the brine is pumped out,
there remains a cavern which may be used for storage of liquid or gaseous hydrocarbons. In this case the
pipe-string is partly surrounded by a cylindrical tube, creating an annular region. Brine may be pumped
into the cavern via the central pipe, forcing the stored hydrocarbon out through the annulus, or vice versa.
The dynamics is both intricate and quite interesting.

4. VERY LONG CYLINDERS AND STRINGS IN AXIAL FLOW

If the cylinder is sufficiently long and slender, flow-induced tension effects become very important, while
the flexural rigidity loses its dominance as the principal restoring force. Thus, the cylinder may be modelled
as a taught string, rather than a beam, which also results in a mathematically simpler system.

Here the reader is encouraged to refer to the Doaré & de Langre18) study of very long hanging pipes
conveying fluid, showing the existence of asymptotic regimes in the dynamics, a paradigm for understanding
the behaviour of long systems subjected to nonconservative forces.

Towed arrays of hydrophones housed in very long, neutrally buoyant hollow cylinders are the premier
example making such systems of practical, as well as academic, interest. In some cases, the existence of
a towrope is neglected, and the system is modelled as a cylindrical string supported at its upstream end
and free downstream. The dynamics of this latter system is discussed here, while that of towed systems
in chapter 4 of Päıdoussis2).

Several analytical studies on the dynamics of this system have been published, unfortunately some
based on the equations of motion in Päıdoussis19), containing an error in the viscous forces, which becomes
significant for long cylinders, and in other papers with other errors, e.g. Ortloff & Ives20).

An important study on this system has been done by Triantafyllou & Chryssostomidis21) with
the corrected equations of motion22),23) in a very elegant analysis, resulting in a remarkably simple
stability diagram. The flexural forces are neglected, and tension becomes the main restoring force. The
nondimensional equation of motion is

[1− p− ε∗(1− ξ)]
∂2η

∂ξ2
+ 2

∂2η

∂ξ∂τ
+ ε∗

(
∂η

∂τ
+

∂η

∂ξ

)
+ (1 + µ)

∂2η

∂τ2
= 0 , (8)

subject to boundary conditions

η(0, τ) = 0, [(p− f)(∂η/∂ξ)− f(∂η/∂τ)]ξ=1 = 0 , (9)

where

ξ =
x

L
, η =

y

L
, τ =

(
U

L

)
t, p =

T0

MU2
, ε∗ =

1

2
εcf and µ =

m

M
=

1− β

β
; (10)

here m is the mass of the cylinder and M the virtual (added) mass per unit length, f is a streamlining
parameter, as in equation (5), such that f → 1 for a well-streamlined end and f → 0 for a blunt one, T0 is
the free-end tension as in Figure 8, e.g. due to a drogue, but constant rather than flow-velocity dependent.

The stability diagram is shown in Figure 9. Thus, for ε∗ > 1 the system is predicted
to be unconditionally stable. In the dimensional form of equation (8), the first term is[
MU2 − T0 − 1

2ρDU2Cf (L− x)
]
(∂2y/∂x2). Hence, in the range 1 − ε∗ < p < 1 the total tension,

T (x) = T0 +
1
2ρDU2Cf (L − x), becomes equal to MU2 somewhere along the long string. From thereon

there is no tensile restoring force,† and the neglected flexural forces, even if vanishingly small, become
important and may have a destabilizing effect on the string.

The stability analysis leading to Figure 9 explicitly presumes the instability to be flutter, since static
divergence for a string is not possible, as it would imply the existence of negative tension (compression)

†No self-respecting string can exist without tension, for it is then indistinguishable from a limp strand of overcooked
spaghetti.
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FIGURE 2.41

f0205 The pinned-free cylinder in axial flow considered by Triantafyllou & Chryssostomidis (1985), with a drogue
added which causes a mean tension at the free end, T0.

of a towrope is neglected, and the system is modelled as a cylindrical string supported at its upstream
end and free downstream. The dynamics of this latter system is discussed here, while that of towed
systems in Chapter 4.

p1050 Analytical studies of the generic system shown in Figure 2.41 have been conducted by Ortloff &
Ives (1969), Pao (1970), Lee (1981), Lee & Kennedy (1985), and Kennedy (1987), all of which are
unfortunately based on the Païdoussis (1966a) form of the equations of motion, in which the viscous-
frictional forces on the cylinder are taken into account inconsistently (see Section 2.2.2), rather than
on the corrected form of the equations as in Païdoussis (1970, 1973b) and as given in Section 2.2. The
dynamics according to the uncorrected and corrected equations is not dramatically different, provided
that the cylinder is relatively short (and the flexural rigidity is taken into account). This, however, is
not true for the very long cylinders considered here, precisely because the viscous-frictional effects are
then so very important. Hence, although some of these studies are quite admirable, their usefulness is
ultimately rather limited.†

p1055 Ortloff & Ives (1969) use Païdoussis’ (1966a) equations of motion, setting the flexural rigidity
(bending stiffness) to zero. They obtain solutions by means of approximate analytical methods, and
conclude that the system is always unstable. This analysis, however, contains a mathematical error,
which is corrected by Lee (1981), showing the system to be stable if ε = L/D is sufficiently large.
Furthermore, it is noted that the approximate methods used in both studies introduce a simplification
which, implicitly, is valid only for large cylinder/displaced-fluid mass ratio – which is not satisfied
by the near-neutrally buoyant practical systems inspiring this work (Pao 1970; Triantafyllou &
Chryssostomidis 1985). This difficulty is circumvented by Lee & Kennedy (1985) who, instead of
an analytical solution, utilize a numerical, finite-difference method. Finally, Kennedy (1987) considers
the response of the system to transverse motions of the ‘towpoint’ and to cross-flow excitation.

†fn0155 It is interesting to note that, although the corrected equations were first published in 1970 and again in 1973, papers based on
the uncorrected ones continued to appear until 1987, at least, and to be submitted for publication up until 2000! Nevertheless,
the author grasps this opportunity to apologize to the scientific community for inadvertently being responsible for leading so
many astray.
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Figure 8: The pinned-free cylinder in axial flow considered by Triantafyllou & Chryssostomidis21), with a
drogue added which generates a tension T0 at the free end.
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FIGURE 2.42

f0210 Stability diagram for a pinned-free cylinder in axial flow in terms of the modified slenderness ε∗ and
the tension parameter p. Stable regions are denoted by s, and the unstable one by u (Triantafyllou &
Chryssostomidis 1985).

for long enough strings (large ε∗) the system is predicted to be unconditionally stable – but refer to
Section 2.3.7(c).

p1085 It is nevertheless noted that in the range 1 − ε∗ < p < 1 the total tension, T(x) = T0
+ 1

2ρD U2 Cf (L − x), becomes equal to M U2 somewhere along the string – cf. Section 4.2.6. Hence
from thereon there is no tensile restoring force, and the neglected flexural forces, even if vanishingly
small, become important and may have a destabilizing effect on the string.

p1090 The instability in the analysis and in Figure 2.42 is oscillatory (flutter). Divergence does not arise
for the string, since K in Equation (2.91) cannot change sign without violating the above-mentioned
zero-tension limit; but see Sections 2.3.1(f) and 2.3.2(g) for divergence of the pinned-free cylinder
system, modelled as a beam.

p1095 The interested reader is also referred to Anderson (1973), Yadykin (1982), Yadykin et al. (1987) for
other analyses of this system.

2.3.7(b)s0230 Experiments by Hansen & Ni
p1100 Experiments with very long cylinders, hence essentially strings, in axial flow are discussed in Hansen

& Ni (1976, 1979) and Ni & Hansen (1978).
p1105 The experiments involved (i) a polypropylene rope (cable) through which a water-filled Tygon tube

was threaded and (ii) a paraffin-oil-filled Tygon tube – thus a rough and a smooth cylinder, respectively
– in both cases achieving near-neutral buoyancy in water flow of controlled temperature. The cylinders
were 15.9 mm in diameter and 7.92 m long, resulting in ε = L/D � 500. Flow velocities in a
transparent test-section, 190.5 mm in diameter, were in the range of 4.6–8.3 m/s (hence fully turbulent
flow). Deformation/motion was sensed optically. Some experiments were with tensioned cylinders
supported at both ends, but most with the downstream end free and fitted with a hemispherical, conical
or paraboloidal end-piece.
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Figure 9: Stability diagram for a pinned-free cylinder in axial flow in terms of the modified slenderness parameter
ε∗ and the tension parameter p. Stable regions are denoted by s, and the unstable one by u; Ref 21).

over some portion of the string. It is therefore necessary to take into account the flexural restoring forces
even for long cylinders, as done by de Langre et al.24).

Placing the origin for ξ = x/L at the downstream end of the cylinder, the analysis is conducted by
means of a slightly different form of the equation of motion,

∂4η

∂ξ4
+

∂

∂ξ

[
u2

(
1− 1

2cb +
1
2εcT ξ

) ∂η
∂ξ

]
+

1

2
εcT

(
cN
cT

− 1

)
u2 ∂η

∂ξ

+
1

2
εcT

(
cN
cT

)
β1/2u

∂η

∂τ
+ 2β1/2u

∂2η

∂ξ∂τ
+

∂2η

∂τ2
= 0, (11)

and simplified boundary conditions,

η(−1) =
∂η

∂ξ
(−1) = 0,

[
∂2η

∂ξ2

]

ξ=0

=

[
∂3η

∂ξ3
+ fu

(
β1/2 ∂η

∂τ
+ u

∂η

∂ξ

)]

ξ=0

= 0. (12)

It is clear that in (11) there generally exists a location ξc = −Lc/L = −(2− cb)/εcT , where the flow-
induced tension vanishes; this location is referred to as the neutral point. Downstream of that point the
cylinder is in compression. This at-first-sight surprising statement becomes perfectly understandable by
reference to the similar system of a pipe conveying fluid [refer to Appendix A].

The analysis is pursued in terms of the above equations, but also in terms of similar but significantly
different ones in which the scaling length is not L but Lc; thus,

z = x/Lc, v = (ρA/EI)1/2ULc = u/l, l = L/Lc, (13)
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Further work on this topic has recently been done, related to yet another application: the dynamics of
the kilometer long pipe-strings used in salt-mining applications (Ratigan16); Moditis et al.17); Päıdoussis2))
for storing and later retrieving hydrocarbons in solution-mined caverns. Pumping fresh water into
underground salt deposits dissolves the salt, generating brine-filled caverns. If the brine is pumped out,
there remains a cavern which may be used for storage of liquid or gaseous hydrocarbons. In this case the
pipe-string is partly surrounded by a cylindrical tube, creating an annular region. Brine may be pumped
into the cavern via the central pipe, forcing the stored hydrocarbon out through the annulus, or vice versa.
The dynamics is both intricate and quite interesting.

4. VERY LONG CYLINDERS AND STRINGS IN AXIAL FLOW

If the cylinder is sufficiently long and slender, flow-induced tension effects become very important, while
the flexural rigidity loses its dominance as the principal restoring force. Thus, the cylinder may be modelled
as a taught string, rather than a beam, which also results in a mathematically simpler system.

Here the reader is encouraged to refer to the Doaré & de Langre18) study of very long hanging pipes
conveying fluid, showing the existence of asymptotic regimes in the dynamics, a paradigm for understanding
the behaviour of long systems subjected to nonconservative forces.

Towed arrays of hydrophones housed in very long, neutrally buoyant hollow cylinders are the premier
example making such systems of practical, as well as academic, interest. In some cases, the existence of
a towrope is neglected, and the system is modelled as a cylindrical string supported at its upstream end
and free downstream. The dynamics of this latter system is discussed here, while that of towed systems
in chapter 4 of Päıdoussis2).

Several analytical studies on the dynamics of this system have been published, unfortunately some
based on the equations of motion in Päıdoussis19), containing an error in the viscous forces, which becomes
significant for long cylinders, and in other papers with other errors, e.g. Ortloff & Ives20).

An important study on this system has been done by Triantafyllou & Chryssostomidis21) with
the corrected equations of motion22),23) in a very elegant analysis, resulting in a remarkably simple
stability diagram. The flexural forces are neglected, and tension becomes the main restoring force. The
nondimensional equation of motion is

[1− p− ε∗(1− ξ)]
∂2η

∂ξ2
+ 2

∂2η

∂ξ∂τ
+ ε∗

(
∂η

∂τ
+

∂η

∂ξ

)
+ (1 + µ)

∂2η

∂τ2
= 0 , (8)

subject to boundary conditions

η(0, τ) = 0, [(p− f)(∂η/∂ξ)− f(∂η/∂τ)]ξ=1 = 0 , (9)

where

ξ =
x

L
, η =

y

L
, τ =

(
U

L

)
t, p =

T0

MU2
, ε∗ =

1

2
εcf and µ =

m

M
=

1− β

β
; (10)

here m is the mass of the cylinder and M the virtual (added) mass per unit length, f is a streamlining
parameter, as in equation (5), such that f → 1 for a well-streamlined end and f → 0 for a blunt one, T0 is
the free-end tension as in Figure 8, e.g. due to a drogue, but constant rather than flow-velocity dependent.

The stability diagram is shown in Figure 9. Thus, for ε∗ > 1 the system is predicted
to be unconditionally stable. In the dimensional form of equation (8), the first term is[
MU2 − T0 − 1

2ρDU2Cf (L− x)
]
(∂2y/∂x2). Hence, in the range 1 − ε∗ < p < 1 the total tension,

T (x) = T0 +
1
2ρDU2Cf (L − x), becomes equal to MU2 somewhere along the long string. From thereon

there is no tensile restoring force,† and the neglected flexural forces, even if vanishingly small, become
important and may have a destabilizing effect on the string.

The stability analysis leading to Figure 9 explicitly presumes the instability to be flutter, since static
divergence for a string is not possible, as it would imply the existence of negative tension (compression)

†No self-respecting string can exist without tension, for it is then indistinguishable from a limp strand of overcooked
spaghetti.
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FIGURE 2.41

f0205 The pinned-free cylinder in axial flow considered by Triantafyllou & Chryssostomidis (1985), with a drogue
added which causes a mean tension at the free end, T0.

of a towrope is neglected, and the system is modelled as a cylindrical string supported at its upstream
end and free downstream. The dynamics of this latter system is discussed here, while that of towed
systems in Chapter 4.

p1050 Analytical studies of the generic system shown in Figure 2.41 have been conducted by Ortloff &
Ives (1969), Pao (1970), Lee (1981), Lee & Kennedy (1985), and Kennedy (1987), all of which are
unfortunately based on the Païdoussis (1966a) form of the equations of motion, in which the viscous-
frictional forces on the cylinder are taken into account inconsistently (see Section 2.2.2), rather than
on the corrected form of the equations as in Païdoussis (1970, 1973b) and as given in Section 2.2. The
dynamics according to the uncorrected and corrected equations is not dramatically different, provided
that the cylinder is relatively short (and the flexural rigidity is taken into account). This, however, is
not true for the very long cylinders considered here, precisely because the viscous-frictional effects are
then so very important. Hence, although some of these studies are quite admirable, their usefulness is
ultimately rather limited.†

p1055 Ortloff & Ives (1969) use Païdoussis’ (1966a) equations of motion, setting the flexural rigidity
(bending stiffness) to zero. They obtain solutions by means of approximate analytical methods, and
conclude that the system is always unstable. This analysis, however, contains a mathematical error,
which is corrected by Lee (1981), showing the system to be stable if ε = L/D is sufficiently large.
Furthermore, it is noted that the approximate methods used in both studies introduce a simplification
which, implicitly, is valid only for large cylinder/displaced-fluid mass ratio – which is not satisfied
by the near-neutrally buoyant practical systems inspiring this work (Pao 1970; Triantafyllou &
Chryssostomidis 1985). This difficulty is circumvented by Lee & Kennedy (1985) who, instead of
an analytical solution, utilize a numerical, finite-difference method. Finally, Kennedy (1987) considers
the response of the system to transverse motions of the ‘towpoint’ and to cross-flow excitation.

†fn0155 It is interesting to note that, although the corrected equations were first published in 1970 and again in 1973, papers based on
the uncorrected ones continued to appear until 1987, at least, and to be submitted for publication up until 2000! Nevertheless,
the author grasps this opportunity to apologize to the scientific community for inadvertently being responsible for leading so
many astray.
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Figure 8: The pinned-free cylinder in axial flow considered by Triantafyllou & Chryssostomidis21), with a
drogue added which generates a tension T0 at the free end.
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FIGURE 2.42

f0210 Stability diagram for a pinned-free cylinder in axial flow in terms of the modified slenderness ε∗ and
the tension parameter p. Stable regions are denoted by s, and the unstable one by u (Triantafyllou &
Chryssostomidis 1985).

for long enough strings (large ε∗) the system is predicted to be unconditionally stable – but refer to
Section 2.3.7(c).

p1085 It is nevertheless noted that in the range 1 − ε∗ < p < 1 the total tension, T(x) = T0
+ 1

2ρD U2 Cf (L − x), becomes equal to M U2 somewhere along the string – cf. Section 4.2.6. Hence
from thereon there is no tensile restoring force, and the neglected flexural forces, even if vanishingly
small, become important and may have a destabilizing effect on the string.

p1090 The instability in the analysis and in Figure 2.42 is oscillatory (flutter). Divergence does not arise
for the string, since K in Equation (2.91) cannot change sign without violating the above-mentioned
zero-tension limit; but see Sections 2.3.1(f) and 2.3.2(g) for divergence of the pinned-free cylinder
system, modelled as a beam.

p1095 The interested reader is also referred to Anderson (1973), Yadykin (1982), Yadykin et al. (1987) for
other analyses of this system.

2.3.7(b)s0230 Experiments by Hansen & Ni
p1100 Experiments with very long cylinders, hence essentially strings, in axial flow are discussed in Hansen

& Ni (1976, 1979) and Ni & Hansen (1978).
p1105 The experiments involved (i) a polypropylene rope (cable) through which a water-filled Tygon tube

was threaded and (ii) a paraffin-oil-filled Tygon tube – thus a rough and a smooth cylinder, respectively
– in both cases achieving near-neutral buoyancy in water flow of controlled temperature. The cylinders
were 15.9 mm in diameter and 7.92 m long, resulting in ε = L/D � 500. Flow velocities in a
transparent test-section, 190.5 mm in diameter, were in the range of 4.6–8.3 m/s (hence fully turbulent
flow). Deformation/motion was sensed optically. Some experiments were with tensioned cylinders
supported at both ends, but most with the downstream end free and fitted with a hemispherical, conical
or paraboloidal end-piece.
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Figure 9: Stability diagram for a pinned-free cylinder in axial flow in terms of the modified slenderness parameter
ε∗ and the tension parameter p. Stable regions are denoted by s, and the unstable one by u; Ref 21).

over some portion of the string. It is therefore necessary to take into account the flexural restoring forces
even for long cylinders, as done by de Langre et al.24).

Placing the origin for ξ = x/L at the downstream end of the cylinder, the analysis is conducted by
means of a slightly different form of the equation of motion,

∂4η

∂ξ4
+

∂

∂ξ

[
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(
1− 1

2cb +
1
2εcT ξ

) ∂η
∂ξ

]
+

1
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εcT
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+
1

2
εcT
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)
β1/2u

∂η

∂τ
+ 2β1/2u

∂2η

∂ξ∂τ
+

∂2η

∂τ2
= 0, (11)

and simplified boundary conditions,

η(−1) =
∂η

∂ξ
(−1) = 0,

[
∂2η

∂ξ2

]

ξ=0

=

[
∂3η

∂ξ3
+ fu

(
β1/2 ∂η

∂τ
+ u

∂η

∂ξ

)]

ξ=0

= 0. (12)

It is clear that in (11) there generally exists a location ξc = −Lc/L = −(2− cb)/εcT , where the flow-
induced tension vanishes; this location is referred to as the neutral point. Downstream of that point the
cylinder is in compression. This at-first-sight surprising statement becomes perfectly understandable by
reference to the similar system of a pipe conveying fluid [refer to Appendix A].

The analysis is pursued in terms of the above equations, but also in terms of similar but significantly
different ones in which the scaling length is not L but Lc; thus,

z = x/Lc, v = (ρA/EI)1/2ULc = u/l, l = L/Lc, (13)
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FIGURE 2.43

f0215 Effect of length on the stability of a cylinder, (a) for a system stable at high enough l, with f = 0.5, (b) for one
unstable at high l, with f = 0.8: —, critical flow velocity for divergence; − − −, critical value for flutter by Hopf
bifurcation; · · ·, critical value for flutter of the Païdoussis type; − · −, critical value for divergence and flutter
of short cylinders; ◦,�, for cylinders of intermediate length; ×,+, for long cylinders (de Langre et al. 2007).
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FIGURE 2.44

f0220 Modal shapes of the unstable modes for f = 0.8: (a–c) divergence mode shape for l = 0.5, 2, 5, respectively;
(d–f) flutter motion for l = 0.5, 2, 5, respectively (de Langre et al. 2007).
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Figure 10: Effect of length on the stability of a cylinder, (a) for a system stable at high enough l, with f = 0.5,
(b) for a system unstable at high l, with f = 0.8: —, critical flow velocity for divergence; − − −, critical value
for flutter by Hopf bifurcation; · · ·, critical value for Päıdoussis-type flutter; − · −, critical value for divergence
and flutter of short cylinders; ◦,�, for cylinders of intermediate length; ×,+, for long cylinders; Ref 24).

etc. Numerical results are obtained via the Galerkin method4),1) and a finite difference scheme25).
Interesting new results are obtained, supplemented by some determined earlier by Semler et al.26), as
shown in Figure 10.

For a fairly blunt end (f = 0.5), it is seen in Figure 10(a) that both divergence and flutter cease to exist
for l ≥ 1. In terms of dependence on length, Semler et al.26) find that divergence occurs at u = 2.39 for
εcN = 0, yielding the asymptotic relation v = 2.39/l, which compares well with the Semler et al. results.
Similarly, v = 5.87/l for flutter, which again gives results consistent with those of Semler et al.

For a well-streamlined end, f = 0.8, on the other hand, both divergence and flutter persist to l � 10
(Figure 10(b)) and beyond, in both cases reaching a plateau for l ≥ 2 approximately. For small l the
flutter is via a Hopf bifurcation, while for l > 1 it is of the Päıdoussis coupled-mode type.

B978-0-12-397333-7.00002-4, 00002

10–1 10
l l

0 101
100

101

102

Stability

Stability

Divergence

Flutter

v

(a)

Stability Divergence

Flutter

(b)

10–1 100 101
100

101

102

FIGURE 2.43

f0215 Effect of length on the stability of a cylinder, (a) for a system stable at high enough l, with f = 0.5, (b) for one
unstable at high l, with f = 0.8: —, critical flow velocity for divergence; − − −, critical value for flutter by Hopf
bifurcation; · · ·, critical value for flutter of the Païdoussis type; − · −, critical value for divergence and flutter
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 2.44

f0220 Modal shapes of the unstable modes for f = 0.8: (a–c) divergence mode shape for l = 0.5, 2, 5, respectively;
(d–f) flutter motion for l = 0.5, 2, 5, respectively (de Langre et al. 2007).
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Figure 11: Modal shapes of the flutter modes for f = 0.8: and, top to bottom, l = 0.5, 2 and 5, respectively; Ref 24).

In Figure 11 we see the shape of the unstable mode for several values of l. The flutter mode shape is
evaluated at v � 1.1vc, neglecting the imaginary component of the frequency (the growth rate) for clarity.
These results confirm the existence of limit regimes for long cylinders where both divergence and flutter
exist, with the motion confined to a downstream portion of the cylinder, typically of size Lc.

The existence of flutter for very long cylinders contradicts previous predictions of the dynamics by
Triantafyllou & Chryssostomidis21) and Dowling27). Below, we discuss how this has come about, despite
all analyses being free of error.

In the Triantafyllou & Chryssostomidis analysis, the cause of instability is related to the disappearance
of tension, i.e. the absence of any stiffness in the system. However, in the de Langre et al.24) analysis it
is shown that the presence of even a small bending rigidity is sufficient to stabilize the system for small
enough f . Therefore, the string model is inappropriate for assessing stability of cylinders of small bending
stiffness.

First International Symposium on Flutter and its Application, 2016

The reason why flutter is not predicted in the Dowling analysis is simpler. For long cylinders, flutter is of
the Päıdoussis type, emanating from a static divergence solution, which we know does exist (Triantafyllou
& Cryssostomidis28)). In the Dowling analysis divergence is excluded, as it implies the existence of negative
tension, and thereby so is flutter.

The most important findings of this work are that (i) long cylinders with a streamlined free end are
not immune to flutter and (ii) the dynamics of long cylinders may be approximated by that of cylinders
of length Lc.

CONCLUSION

The dynamics of tubular cylindrical structures in axial flow has been reviewed briefly in this paper, focusing
on new developments, as discussed in Sections 2-4. Several other facets of the system have been explored
over the past 10-15 years, but are not discussed in this paper, for example (i) flexible cylinders being
extruded or deployed in dense fluid, (ii) self-propelled articulated cylinders modelling trains going through
tunnels, pipelines towed underwater for installation farther afield, propulsion of autonomous underwater
vehicles and aquatic drones, including a great deal of new work on fish locomotion. The interested reader
is referred to chapters 3 and 4 of Päıdoussis2).

APPENDIX A: DYNAMICS OF A PIPE CONVEYING FLUID

As discussed in Päıdoussis4),5) at length, the simplest form of the equation of motion of a pipe conveying
fluid is

EI
∂4y

∂x4
+MU2 ∂

2y

∂x2
+ 2MU

∂2y

∂x∂t
+ (M +m)

∂2y

∂t2
= 0, (A.1)

where all the symbols have the same meaning as in the main text of this paper, except that M here is the
mass of the conveyed fluid per unit length. The first term is the flexural restoring force, the third is the
Coriolis force, and the second is the follower compressive force term; cf. the equation of motion of a beam
subject to a compressive force P ,

EI(∂4y/∂x4) + P (∂2y/∂x2) +m(∂2y/∂t2) = 0. (A.2)

The viscous frictional terms in (1) do not exist for internal flow.
For a cantilevered cylinder in axial flow, we also have a tension due to traction. As discussed

in Section 4, beyond the neutral point, the flow-induced tension vanishes, and the cylinder is under
compression. The system loses stability by static divergence, and at higher flow velocities by Päıdoussis-
type coupled-mode flutter. For a short cylinder, however, flutter can arise via a Hopf bifurcation, as in
Figure 2.
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f0215 Effect of length on the stability of a cylinder, (a) for a system stable at high enough l, with f = 0.5, (b) for one
unstable at high l, with f = 0.8: —, critical flow velocity for divergence; − − −, critical value for flutter by Hopf
bifurcation; · · ·, critical value for flutter of the Païdoussis type; − · −, critical value for divergence and flutter
of short cylinders; ◦,�, for cylinders of intermediate length; ×,+, for long cylinders (de Langre et al. 2007).
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f0220 Modal shapes of the unstable modes for f = 0.8: (a–c) divergence mode shape for l = 0.5, 2, 5, respectively;
(d–f) flutter motion for l = 0.5, 2, 5, respectively (de Langre et al. 2007).
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Figure 10: Effect of length on the stability of a cylinder, (a) for a system stable at high enough l, with f = 0.5,
(b) for a system unstable at high l, with f = 0.8: —, critical flow velocity for divergence; − − −, critical value
for flutter by Hopf bifurcation; · · ·, critical value for Päıdoussis-type flutter; − · −, critical value for divergence
and flutter of short cylinders; ◦,�, for cylinders of intermediate length; ×,+, for long cylinders; Ref 24).

etc. Numerical results are obtained via the Galerkin method4),1) and a finite difference scheme25).
Interesting new results are obtained, supplemented by some determined earlier by Semler et al.26), as
shown in Figure 10.

For a fairly blunt end (f = 0.5), it is seen in Figure 10(a) that both divergence and flutter cease to exist
for l ≥ 1. In terms of dependence on length, Semler et al.26) find that divergence occurs at u = 2.39 for
εcN = 0, yielding the asymptotic relation v = 2.39/l, which compares well with the Semler et al. results.
Similarly, v = 5.87/l for flutter, which again gives results consistent with those of Semler et al.

For a well-streamlined end, f = 0.8, on the other hand, both divergence and flutter persist to l � 10
(Figure 10(b)) and beyond, in both cases reaching a plateau for l ≥ 2 approximately. For small l the
flutter is via a Hopf bifurcation, while for l > 1 it is of the Päıdoussis coupled-mode type.
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Figure 11: Modal shapes of the flutter modes for f = 0.8: and, top to bottom, l = 0.5, 2 and 5, respectively; Ref 24).

In Figure 11 we see the shape of the unstable mode for several values of l. The flutter mode shape is
evaluated at v � 1.1vc, neglecting the imaginary component of the frequency (the growth rate) for clarity.
These results confirm the existence of limit regimes for long cylinders where both divergence and flutter
exist, with the motion confined to a downstream portion of the cylinder, typically of size Lc.

The existence of flutter for very long cylinders contradicts previous predictions of the dynamics by
Triantafyllou & Chryssostomidis21) and Dowling27). Below, we discuss how this has come about, despite
all analyses being free of error.

In the Triantafyllou & Chryssostomidis analysis, the cause of instability is related to the disappearance
of tension, i.e. the absence of any stiffness in the system. However, in the de Langre et al.24) analysis it
is shown that the presence of even a small bending rigidity is sufficient to stabilize the system for small
enough f . Therefore, the string model is inappropriate for assessing stability of cylinders of small bending
stiffness.
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The reason why flutter is not predicted in the Dowling analysis is simpler. For long cylinders, flutter is of
the Päıdoussis type, emanating from a static divergence solution, which we know does exist (Triantafyllou
& Cryssostomidis28)). In the Dowling analysis divergence is excluded, as it implies the existence of negative
tension, and thereby so is flutter.

The most important findings of this work are that (i) long cylinders with a streamlined free end are
not immune to flutter and (ii) the dynamics of long cylinders may be approximated by that of cylinders
of length Lc.

CONCLUSION

The dynamics of tubular cylindrical structures in axial flow has been reviewed briefly in this paper, focusing
on new developments, as discussed in Sections 2-4. Several other facets of the system have been explored
over the past 10-15 years, but are not discussed in this paper, for example (i) flexible cylinders being
extruded or deployed in dense fluid, (ii) self-propelled articulated cylinders modelling trains going through
tunnels, pipelines towed underwater for installation farther afield, propulsion of autonomous underwater
vehicles and aquatic drones, including a great deal of new work on fish locomotion. The interested reader
is referred to chapters 3 and 4 of Päıdoussis2).

APPENDIX A: DYNAMICS OF A PIPE CONVEYING FLUID

As discussed in Päıdoussis4),5) at length, the simplest form of the equation of motion of a pipe conveying
fluid is

EI
∂4y

∂x4
+MU2 ∂

2y

∂x2
+ 2MU

∂2y

∂x∂t
+ (M +m)

∂2y

∂t2
= 0, (A.1)

where all the symbols have the same meaning as in the main text of this paper, except that M here is the
mass of the conveyed fluid per unit length. The first term is the flexural restoring force, the third is the
Coriolis force, and the second is the follower compressive force term; cf. the equation of motion of a beam
subject to a compressive force P ,

EI(∂4y/∂x4) + P (∂2y/∂x2) +m(∂2y/∂t2) = 0. (A.2)

The viscous frictional terms in (1) do not exist for internal flow.
For a cantilevered cylinder in axial flow, we also have a tension due to traction. As discussed

in Section 4, beyond the neutral point, the flow-induced tension vanishes, and the cylinder is under
compression. The system loses stability by static divergence, and at higher flow velocities by Päıdoussis-
type coupled-mode flutter. For a short cylinder, however, flutter can arise via a Hopf bifurcation, as in
Figure 2.
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10) Kheiri, M., Päıdoussis, M.P.: Dynamics and stability of a flexible pinned-free cylinder in axial flow.
J. Fluids Struct., Vol. 55, pp. 204-217, 2015.
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