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Toward accurate prediction of transonic wing flutter phenomenon, an implicit spectral volume 
method is extended to employ the ALE formulation for moving and deforming grid, and 
unstructured hybrid meshes for higher computational efficiency. The developed aeroelastic 
analysis code is applied to compute the transonic flutter of the AGARD 445.6 wing and a 
rectangular unswept wing. In this study, modal structure analysis is employed. The eigen 
frequencies and mode shapes of each mode in a reference are employed for the AGARD 445.6 
wing flutter analysis. For the rectangular wing flutter analysis, we make the structure plate 
model using NASTRAN. It is shown that the computed flutter speed index and flutter 
frequency agree well with the experimental data at subsonic freestream condition, and 
considering viscous effects improve the computed results in supersonic freestream regime for 
the AGARD 445.6 wing. In the rectangular flutter case, the flutter speed index at transonic dip 
cannot be obtained quantitatively. Accounting for viscous effects slightly improve the flutter 
speed index. On the other hand, the flutter frequency is significantly improved by solving 
RANS equations at the transonic dip condition compared with that obtained by Euler 
computation. The cause for this improvement is under consideration.  
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1. INTRODUCTION 
Wing flutter is an aeroelastic phenomenon where excitation and deformation of wing become 

significant due to coupling of aerodynamic, elastic, and inertial forces1). Due to the strong demands for 
environmentally friendly aircrafts, new technologies, such as high-aspect-ratio wings and high-bypass geared 
turbofan engines are employed to realize low fuel burn, low noise and low emission. These heavier engines 
may cause flutter in combination with high-aspect-ratio wings because of low bending and torsional stiffness. 
Because flutter can lead to destruction of wing, accurate aeroelastic analyses of wing flutter are very important 
for design of recent commercial airplanes which fly through transonic flow regime where dynamic pressure is 
large.  

In numerical analyses of wing flutter, the doublet-lattice method (DLM)2) coupled with structural code 
is efficiently employed but it provides poor accuracy in transonic flowfields where shock waves emerge. Use 
of high fidelity CFD methods in aeroelastic analyses is really desired to take the nonlinear effects into account 
so far as the computational cost remains acceptable for aircraft design routines. 

Arizono et al.3) conducted experiments and numerical analyses of flutter for wing-pylon-nacelle 
configuration. They used Euler solver in numerical analyses and rough trends of flutter boundaries are 
estimated. Morino et al.4) also calculated flutter for wing-pylon-nacelle configuration using reduced-order 
model (ROM) compared with full-order inviscid CFD. These researches show the two types of flutter trend 
for wing-pylon-nacelle configuration; mild flutter (hump mode) observed in transonic regime including 
transonic dip and hard flutter observed in high Mach number. These trends should be accurately predicted for 
real aircraft development, so higher spatial accuracy and geometrical flexibility are important for flutter 
computations around such complicated real configuration. Unstructured CFD methods surely provide 
geometrical flexibility, but generally their spatial accuracy seems insufficient. 

In a couple of decades, a lot of high-order unstructured mesh methods are developed and improved. 
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Discontinuous Galerkin (DG) method5) is the most widely used high-order numerical method employing finite 
element discretization. Spectral Volume (SV) method6) is based on the idea of subdividing each computational 
cell into sub-cells employing finite volume discretization. Flux Reconstruction (FR) method7) is the latest 
high-order numerical method amounts to evaluating the straightforward derivative of a piecewise polynomial 
with correction at the cell interface employing finite difference discretization. In this study, we employ SV 
method because hierarchical cell structure can be utilized for h-adaptive strategy and sub-cell-based shock 
capturing8). In flutter analyses, the level of flutter boundary and transonic dip depends on the shock wave 
location, so numerically capturing the shock wave has great significance. In the conventional SV method, for 
a second-order of spatial accuracy, as many as four degrees of freedom (DOFs) are introduced into a 
tetrahedral cell to reconstruct a linear polynomial of dependent variables. A tetrahedral cell volume is divided 
into four sub-cells and the conservative variables in these sub-cells correspond the DOFs. The time evolution 
of these DOFs in each cell is computed. For high Reynolds number flowfields, thin boundary layer needs to be 
resolved. In order to reduce the number of computational cells and also to retain the spatial accuracy of the 
conventional finite volume methods, it is customary to employ prismatic cell layers on the solid wall. 
Although the spatial accuracy of the second-order SV method is strictly retained even for skewed tetrahedral 
computational cells, we proposed to formulate the SV discretization for prismatic computational cells to 
reduce the total number of computational cells in the boundary layer region9). Moreover, in flutter analyses, 
we need to compute flowfields using moving and deforming meshes. The arbitrary Lagrangian-Eulerian 
(ALE) method solving the geometric conservation law (GCL)10) is implemented in the present SV code. 

In section 2, the details of the present aeroelastic analysis code based on the spectral volume 
discretization is described. In section 3, the computed results using the developed aeroelastic code are shown 
for the AGARD 445.6 wing flutter and the rectangular wing flutter. Finally we summarize the present study in 
section 4. 
 
2. NUMERICAL METHOD 
(1) Arbitrary Lagrangian-Eulerian (ALE) form 
The unsteady, three-dimensional, compressible Navier-Stokes equations in the conservative form can be 
expressed as  

 𝜕𝜕𝑸𝑸
𝜕𝜕𝜕𝜕 + 𝛁𝛁 ⋅ 𝑭𝑭(𝑸𝑸) − 𝛁𝛁 ⋅ 𝑭𝑭𝐯𝐯(𝑸𝑸,𝛁𝛁𝑸𝑸) = 0, (1) 

where 𝑸𝑸 represents the vector of conservative variables, 𝑭𝑭 the vectors of inviscid fluxes, and 𝑭𝑭𝐯𝐯  the 
vectors of viscous fluxes. Integration of Eq. 1 over a moving and deforming control volume Ω(𝑡𝑡) yields 

 ∫ 𝜕𝜕𝑸𝑸
𝜕𝜕𝜕𝜕Ω

𝑑𝑑𝑑𝑑 + ∫ (𝑭𝑭 − 𝑭𝑭𝐯𝐯) ⋅ 𝒏𝒏𝑑𝑑𝑑𝑑
𝜕𝜕Ω

= 0. (2) 

Applying the differential identity to the time derivative term gives 

 
𝜕𝜕
𝜕𝜕𝜕𝜕∫𝑸𝑸

Ω
𝑑𝑑𝑑𝑑 = ∫ 𝜕𝜕𝑸𝑸

𝜕𝜕𝜕𝜕Ω
𝑑𝑑𝑑𝑑 + ∫ 𝑸𝑸

𝜕𝜕Ω
{𝒙̇𝒙 ⋅ 𝒏𝒏}𝑑𝑑𝑑𝑑, (3) 

where 𝒙̇𝒙 and 𝒏𝒏 denote the grid velocity and the unit normal vector of the surface, respectively. Substituting 
Eq. 3 into Eq. 2, we obtain 

 
𝜕𝜕
𝜕𝜕𝜕𝜕∫𝑸𝑸

Ω
𝑑𝑑𝑑𝑑 + ∫ (𝑭𝑭 − 𝑭𝑭𝐯𝐯 − 𝑸𝑸𝒙̇𝒙) ⋅ 𝒏𝒏

𝜕𝜕Ω
𝑑𝑑𝑑𝑑 = 0. (4) 

Assuming that 𝑸̅𝑸 represents the cell-averaged values, Eq. 4 becomes 

 
𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑉𝑉𝑸̅𝑸) = −∫ (𝑭𝑭 − 𝑭𝑭𝐯𝐯 − 𝑸𝑸𝒙̇𝒙) ⋅ 𝒏𝒏

𝜕𝜕Ω
𝑑𝑑𝑑𝑑, (5) 
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𝜕𝜕𝑸̅𝑸
𝜕𝜕𝜕𝜕 𝑉𝑉 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑸̅𝑸 = −∫ (𝑭𝑭 − 𝑭𝑭𝐯𝐯 − 𝑸𝑸𝒙̇𝒙) ⋅ 𝒏𝒏
𝜕𝜕Ω

𝑑𝑑𝑑𝑑, (6) 

 𝜕𝜕𝑸̅𝑸
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑸𝑸
𝑉𝑉
̅

= 𝑹𝑹, (7) 

where we define the residual operator 

 𝑹𝑹 = − 1
𝑉𝑉∫ (𝑭𝑭 − 𝑭𝑭𝐯𝐯 − 𝑸𝑸𝒙̇𝒙) ⋅ 𝒏𝒏

𝜕𝜕Ω
𝑑𝑑𝑑𝑑 (8) 

for convenience.  
 
(2) Geometric Conservation Law (GCL) 

Assuming that 𝑸𝑸 is constant over the entire domain, we obtain 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∫ (𝒙̇𝒙 ⋅ 𝒏𝒏)

𝜕𝜕Ω
𝑑𝑑𝑑𝑑. (9) 

This relation indicates the geometric conservation law10) in which the time derivative of cell volume is 
coincides with the surface integral of projected grid velocity. In the finite volume discretization, in order to 
satisfy Eq. 9, the projected grid velocity at each cell interface is evaluated by 

 𝒙̇𝒙 ⋅ 𝒏𝒏 = (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 ) /𝑆𝑆, (10) 

where 𝑆𝑆 represents the area of cell interface and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 the volume extruded by the surface in Δ𝑡𝑡. 
 

(3) Spectral volume formulation 
In the SV method, a computational cell referred to as the SV cell is partitioned into a set of sub-cells 

referred to as the control volume (CV) cells. The conservative variables in these CV cells correspond to the 
degrees of freedom (DOFs) in the spectral volume formulation. When a second-order scheme is considered, 
four CV cells in a tetrahedral cell11) and six CV cells in a prismatic cell9) are used to reconstruct a linear 
distribution of the dependent variables in a SV cell. The partitions of the tetrahedral cell and prismatic cell are 
shown in Fig. 1. Let us denote the CV cell-averaged conservative variables in 𝑗𝑗-th CV cell within a SV cell as 
𝑸̅𝑸𝑗𝑗 . The reconstructed variables in an arbitrary location within a SV cell can be expressed by 

 𝑸𝑸(𝑟𝑟, 𝑡𝑡) = ∑𝐿𝐿𝑗𝑗(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)
𝑁𝑁

𝑗𝑗=1
𝑸̅𝑸𝑗𝑗(𝑡𝑡), (11) 

where 𝐿𝐿𝑗𝑗  denotes the shape function for 𝑗𝑗-th CV cell, and 𝑁𝑁 the number of CV cells in each SV cell. This 
shape function satisfies the following orthogonal relations 

 
1
𝑉𝑉𝑗𝑗
∫ 𝐿𝐿𝑘𝑘
CV𝑗𝑗

(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑗𝑗,𝑘𝑘     (𝑗𝑗,𝑘𝑘 = 1, … ,𝑁𝑁), (12) 

where 𝛿𝛿𝑗𝑗,𝑘𝑘 represents the Kronecker’s delta function. Because 𝑸𝑸 in Eq. 11 are cell-wise polynomials, they 
become discontinuous at the SV cell interface. The numerical flux functions at the cell interface are 
determined by an approximate Riemann solver. In this study, we employ SLAU scheme12) which is one of the 
AUSM-family. When the computational meshes are moving and deforming, a modified SLAU scheme13) 
taking the grid velocity into account is utilized. Viscous flux functions are computed using BR2 formulation 
by Bassi and Rebay14). Flux functions at the interface of two adjacent CV cells inside a SV cell are 
analytically obtained because reconstructed variables are continuous there. 
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(a) Tetrahedral SV (b) Prismatic SV 
Figure 1: Partitions of tetrahedral and prismatic SV cells. 

 
(4) LU-SGS implicit method 

The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit method15) is employed in the time 
integration. From Eq. 7, the first-order fully implicit scheme is expressed as  

 𝑸̅𝑸c𝑛𝑛+1 − 𝑸̅𝑸c𝑛𝑛

Δ𝑡𝑡 + 𝑉𝑉𝑛𝑛+1 − 𝑉𝑉𝑛𝑛
Δ𝑡𝑡

𝑸̅𝑸c𝑛𝑛+1

𝑉𝑉𝑛𝑛+1 = 𝑹𝑹c(𝑸̅𝑸𝑛𝑛+1), (13) 

where the subscript 𝑐𝑐 denotes the current SV cell. In Eq. 13, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 is evaluated in first-order. We note that 
the number of components of vectors 𝑸̅𝑸c and 𝑹𝑹c is given as the product of the number of dependent 
variables and the number of DOFs in a SV. Because 𝑹𝑹c depends not only on 𝑸̅𝑸c but also on 𝑸̅𝑸nb in the 
neighbor cells through the numerical fluxes, a linearization of the residual yields 

 𝑹𝑹c(𝑸̅𝑸𝑛𝑛+1) ≈ 𝑹𝑹c(𝑸̅𝑸𝑛𝑛) + 𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸c

Δ𝑸̅𝑸c + ∑ 𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸nb

Δ𝑸̅𝑸nb
nb≠c

. (14) 

Substituting Eq. 14 into Eq. 13 gives 

 (𝑉̇𝑉ratio + 𝐼𝐼
Δ𝑡𝑡 −

𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸c

) Δ𝑸̅𝑸c − ∑ 𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸nb

Δ𝑸̅𝑸nb
nb≠c

= 𝑹𝑹c(𝑸̅𝑸𝑛𝑛) − 𝑉̇𝑉ratio𝑸̅𝑸c𝑛𝑛, (15) 

where 𝑉̇𝑉ratio denotes the ratio of time derivative of cell volume ∂𝑉𝑉/𝜕𝜕𝜕𝜕 to the latest cell volume. In order to 
avoid storing the Jacobian matrices for the “nb” cells, inner iterations are further introduced. Equation 13 can 
be rewritten using inner sweep number 𝑘𝑘 as 

 𝑸̅𝑸c𝑘𝑘+1 − 𝑸̅𝑸c𝑘𝑘

Δ𝑡𝑡 + 𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘
Δ𝑡𝑡

𝑸̅𝑸c𝑘𝑘+1

𝑉𝑉𝑘𝑘+1 = 𝑹𝑹c(𝑸̅𝑸𝑘𝑘+1). (16) 

Linearization of the residual in terms of the current cell yields 

 𝑹𝑹c(𝑸̅𝑸𝑘𝑘+1) = 𝑹𝑹c(𝑸̅𝑸c𝑘𝑘+1, 𝑸̅𝑸nb
𝑘𝑘+1) ≈ 𝑹𝑹c(𝑸̅𝑸c𝑘𝑘, 𝑸̅𝑸nb

𝑘𝑘+1) + 𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸c

(𝑸̅𝑸c𝑘𝑘+1 − 𝑸̅𝑸c𝑘𝑘). (17) 

Substituting Eq. 17 into Eq. 16, we obtain 

 
(𝑉̇𝑉ratio + 𝐼𝐼

Δ𝑡𝑡 −
𝜕𝜕𝑹𝑹c
𝜕𝜕𝑸̅𝑸c

) (𝑸̅𝑸c𝑘𝑘+1 − 𝑸̅𝑸c𝑘𝑘) = 𝑹𝑹c(𝑸̅𝑸c𝑘𝑘 , 𝑸̅𝑸nb
𝑘𝑘+1) − 𝑸̅𝑸c𝑘𝑘 − 𝑸̅𝑸c𝑛𝑛

Δ𝑡𝑡 − 𝑉̇𝑉ratio𝑸̅𝑸c𝑛𝑛 

≈ 𝑹𝑹c(𝑸̅𝑸c𝑘𝑘, 𝑸̅𝑸nb
∗ ) − 𝑸̅𝑸c𝑘𝑘 − 𝑸̅𝑸c𝑛𝑛

Δ𝑡𝑡 − 𝑉̇𝑉ratio𝑸̅𝑸c𝑛𝑛, (18) 

in which we replace 𝑸̅𝑸nb
𝑘𝑘+1 by the latest solution 𝑸̅𝑸nb

∗  in the neighbor cells. The solutions are updated with 
multiple symmetric forward and backward sweeps in the domain. If a higher-order time accuracy is needed, 
the second-order backward difference formula (BDF2) is employed to evaluate ∂𝑸𝑸/𝜕𝜕𝜕𝜕 and ∂𝑉𝑉/𝜕𝜕𝜕𝜕. 
 
3. FLUTTER ANALYSES AND DISCUSSIONS 
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(1) AGARD 445.6 wing 
The AGARD 445.6 weakened model flutter cases are computed using the developed aeroelastic SV 

code accounting for hybrid unstructured meshes and fluid-structure interaction. A tightly coupling method is 
employed in which the temporal evolution of the flowfield and structural deformation of the wing are 
alternately solved with several inner iterations within one time step. The computational conditions follow 
those of experiment described by Yates16). The angle of attack is 0 [deg]. The freestream Mach numbers are 
0.499, 0.678, 0.901, 0.960, 1.072, and 1.141. The Reynolds number based on the mean aerodynamic chord 
(MAC) length is about one million. The structure model of Yates16) having 10 × 10 elements shown in Fig. 2 
is used in which three bending modes and two twisting modes of the wing are considered in the modal 
analysis. This model is a plate model. The eigen frequencies of this model are summarized in Tab. 1. In the 
structural calculation, the eigen frequencies of each modes and modal shape data at all grid points of each 
modes are needed. 
 

Figure 2: Structure model for the AGARD 445.6 wing by Yates16). 
 

Table 1: Eigen frequencies used in calculations and experimental data for the AGARD 445.6 wing. 

Mode 1st 
(Bending) 

2nd 
(Torsion) 

3rd 
(Bending) 

4th 
(Torsion) 

5th 
(Bending) 

Eigen frequency 
[Hz] 

Yates’s model16) 9.6 38.2 48.3 91.5 118.1 
Experiment 9.6 38.1 50.7 98.5 – 

 
The computational surface meshes are shown in Fig. 3. In the Euler computation, 193,068 tetrahedral 

cells are used. In the RANS calculation, 178,278 tetrahedral cells and 310,464 prismatic cells (24 layers) are 
employed in which the minimum grid spacing on the wall satisfies 𝑦𝑦+ ≤ 2 for all flow conditions. The 
Spalart-Allmaras turbulence model17) (SA noft2) is used in the RANS computation. The outer boundary of the 
computational domain is located at 30 MAC length from the wing surface. In the present aeroelastic 
calculations, the computational mesh moves and deform according to the structure displacement. Mesh 
deformation at each iteration is accomplished by using interpolation method utilizing the inverse distance 
weighting function. In the implicit time integration, the BDF2 is employed. The inner iterations are continued 
till the L1 norm of density computed by using all residuals in the entire domain less than 10−7. The number 
of inner iterations is typically eight when Δ𝑡𝑡 is 0.005 in the Euler computation. In the RANS computation, 
the number of inner iterations is less than 30 for Δ𝑡𝑡 of 0.05. The unsteady flow calculation starts from the 
steady flowfield solution with a small oscillation enforced in the first bending mode. 

First International Symposium on Flutter and its Application, 2016 161

This document is provided by JAXA.



First International Symposium on Flutter and its Application, 2016 

  

(a) Mesh for Euler computations (b) Mesh for RANS computations 
Figure 3: Computational surface meshes for the AGARD 445.6 wing. 

 
  

(a) Flutter speed index (b) Flutter frequency 
Figure 4: Flutter boundary values for the AGARD 445.6 wing. 

 
The flutter boundaries computed in this study are shown with experimental data in Fig. 4. The 

horizontal axis represents the freestream Mach number and the vertical axis the flutter speed index (𝐹𝐹𝐹𝐹𝐹𝐹) in 
Fig. 4(a), and the flutter frequency in Fig. 4(b), respectively. The 𝐹𝐹𝐹𝐹𝐹𝐹 is expressed by 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑈𝑈∞
𝑏𝑏𝑠𝑠𝜔𝜔𝑎𝑎√𝜇𝜇

, (19) 

where 𝑈𝑈∞ denotes the freestream velocity, 𝑏𝑏𝑠𝑠 the half root chord length, 𝜔𝜔𝑎𝑎 the eigen angular frequency of 
the first torsion, and 𝜇𝜇 the fluid-to-structure mass ratio. The flutter frequency is expressed by 𝜔𝜔/𝜔𝜔𝑎𝑎 where 
𝜔𝜔  denotes the frequency at the flutter boundary point. The calculated flutter boundary shows good 
agreements with experimental data in the Euler computation as well as the RANS computation so far as the 
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freestream is subsonic and no shock wave appears on the wing surface. The “transonic dip” is successfully 
obtained in which the shock wave appears. However, some distinctions between the computed flutter 
boundary values and those of experiment become evident at supersonic freestream conditions. We note that 
results in RANS computations give closer agreements with experimental data than those in Euler 
computations. This implies that the distinctions seen in the supersonic freestream cases are caused by possible 
shock boundary layer interaction near the trailing edge, which the Euler calculation cannot account for. The 
pressure coefficient contours obtained by steady inviscid simulations are plotted on the wing surface as shown 
in Fig. 5.  

  

(a) 𝑀𝑀∞ = 0.499 (b) 𝑀𝑀∞ = 0.678 
  

(c) 𝑀𝑀∞ = 0.901 (d) 𝑀𝑀∞ = 0.960 
  

(e) 𝑀𝑀∞ = 1.072 (f) 𝑀𝑀∞ = 1.141 
Figure 5: Pressure coefficient contours for steady inviscid flowfields over the AGARD 445.6 wing. 

 
When the freestream Mach number becomes 0.96 or higher, a strong shock wave appears on the wing which 
moves toward the trailing edge as the freestream Mach number increases. The pressure coefficients at several 
spanwise cross-sections computed by both the Euler and the RANS calculations are plotted in Fig. 6. The 
difference in 𝐶𝐶𝑝𝑝 distribution between these simulations becomes apparent when a shock wave emerges in the 
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freestream Mach number above 0.96 where significant shock boundary layer interaction begins to take place. 
Indeed, the pressure coefficients show smooth profiles at the shock location when viscous effects are taken 
into account in the simulation.  

  

(a) 𝑀𝑀∞ = 0.499 (b) 𝑀𝑀∞ = 0.678 
  

(c) 𝑀𝑀∞ = 0.901 (d) 𝑀𝑀∞ = 0.960 
  

(e) 𝑀𝑀∞ = 1.072 (f) 𝑀𝑀∞ = 1.141 
Figure 6: Pressure coefficients at several spanwise cross-sections over the AGARD 445.6 wing. 
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Gan et al.18) used delayed detached eddy simulation (DDES) on structured meshes for supersonic 
cases of the AGARD 445.6 wing flutter and computed flutter boundaries show excellent agreements with 
experimental data even for supersonic freestream regime. For better agreements with experiment, it seems to 
be necessary to resolve accurately the shock boundary layer interaction in high Mach number condition. In 
order to investigate effects of the grid resolution in this study, the coarse mesh and fine mesh are prepared as 
shown in Fig. 7. The coarse mesh is same as the mesh in Fig. 3 (b). In the fine mesh, grids near the shock 
wave on the wing surface are refined, and wall-normal grid distribution is same as the coarse mesh. Figure 8 
shows the corresponding computed 𝐶𝐶𝐿𝐿 histories. These cases on the coarse mesh and the fine mesh are 
computed using the SA model in the Mach number of 1.141 and 𝐹𝐹𝐹𝐹𝐹𝐹 of 0.45 above the experimental flutter 
point. The history employing the fine mesh shows slightly improved trend of oscillation but an expected 
flutter boundary point will be still higher than that of experiment.  

  

(a) Coarse mesh (b) Fine mesh 
Figure 7: Computational surface meshes in RANS computations for the AGARD 445.6 wing. 
 

 

Figure 8: 𝐶𝐶𝐿𝐿 histories using the coarse mesh and the fine mesh in 𝑀𝑀∞ = 1.141 and 𝐹𝐹𝐹𝐹𝐹𝐹 =0.45. 
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(2) Rectangular wing 
In the second flutter analysis case, a wing having a rectangular and unswept plan form with a 

circular-arc airfoil section is employed. This wing has a 6% thickness to the chord length, taper ratio of 1, and 
aspect ratio of 2.5. The computational conditions follow those of experiment described by Doggett et al.19) The 
angle of attack is 0 [deg]. The freestream Mach numbers are 0.715, 0.814, 0.851, 0.913, 0.956, and 1.017. The 
Reynolds number based on the MAC length is about one million. In these cases, we make a structure model 
using Femap with NX NASTRAN. In the experiment, a 0.065-inch-thick aluminum alloy plate of the desired 
plan form was covered with a lightweight flexible plastic foam to make a circular-arc airfoil section. In the 
reference19), it is noted that the foam added comparatively little mass and stiffness to that of the aluminum 
alloy. Therefore, we regard effects of the foam as negligible, and only aluminum core plate is modeled. The 
plate model has 80 × 80 elements is shown in Fig. 9. As shown in Fig. 9 (b), thickness of elements at the 
leading edge and the trailing edge is adjusted in tune with the circular-arc airfoil section. In this model, three 
bending modes and two twisting modes of the wing are considered in the modal analysis. The eigen 
frequencies of this model are summarized in Tab. 2. It is confirmed that 80 × 80 elements is enough number 
in terms of frequencies of each modes by comparing with other models having different number of elements.  

 
 

(a) Wing surface of 80 × 80 plate model (b) Cross-section 
Figure 9: Structure model for the rectangular wing. 

 
Table 2: Eigen frequencies used in flutter computations for the rectangular wing. 

Mode 1st 
(Bending) 

2nd 
(Torsion) 

3rd 
(Bending) 

4th 
(Torsion) 

5th 
(Bending) 

Eigen frequency 
[Hz] 

Present model 14.35 77.75 89.34 246.4 250.6 
Experiment 14.29 80.41 89.80 – – 

 
The computational surface mesh which is same in both Euler and RANS mesh is shown in Fig. 10. In 

the Euler computation, 209,534 tetrahedral cells are used. In the RANS calculation, 369,878 tetrahedral cells 
and 252,540 prismatic cells (24 layers) are employed in which the minimum grid spacing on the wall satisfies 
𝑦𝑦+ ≤ 1 for all flow conditions. The outer boundary of the computational domain is located at 30 MAC length 
from the wing surface.  

The computed flutter boundaries are shown with experimental data in Fig. 11. When the freestream 
Mach number is less than 0.913, good agreements with experiment are obtained in both the 𝐹𝐹𝐹𝐹𝐹𝐹 and the 
flutter frequency. However, the computed 𝐹𝐹𝐹𝐹𝐹𝐹 values are overestimated in high Mach number regime where 
the shock wave emerges. Considering viscous effects did not improve significantly the 𝐹𝐹𝐹𝐹𝐹𝐹 boundary values. 
On the other hand, the flutter frequency values at the 𝑀𝑀∞ = 0.913 is particularly improved by accounting for 
viscous effects. The cause for this improvement is under consideration.  
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Figure 10: Surface mesh in Euler and RANS computations for the rectangular wing. 
 

  

(a) Flutter speed index (b) Flutter frequency 
Figure 11: Flutter boundary values for the rectangular wing. 

 
4. CONCLUSIONS 

Two flutter cases are computed using the present aeroelastic code based on the spectral volume 
discretization for aerodynamic analysis and on the modal structure analysis. In the AGARD 445.6 wing flutter 
case, the transonic dip is well reproduced. Considering viscous effects improve the flutter boundary values at 
the supersonic freestream regime. In the rectangular wing flutter case, the transonic dip in the 𝐹𝐹𝐹𝐹𝐹𝐹 boundaries 
cannot reproduced well. Accounting for viscous effects does not improve significantly the 𝐹𝐹𝐹𝐹𝐹𝐹 boundary 
values in high Mach number condition but improve particularly the flutter frequency.   
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