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Conventionally flutter boundaries have been predicted based on the modal damping. However, 
the accurate estimation of damping is difficult and, in some cases, the damping coefficient is 
not necessarily an appropriate measure for the flutter prediction. To overcome the defect of the 
damping method, authors proposed an alternative parameter, the flutter margin for 
discrete-time systems (FMDS), which is approximately equivalent to Zimmermann's flutter 
margin, and has suitable properties as the flutter prediction parameter. Since it was applicable 
only to the binary flutter, we have attempted to extend the FMDS so as to be applicable to a 
higher-mode system. In this paper we give an overview of FMDS and attempt its extension to 
a higher-mode system.  
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1. INTRODUCTION 

Since flutter is the self excited vibration which causes a fatal damage to an airfoil, we have to pay 
utmost attention to the occurrence of flutter in the airplane design and development. At the final stage of 
airplane development, therefore, wind tunnel and flight tests are conducted to check that flutter does not occur 
in the flight envelop, and to evaluate the flutter boundary speed. Since the flutter tests are generally carried out 
in the safety range far below the critical point to avoid structural damage during the tests, the flutter boundary 
is predicted from the behavior of some stability criteria plotted against flight speed or dynamic pressure as 
shown in Fig.1. The stability margin has been conventionally evaluated by damping of aeroelastic modes. For 
a reliable prediction of flutter, it is quite significant to measure the modal damping as accurate as possible 
from flight test data. However an accurate evaluation of damping of a wing in an airstream is not necessarily 
an easy task, so that lots of works on the flutter prediction have been directed to improve the accuracy or 
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efficiency of damping estimation. It is pointed out, however, that damping is not always an appropriate index 
to predict the flutter boundary1). Figure 2 depicts the behavior of damping against the dynamic pressure for 
three types of flutter. For the explosive type of flutter, it shows that damping gives no sign of instability up to 
the neighborhood of the critical speed.  

As an alternative approach, Zimmerman and Weissenburger1) attempted to propose a more suitable 
parameter for the flutter prediction than damping, and introduced "Flutter Margin". It is derived from Routh's 
stability test, which is a method to check the stability of system based on the characteristic equation. The 
parameter decreases almost monotonically toward zero as the dynamic pressure increases. This is a very 
favorable property for the flutter prediction. However, it is applicable only to binary-flutter. The extension to a 
three-mode system was attempted by Price and Lee2).  

Since the Flutter Margin is defined based on the continuous-time system, it is not convenient for 
digital processing. In the discrete-time domain, Matsuzaki and Ando3) proposed to use Jury’s stability 
parameters as the indicator of stability margin, which is stability criteria for the discrete-time system and are 
calculated from the discrete-time characteristic equation. Jury's stability parameter starts to decrease at lower 
speed range than damping, but it is sensitive to the noise and filter setting. Then authors 4) modified Jury’s 
parameters and introduced the new indicator called "Flutter Margin for the Discrete-time System (FMDS) ". 
We showed that it was approximately equivalent to Zimmerman's Flutter Margin, so that it decreases almost 
monotonically as the dynamic pressure increases for the simple two-dimensional wing model. Though the 
FMDS has superior properties as the flutter prediction parameter, it is applicable to the data which include 
only two coupling modes similarly to Flutter Margin. This limitation should be relaxed to make FMDS 
method practicable to the flutter tests. Bae et al.5) attempted the extension of the FMDS to the multimode 
system. As mentioned by McNamara and Friedmann6), however, a mathematical foundation or a theoretical 
consideration of the parameter introduced is not given in Ref.5, and furthermore it is not consistent with the 
FMDS for the two-mode system. Therefore the extension of the FMDS is still an open problem. 

The purpose of this work is to extend the FMDS to the three-mode system. A new flutter prediction 
parameter is proposed based on Jury’s stability determinant method. The properties of the parameter are 
investigated using wing models with three- and four-modes. Then to check the feasibility for an actual data we 
show the application results to the wind tunnel flutter test data which are measured under the stationary and 
non-stationary conditions.  

 
2. REVIEW OF FLUTTER PREDICTION METHODS 

In this section we will review Zimmermann's Flutter Margin1), Jury's stability parameter 
method3), and FMDS4). 

(1) Flutter Margin 
From the modal damping and frequency, we can obtain the characteristic roots of the j-th mode. 

*,    j j j j j js i s i        

The equation corresponding to the roots, sj and sj
*, is expressed as follows. 

    * *
1 1 2 2 0s s s s s s s s      

The expansion of it gives the following characteristic equation. 

 4 3 2
3 2 1 0 0s Ps P s Ps P      (1) 

Combining Routh’s stability parameters for Eq.1, Zimmermann defined the flutter margin:  
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The value of F indicates the stability margin, that is, F is positive in the subcritical speed range and becomes 
zero at the flutter boundary. Using the relation between roots and coefficients of equation, Eq.2 is also 
expressed as follows. 

2 22 2 2 2 2 2 2 2
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This is a convenient expression to evaluate the value of F from the aeroelastic characteristics estimated at the 
experiments. Moreover, from the analysis using a two-dimensional wing model with a quasi-steady 
aerodynamics, the Flutter Margin is shown to be a quadratic function of the dynamic pressure q. 

    2

2 1 0L LF C C q C C q C
 

    (3) 

 
(2) Jury's stability parameter 

Nowadays we generally acquire and treat data at a digital form. Since the Flutter Margin, however, is 
defined in the continuous-time domain, it is not adequate to cope with such a digital system. In Ref.3 
Matsuzaki proposed to use Jury's stability criteria to measure the stability margin.  

Using the time-series analysis method, sampled data {y1, y2, y3,...} can be identified by the following 
Autoregressive Moving Average (ARMA(n, m) ) model.  

1 1 2 2 1 1 2 2t t t n t n t t t t m t my y y y e e e e                     

where yt is the data observed at time t, et a white noise. The order n of AR part (the left hand side) is twice the 
number of vibration modes M, that is, n=2M, and the order m of MA part (the right hand side) is less than n. 
Generally the optimal order n and m are decided by the Akaike Information Criteria (AIC). The AR part 
corresponds to the following characteristic polynomial of the discrete-time system.    

2 2 1 *
1 2 1 2

1

( ) ( )( )
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G z z z z z z z z  
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         

where zi is the characteristic root of the i-th mode, and the root with a superscript * is the complex conjugate. 
According to Jury's stability test (determinant method), the system is stable if and only if all the 

following conditions are satisfied. 

 
 

1 2 1 2

1 2 1 2

(1) 1 0
( 1) 1 0

det 0,     ( 1,3, 2 1)

det 0,     ( 1,3, 2 1)

M M

M M

k k k

k k k

G
G

F X Y k M

F X Y k M

  
  









     
      

    

    

 

where matrices Xk and Yk are 
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In the flutter test, the system is stable at the subcritical speed range, so that all the above conditions are 
satisfied. At the flutter boundary the system becomes unstable, and one of the values reaches zero. Among 
them, parameter F-

2M-1 is expressed as follows7). 

 
2

2
2 1 1 2( ) (1 | | ) ( , , )

M M

M i j i M
i j i j

F z z z z f z z


 

       (4) 

where zM+i=zi
* for i=1, 2, ... M, and f(z1,...,z2M) includes the remaining terms, which does not become zero at 

the flutter boundary. Because of the first factor in the right hand side of Eq.4, this parameter becomes zero 
when one of zi reaches a unit circle, that is, the occurrence of flutter. Therefore we can use F-

2M-1 for the flutter 
prediction, and this is Jury's stability parameter proposed in Ref.3    

 
(3) Flutter Margin for the Discrete-time System (FMDS)  

After preprocessing through the band-pass filter so as to include only the coupling mode which causes 
flutter, sampled data is identified by the ARMA(4, m) model 

 1 1 2 2 3 3 4 4 1 1 2 2t t t t t t t t t m t my y y y y e e e e                      (5) 

where the order m is less than 4 and is determined by AIC. From the left hand side the following characteristic 
equation of the system is obtained. 

2
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Jury's stability parameter for this system is  
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and 1~ 4 are the coefficients of Eq.5. 
Instead of F3

-, however, we construct the following parameter combining the stability parameters.  
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The denominator is always positive at and below the flutter speed, and the numerator is Jury's stability 
parameter, so that Fz is positive in the subcritical range and becomes zero at flutter boundary.  

The analysis using a two-dimensional wing model shows that Eqs.2 and 6 have approximately the 
relation  

   24 4
2 1 0z L LF T F T C C q C C q C

 
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where T is a sampling interval. Therefore the parameter Fz has a similar property to the flutter margin, that is, 
the value of Fz decreases monotonically and almost linearly toward zero in the subcritical range with the 
increase of the dynamic pressure. 
 
3. EXTENSION OF FLUTTER PREDICTION METHOD 

Though the FMDS has a superior property for the flutter prediction, it is applicable only to the 
two-mode system as shown in the definition. In this section, we attempt to extend it to the three-mode system. 

The data having three modes is identified by the following ARMA(6, m) model instead of Eq.5. 

 1 1 2 2 6 6 1 1t t t t t t t m t my y y y e e e                  (7) 

Therefore, we obtain the characteristic equation 
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Here we propose a new flutter prediction parameter using Jury's stability criteria 
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where X5 and Y5 are matrices whose elements consists of the coefficients of Eq.7. 
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We can express the denominator of Eq.8 using the characteristic roots zi as  
2 2 2
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If the system is stable, the absolute value of the root is less than 1, so that the above equation has a positive 
value at and below the critical speed. The numerator of Eq.8 is expressed as 
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      



 

where z4=z1
*, z5=z2

* and z6=z3
*. Therefore, it has a positive value as long as all roots locate in a unit circle, and 

becomes zero when one of the roots reaches a unit circle. In the flutter prediction, this means that the 
parameter Fz

(3) is positive in the subcritical range and becomes zero at the speed of flutter onset. 
 
4. ANALYSIS AND SIMULATION USING TWO-DIMENSIONAL WING MODEL 

To study the property of Fz
(3), we carry out the analysis using a three-degree-of-freedom wing model 

illustrated in Fig. 3. The values used in this model are a = -0.4, c = 0.6,  = m /(b2) = 40, S /(mb) = 0.2,  
S /(mb) = 0.0125, r2=I /(mb2) = 0.25, r2=I /(mb2) = 0.00625, 50h hK m   (rad/sec),  

100K I     (rad/sec) and K I    .  Here we compare the property of damping, Jury's 
stability parameter F5

-and 3 mode FMDS Fz
(3). For this purpose, we use two different values for that is, 

(model 1) 200 (rad/sec), and (model 2) 170 (rad/sec). These models cause the different type of flutter.  
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The results of damping, Jury's stability parameter, 
and FMDS for 3-mode system Fz

(3) are depicted in Figs. 
4-6, respectively. In these figures the horizontal axis 
gives normalized dynamic pressure q/qF, that is, the 
flutter boundary is q/qF =1. As shown in Fig. 4, for model 
1 the first and second mode are coupling and the first 
mode damping become unstable, whereas the third mode 
damping causes flutter for model 2. Model 1 is a 
moderate type of flutter, and model 2 is a mild type. 
These figures show that the critical mode can change, 
and the type of flutter also can change with a slight 
deference of the wing configuration. The critical mode 
damping of model 1 starts to decrease around q/qF = 0.8, 
so that the available range for the flutter prediction is 
higher than q/qF = 0.8. 

The curve of Jury’s stability parameter 5F   for both models have a similar pattern as shown in Fig. 5 
and the value starts to decrease around q/qF = 0.5. Figure 6 shows that also the values of the parameter Fz

(3) has 
a similar pattern for both models, but unlike damping and Jury's stability parameter, Fz

(3) decreases 
monotonically in the whole subcritical range. From this analysis, we can use all data in the subcritical range to 
predict flutter boundary by Fz

(3). These results demonstrate that if we use Fz
(3) as the flutter prediction 

parameter, we can make an accurate and reliable prediction of flutter in comparison with the method using 
modal damping or Jury's stability parameter. 

    
Figure 4: Damping of the wing model 

    
Figure 5: Jury's stability parameter F5
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Figure 3: Two-dimensional wing model 
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Figure 6: Parameter Fz

(3) of the wing model 
 

As the next analysis we use the wing model given in Ref.8, which is used for a quaternary flutter 
analysis of the wing of a large transport aircraft. It has four vibration mode, 1) fundamental wing bending, 2) 
first overtone wing bending, 3) fundamental wing torsion, and 4) aileron deflexion. Figures 7 and 8 show 
modal frequencies and damping, respectively. The second mode is critical and starts to decrease around 
q/qF=0.5 as shown in Fig. 8. Here we chose 3 modes to calculate Fz

(3), in which the second mode should be 
included. Figure 9 depicts the value of Fz

(3) obtained from the lowest 3 modes, and Fig. 10 is the result 
obtained from 2nd to 4th mode. The value decreases monotonically toward zero for both cases. Therefore, it is 
obvious that Fz

(3) is superior to damping for the flutter prediction. 
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Figure 7: Modal frequencies Figure 8: Modal damping 

Figure 9: Fz
(3) obtained from 1-3 modes Figure 10: Fz

(3) obtained from 2-4 modes 
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5. APPLICATION TO FLUTTER TEST DATA 
To check the feasibility of this method in an actual situation, we apply it to the wind tunnel flutter test 

data. Figure 11 is the planform of a wing model, which is made of aluminum alloy flat plate of 2 mm 
thickness, and has a double-wedge at the leading and trailing edges. The response to flow turbulence is 
measured by strain gauge stuck on the surface of the wing.  

The lowest three natural frequencies measured by the vibration test and the FEM analysis are given in 
Table 1. The power spectral density at q = 75.7 kPa depicted in Fig. 12 shows that the data have strong noise 
in the lower frequency than 25 Hz. Figure 13 is the modal frequencies of the lowest 4 modes at each dynamic 
pressure. To include the lowest three modal frequencies and cut the low frequency noise, we apply the digital 
highpass filter with a cut off frequency 30 Hz. 

The Mach number is fix at M = 2.51 for all tests. The data are sampled at an interval T = 2 ms from the 
analog data recorder. The flutter boundary observed by the experiment is qF = 113.5 kPa, where flutter occurs 
by a coupling of the first and the second modes, and the second mode becomes unstable. 

Wind tunnel tests are conducted (1) under the stationary condition and (2) the non-stationary condition. 
In the stationary tests, the data are measured at 11 points of dynamic pressure from q = 75.7 to 99.4 kPa and 
the number of data used is N = 6000, which corresponds to the measurement of 12 sec. In the non-stationary 
test, the dynamic pressure is swept from q = 76.0 to 116.6 kPa at a rate of 2.6 kPa/sec. 
 

   
 
 

 
 
Table 1  Modal frequency of wing model (Hz) 

Mode No. FEM Vibration test 
1  27.9  27.2 
2 145.7 142.0 
3 207.1 192.3 

 
 Figure 11: Planform of wing model 
 

 
Figure 12: Power spectral density of data at q=75.5  Figure 13: Modal frequencies  
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   Figure 14: Estimated Fz

(3) and the flutter prediction Figure 15: Estimated modal damping 
 

 
            Figure 16: Estimated Fz

(3) Figure 17: Estimated modal damping  

 
(1) Results of stationary tests 

Figure 14 depicts the estimated value of Fz
(3) plotted against the dynamic pressure. These values 

decrease almost linearly as the dynamic pressure increases. Therefore a linear fitting drawn by a solid straight 
line gives a good prediction of flutter boundary qF. The actual flutter boundary observed in the experiment is 
marked by a symbol ‘x’. The regression analysis for these estimated data gives the straight line shown in 
Fig.14. The intersection of this line with the horizontal axis gives the prediction of the flutter boundary, that is,  
ˆ 114.3Fq   kPa, which is 0.7% higher than the actual value. The goodness of fit for this regression line is 

R2=0.986. This means that the linear fitting is reasonable. 
In Fig.15 the estimated values of modal damping are depicted. The first mode has a little upward trend, 

and the other two modes show no trend in evidence from the tests in this range. Therefore, it is impossible to 
predict the flutter boundary, the point shown by ‘x’, based on these estimated values. We need to conduct the 
tests at higher dynamic pressure than this to predict the flutter boundary based on the modal damping. 

 
 (2) Results of non-stationary test 

For non-stationary data, we use a recursive identification procedure to estimate the parameters in real 
time, in which the coefficients of the ARMA model are updated at every sampling instance, and the value of 
Fz

(3) and the modal damping is also renewed. The estimation result of Fz
(3) is given in Fig.16, where circle 

symbols are the values estimated in the stationary tests. This figure shows that the values estimated 
recursively on a real-time procedure are the similar as the one of the stationary case, and decreases almost 
linearly toward zero. From this result, Fz

(3) is an effective parameter to monitor the stability margin using with 
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the a real-time estimation method, and gives a accurate and reliable prediction of flutter based on the 
recursively estimated values.  

The real-time estimation of modal damping, however, gives quite different values from the results of 
the stationary tests as shown in Fig.17, which shows that the estimation of damping is sensitive to noise or test 
condition. Though the accuracy of values estimated is not clear, the second mode damping starts to decline 
around q=90 kPa. But we are not sure that these estimations are reliable or not. 
 
6. CONCLUDING REMARKS 

A new flutter prediction parameter applicable to the three-mode system was proposed. The analysis 
using wing models with three- and four-degrees of freedom showed that the value decreased monotonically 
and became zero at the flutter speed. Depend on a wing configuration, the critical mode changes, while Fz

(3) 
was not affected. Furthermore, the feasibility for actual flutter tests was examined by the analysis of the wind 
tunnel test data under the stationary and non-stationary conditions, whereas damping method did not work for 
the same test data. 

For the two-mode FMDS, we have derived approximately the relation between Fz and the dynamic 
pressure q through Zimmerman's Flutter Margin. However, we have no such relation for the parameter Fz

(3) in 
this moment, and that is a problem we have to solve from now on. Also we need to consider how to expand 
FMDS to the system higher than 3-mode based on the framework of Jury's stability criterion. 
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