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Flutter and divergence instabilities are theoretically and experimentally analyzed in elastic 
structures with internal and external damping. Despite of the fact that only the former (and not 
the latter) was believed to be a destabilizing effect, it is theoretically demonstrated that the 
external damping plays a role similar to internal damping, so that both yield a pronounced 
destabilization paradox (in the Ziegler sense). 
This finding and other features of the Beck and Pflüger columns are substantiated by an 
experimental campaign in which the follower forces are obtained via dry friction with a newly 
designed experimental apparatus. 
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1. INTRODUCTION 

Flutter and divergence instabilities may occur in elastic structures subject to tangential follower loads 
and well-known examples are the Ziegler double pendulum and the Beck1) and Pflüger2) columns. A key point 
in these mechanical frameworks is the realization of the follower force, which has been long debated and often 
considered of impossible practical realization, as discussed in detail by Elishakoff3). 

The controversy about the realization of the force was definitively solved by Bigoni and Noselli4), who 
showed how to realize a follower tangential force in the Ziegler pendulum via Coulomb friction. Their idea, 
sketched in Fig. 1, was to provide the follower force through a wheel of negligible mass mounted at the end of 
the Ziegler double pendulum and constrained to slide against a frictional plane. 

 

 

Figure 1: Sketch of the experiment set-up to realize a follower tangential force in the Ziegler double pendulum          
(figure adapted from [4]). 

 

2. ZIEGLER’S PARADOX DUE TO INTERNAL AND EXTERNAL DAMPING 
The linearized equations of motion for the Ziegler pendulum, made up of two rigid bars of length l, 

loaded by a follower force P, when both the internal and external damping are present, have the form5) 
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𝑴𝑴�̈�𝒙 + 𝑐𝑐𝑖𝑖𝑫𝑫𝒊𝒊�̇�𝒙 + 𝑐𝑐𝑒𝑒𝑫𝑫𝒆𝒆�̇�𝒙 + 𝑲𝑲𝒙𝒙 = 0, (1) 

where a superimposed dot denotes time derivative and ci and ce are the coefficients of internal and 
external damping, respectively, in front of the corresponding matrices Di, De 

 
𝑫𝑫𝒊𝒊 = ( 2 −1

−1 1 ),     𝑫𝑫𝒆𝒆 = 𝑙𝑙3

6 (8 3
3 2), (2) 

and M and K are respectively the mass and the stiffness matrices, defined as 
 

𝑴𝑴 = (𝑚𝑚1𝑙𝑙2 + 𝑚𝑚2𝑙𝑙2 𝑚𝑚2𝑙𝑙2

𝑚𝑚2𝑙𝑙2 𝑚𝑚2𝑙𝑙2) ,     𝑲𝑲 = (−𝑃𝑃𝑙𝑙 + 2𝑘𝑘 𝑃𝑃𝑙𝑙 − 𝑘𝑘
−𝑘𝑘 𝑙𝑙 ), (3) 

in which k is the elastic stiffness of both viscoelastic springs acting at the hinges. Assuming a time-
harmonic solution to the Eq. (1) in the form 𝒙𝒙 = 𝒖𝒖 𝑒𝑒𝜎𝜎𝜎𝜎 and introducing the non-dimensional parameters 

 
𝜆𝜆 = 𝜎𝜎𝑙𝑙

𝑘𝑘 √𝑘𝑘𝑚𝑚2,     𝐸𝐸 = 𝑐𝑐𝑒𝑒
𝑙𝑙2

√𝑘𝑘𝑚𝑚2
,     𝐵𝐵 = 𝑐𝑐𝑖𝑖

𝑙𝑙√𝑘𝑘𝑚𝑚2
,     𝐹𝐹 = 𝑃𝑃𝑙𝑙

𝑘𝑘 ,     𝜇𝜇 = 𝑚𝑚2
𝑚𝑚1

, (4) 

an eigenvalue problem is obtained, which eigenvalues λ are the roots of the characteristic polynomial. 
In the undamped case, when 𝐵𝐵 = 0 and 𝐸𝐸 = 0, the pendulum is stable, if 0 ≤ 𝐹𝐹 ≤ 𝐹𝐹𝑢𝑢−, unstable by 

flutter, if 𝐹𝐹𝑢𝑢− ≤ 𝐹𝐹 ≤ 𝐹𝐹𝑢𝑢+, and unstable by divergence, if 𝐹𝐹 > 𝐹𝐹𝑢𝑢+, where 

𝐹𝐹𝑢𝑢
±(𝜇𝜇) = 5

2 + 1
2𝜇𝜇 ± 1

√𝜇𝜇. (5) 

In the case when only internal damping is present (𝐸𝐸 = 0) the Routh-Hurwitz criterion yields the 
flutter threshold as 

 
𝐹𝐹𝑖𝑖(𝜇𝜇, 𝐵𝐵) = 25𝜇𝜇2 + 6𝜇𝜇 + 1

4𝜇𝜇(5𝜇𝜇 + 1) + 1
2 𝐵𝐵2. (6) 

The limit for vanishing internal damping is 
 

𝑙𝑙𝑙𝑙𝑚𝑚 
𝐵𝐵→0

𝐹𝐹𝑖𝑖(𝜇𝜇, 𝐵𝐵) = 𝐹𝐹𝑖𝑖
0(𝜇𝜇) = 25𝜇𝜇2 + 6𝜇𝜇 + 1

4𝜇𝜇(5𝜇𝜇 + 1) . (7) 

Let us evaluate the difference between the flutter onset in the absence of damping and that in the limit 
of vanishing internal damping: 𝛥𝛥𝑖𝑖 = 𝐹𝐹𝑢𝑢− − 𝐹𝐹𝑖𝑖

0. We find that for all non-negative values of μ 
 

𝛥𝛥𝑖𝑖 = 1
4

𝜇𝜇(5√𝜇𝜇 − 2)2 + (2√𝜇𝜇 − 1)2 + 6𝜇𝜇
𝜇𝜇(5𝜇𝜇 + 1) > 0. (8) 

Hence, the critical flutter load in the limit of vanishing internal damping is smaller than that of the 
undamped system for all physically possible mass distributions5). For instance, at 𝜇𝜇 = 0.5 corresponding to the 
original Ziegler problem4), the drop in the critical load is 

 
𝛥𝛥𝑖𝑖 = 57

28 − √2 ≈ 0.622. (9) 

The discrepancy between the flutter onset in the ideal (undamped system) and in the dissipative system 
with the vanishing internal damping is known as the Ziegler destabilization paradox. Since its discovery, it is 
widely believed that such a dissipation-induced destabilization is a privilege of internal damping only5). 

 

JAXA Special Publication　JAXA-SP-16-008E152

This document is provided by JAXA.



In a route similar to the above, by employing the Routh-Hurwitz criterion, the critical flutter load of 
the Ziegler pendulum with the external damping 𝐹𝐹𝑒𝑒0(𝜇𝜇, 𝐸𝐸) can be found and its limit calculated when 𝐸𝐸 → 0, 
which provides the result 

 

𝐹𝐹𝑒𝑒0(𝜇𝜇) =
122𝜇𝜇2 − 19𝜇𝜇 + 5 − (2𝜇𝜇 + 1)√112𝜇𝜇2 + (13𝜇𝜇 − 5)2

5𝜇𝜇(8𝜇𝜇 − 1) . (10) 

Calculating the discrepancy 𝛥𝛥𝑒𝑒 = 𝐹𝐹𝑢𝑢− − 𝐹𝐹𝑒𝑒0, we establish that at 𝜇𝜇 ≥ 0 
 

𝛥𝛥𝑒𝑒 =
2(2𝜇𝜇 + 1)√112𝜇𝜇2 + (13𝜇𝜇 − 5)2 − (11𝜇𝜇 − 5)(4𝜇𝜇 − 3)

10𝜇𝜇(8𝜇𝜇 − 1) − 1
√𝜇𝜇

≥ 0. (11) 

For instance, 𝛥𝛥𝑒𝑒 = (√281− 11)/20 ≈ 0.288 in the limit 𝜇𝜇 → ∞, corresponding to 𝑚𝑚2 = 0, 𝑚𝑚1 ≠ 1. 
Consequently, the external damping yields destabilization and a finite drop in the critical flutter load for all 
mass distributions except a finite number of mass distributions at which 𝛥𝛥𝑒𝑒 = 0. Therefore, both internal and 
external damping leads to the qualitatively the same Ziegler‟s destabilization paradox for almost all physically 
plausible mass distributions, in contrast to the common belief. The same result is valid for the continuous 
analogue of the Ziegler pendulum – the Pflüger column loaded by the follower force8). 

 
2. THE EXPERIMENTAL REALIZATION OF THE BECK COLUMN 

The experimental realization by Bigoni and Noselli was found unsuitable for the analysis of the Beck 
and the Pflüger columns, because if the ellipse of inertia of the cross-section of the rod to be tested is 
elongated, lateral torsional buckling occurs and if the ellipse of inertia of the cross-section of the rod is a 
circle, flexure involves large deformation, too large to produce the force necessary to flutter. Therefore, a new 
apparatus has been designed, following the scheme reported in Fig. 2 and realized. 

 

Figure 2: Sketch of the experimental setup to realize a follower tangential force in the Pflüger column. 
 
The elastic structure is installed over a continuous tape that can move with a fixed velocity v. The 

force P is transmitted to the free end of the beam with a dead load W. The friction of the wheel with the tape 
generates the tangential follower force, as in the Ziegler model. 

The new experimental setup allows the first realization of follower tangential forces on elastic 
structures and allows a systematic investigation of flutter, divergence, and dissipation-induced instabilities6,7) 
changing the dead weight, the mass ratio or the velocity of the plane. In these experiments, internal and 
external damping (respectively the viscosity of the material and the air drag for instance) play a chief role, so 
that the effects associated to these two types of damping have been thoroughly investigated. From theoretical 
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point of view it is shown that external damping plays a destabilizing role qualitatively similar to internal 
damping8), a feature previously not believed5), and which is now also experimentally confirmed. 

In Fig. 3 are shown the discrete system (Ziegler pendulum) and the continuous one (Pflüger column) 
mounted on the new testing machine realized. 

 

Figure 3: a) Ziegler column mounted on the experimental device, b) detail of the free end of the Pflüger 
column realized in the laboratory. 

 
The Fig. 4 is a frame taken from a test with the new device. The beam shows clearly a flutter 

instability for a certain amount of load, and the amplitude of the motion depends on the velocity of the plane 
under the structure. 

Figure 4: Deformed shape of the Pflüger column in flutter condition. 

a) 

b) 
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4. CONCLUSION 
A theoretical framework and an experimental setup have been proposed for the investigation of flutter 

and divergence instabilities in elastic continuous structures, in the presence of internal and external damping. 
Results confirm recent a classical theoretical findings that were never experimentally verified and pave the 
way to the realization of self-oscillating mechanisms of completely new design. 
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