# 亚流境界層方程式の解法について 

## 玉 木 章 夫

## On the Solution of the Laminar Boundary Layer Equations．

Humio Tamaki


#### Abstract

An approximate method for solving the equations for steady，two dimen－ sional boundary layer by using Mises transformation is presented．

Chapter 1 deals with incompressible fluid．As is shown by Mises and Kármán－Millikan， equation of motion for the boundary layer is written ： $$
\partial z / \partial \varphi=\nu \sqrt{1-z / z_{0}} \partial^{2} z / \partial \psi^{2}
$$ where $\nu$ is kinematic viscosity，$z=\left(u_{1}{ }^{2}-u^{2}\right) / 2$（ $u_{1}$ ：outside velocity），$z_{0}=\Sigma(\psi=0)=u_{1}{ }^{2} / 2$ ， $\varphi=\int_{0}^{u_{1}} d x$ and $\psi$ is stream function defined by $u=\partial \psi / \partial y, \nu=-\partial \psi / \partial x$ ．Now， $1-z / z_{0}$ in the right side can be expanded in power series of $\psi$ if we take as $z$ Kármán－Millikan＇s outer solution．The essential point of the present method lies in taking only the first term as an approximation．Then using instead of $\varphi$ a new variable which is a function of $\varphi$ ， we can obtain $z$ in an integral form containing the distribution of the outside velocity in the integrand．Several numerical examples show that the accuracy of the method is satisfactory．

In Chapter 2，compressible fluid with Prandtl number 1 is considered，for the case without surface heat transfer．By proper modifications in the definitions of $\varphi, \psi$ and $z$ ， the method of the first chapter is also available for this case．Similarity between compress－ ible and incompressible case is discussed．（Received May 2，1951）


縮まない流體の二次元層流境界層の方程式は Mises の導入した變數變換によつて熱傳導の方程式と似た形に變形される。本文ではとれを解くた めの此較的簡單でしかも精度のよい近似解法を示 す．との方法によれば，ふつらに行われるよらに物體表面のある位置における境界層の速度分布の形がその點の層外速度勾配を含むパラメーター $\delta^{2} / \nu \cdot d u_{1} / d x$（ $\delta$ ：層の厚さ，$\nu:$ 動粘性係數，$d u_{1} / d x$ ：流れの方向の層外速度勾配）のみによって定まる というような假定を用いる必要はなく，任意の位置にょける層內の速度分布はその點より上流の層外速度の分布を含む積分によつて求まる。さらに との方法は僅かな變更によつて縮む流體の場合に容易に援張される。從つてまず第1章では縮ま ない流體を考え，ついで第 2 章で縮む流體の場

合への撗張を示すととにする。

## 第1章 縮まない流體

## § 1．基碟方程式

縮まない流體の二次元，定常的層流境界層の方程式はよく知られているよらに次の形に書かれ る。

$$
u \partial u / \partial x+v \partial u / \partial y=u_{i} d u_{1} / d x+\nu \partial^{2} u / \partial y^{2} \text { (1) }
$$

と入に $x$ は前緣吱點から物骾表面に沿らての距離，$y$ は表面に直角方向の距離，$u, v$ はそれぞ れ $x, y$ 方向の速度成分，$u_{1}$ は層外速度，$\nu$ は動粘性係數である。

連續の式

$$
\begin{equation*}
\partial u / \partial x+\partial v / \partial y=0 \tag{2}
\end{equation*}
$$

は次の關係を滿たす流れ函數れを導入するととに よつて滿足される。

$$
\begin{equation*}
u=\partial \psi / \partial y, \quad v=-\partial \psi / \partial x . \tag{3}
\end{equation*}
$$

さて Mises ${ }^{(1)}$ 江從つて $x, y$ の代りに $x, \psi$ を獨立變數にとり，未知函數として

$$
\begin{equation*}
z=\left(u_{1}^{2}-u^{2}\right) / 2 \tag{4}
\end{equation*}
$$

をとる。

$$
\begin{align*}
(\partial / \partial x)_{y} & =(\partial / \partial x)_{\psi}+(\partial / \partial \psi)_{x}(\partial \psi / \partial x)_{y} \\
& =(\partial / \partial x)_{\psi}-v(\partial / \partial \psi)_{x} \\
(\partial / \partial y)_{x} & =(\partial / \partial \psi)_{x}(\partial \psi / \partial y)_{x}=u(\partial / \partial \psi)_{x} \tag{5}
\end{align*}
$$

であるととから方程式（1）は次のように書表わさ れる。

$$
\begin{equation*}
\partial z / \partial x=\nu u \hat{\partial}^{2} z / \partial \psi^{2} . \tag{6}
\end{equation*}
$$

さらに Kármán－Millikan（＂）K從つて

$$
\begin{equation*}
\varphi=\int_{0}^{x} u_{1} d x \tag{7}
\end{equation*}
$$

を導入すると，（6）は

$$
\begin{equation*}
\partial z / \partial \varphi=\nu\left(u / u_{1}\right) \partial^{2} z / \partial \psi^{2} \tag{8}
\end{equation*}
$$

と變形される。
さて後の計算に便利なようにすべての量を次元 のない形で表わすととにする。 $U, L$ をそれぞれ代表的な速度，長さとして，

$$
\begin{align*}
& u^{*}=u / U, u_{1}^{*}=u_{1} / U, \quad 2^{*}=z / U^{x}, \\
& \varphi^{*}=\varphi /(U L), \psi^{*}=\psi \sqrt{R} /(2 U L), \\
& R=U L / \nu \tag{9}
\end{align*}
$$

によって＊のついた量を定義する。そして以後簡單のため＊を省略して書くととにする。とらす れば（8）は

$$
\begin{equation*}
\partial z / \partial \varphi=1 / 4 \cdot\left(u / u_{1}\right) \partial^{2} z / \partial \psi^{2} \tag{10}
\end{equation*}
$$

と書かれる。あるいは $\psi=0$（表面）における $z$ を $z_{0}$ で表わすと，$z_{0}=u_{1}^{2} / 2$ であるととから

$$
\begin{equation*}
u / u_{1}=\sqrt{1-2 z / u_{1}^{2}}=\sqrt{1-z / z_{0}} \tag{11}
\end{equation*}
$$

從つて（10）は次のように書かれる。

$$
\begin{equation*}
\partial z / \partial \varphi=1 / 4 \cdot \sqrt{1-z / z_{0} \partial^{2} z / \partial \psi^{2}} \tag{12}
\end{equation*}
$$

との方程式を $\psi=0$ で $z=z_{0}=u_{1}{ }^{2} / 2 ; \psi \rightarrow \infty$ で $z \rightarrow 0, ~ P=0$ で $z=0$ とんう條件の下に解くとと ができればよいのである．

## §2．近似解法

方程式（12）を嚴密に解く方法は現在のととろ見當らない。近似的な解法としては Kármán－ Millikan の方法があるがとれは計算が面倒であ る上に精度も十分とは言えないように思われる。本文ではとれと幾分異なつた取扱い方を示まとと にする。
（12）において $\sqrt{1-z / z_{0}}$ が一定であるとすれば との方程式は $z$ を溫度，$\varphi$ を時間，$\psi$ を位置座標と考えれば固體內の一次元熱傳導の方程式と同 どであり，われわれの問題は年無限の棒の一端の溫度が時間と共に變つて行くとをに各點の溫度を求める問題と一致する。
Kármán－Millikan は $\sqrt{1-z / z_{0}}$ すなわち $u / u_{1}$ を 1 そ等しんとおきこれに對する解を＂outer solution＂と䉿している。とれは尿の外の方では よい近似であるが表面の近くでは近似が惡くなる ので別に適當な＂inner solution＂を求め，との兩者をつなぎ合わせるといら方法を探つている。

とれから述べる方法においては次のよらな近似 を行5．（12）の右邊の $1-z / z_{0}$ すなわち $\left(u / u_{1}\right)^{2}$ K outer solution を入れればとれは $\downarrow$ の霷級數 として表わすととができる，そとでその $\psi$ の 1次の項のみをとるととにする，かゝかえると眞の $\left(u / u_{1}\right)^{2}$ の代りに outer solution の $\left(u / u_{1}\right)^{2}-\psi$曲線の表面にょける切線を用いるととにする。勿論との直線としては outer solutionの切線以外の ものを用いてもよいのであるが，筆者の別の論文＊ に示したように上のおき方は簡單でしかも壓力降下のあるときも上昇のあるときも真の $\left(u / u_{1}\right)^{2}$ を かなりよく近似するものである。

さてとのように假定すると，

$$
\begin{equation*}
u / u_{1}=\sqrt{1-z / z_{0}}=C(\psi) \psi^{q^{1 / 2}} \tag{13}
\end{equation*}
$$

とおくととができる．とゝに $C(\varphi) は \varphi$ の函數であり，outer solution $<も$ とづく $C(\varphi)$ の賈際の表現は次節に示すととにする。上の關係を用 いると（12）は

$$
\partial z / \partial \varphi=1 / 4 \cdot C(\varphi) \psi^{1 / 2} \partial^{2} z / \partial \psi^{2}
$$

となる．そとで $\varphi$ の代りに

$$
\begin{equation*}
t=\int_{0}^{\varphi} C(\varphi) / 4 \cdot d \varphi \tag{14}
\end{equation*}
$$

そよつて定義される $t$ を用いると，との方程式は

$$
\partial z / \partial t=\psi^{1 i} \partial^{2} z / \partial \psi^{2}
$$

あるいは

$$
\begin{equation*}
\partial^{2} z / \partial \psi^{2}-\psi^{-1 / 2} \partial z / \partial t=0 \tag{15}
\end{equation*}
$$

とかゝれる．との式は Huber ${ }^{(3)}$ が取扱つた方程

[^0]式の特別の場合に相當する．＊そして境界條件：

$$
\begin{align*}
& \psi=0 \quad \text { で } \quad z=z_{0}=u_{1}^{2} / 2=f(t) / 2, \\
& \psi \rightarrow \infty \quad \text { で } \quad z \rightarrow 0,  \tag{16}\\
& t=0 \quad \text { で } z=0
\end{align*}
$$

を滿足する解は次のように書表わされる。

$$
z(\psi, t)=\frac{1}{2} \frac{\psi}{(3 / 2)^{4 / 3} \Gamma(2 / 3)} \int_{0}^{t} \frac{e^{-\frac{4 \psi^{3 / 2}}{-9}}}{(t-\xi)^{5 / 3}} f(\xi) d \xi .
$$

從つて，$u_{1}{ }^{2}$ が $t$ の函數 $f(t)$ として與えられれ ば上式から直ちに解が計算されるわけである。次 にとの式をさらに實用的な形に變形しよう。

$$
(4 / 9)^{2 / 3} \psi /(t-\xi)^{2 / 3}=\boldsymbol{r}
$$

とおいて積分變數を $r$ にかえる。そして

$$
(4 / 9)^{2 / 3} \psi / t^{2 / 3}=w
$$

とおくと，

$$
z=\frac{3}{4} \frac{1}{\Gamma(2 / 3)} \int_{w}^{\infty} e^{-r^{3 / 9}} f\left(t-\frac{4}{9} \frac{\psi^{3 / 2}}{r^{3 / 2}}\right) d r
$$

となる．いま $f(t)$ が $t$ の多項式

$$
\begin{align*}
& f(t)=c_{0}+c_{1} t+c_{2} t^{2}+\cdots \cdots+c_{n} t^{n} . \\
& =\sum_{i=0}^{n} c_{i} t^{i} \tag{18}
\end{align*}
$$

で表わされるとする．とのときには

$$
\begin{aligned}
& f\left(t-\frac{4}{9} \frac{\psi^{3 / 2}}{\gamma^{3 / 2}}\right)=\sum_{i=0}^{n} c_{i}\left(t-\frac{4}{9} \frac{\psi^{3 / 2}}{r^{3 / 2}}\right)^{i} \\
& \quad=\sum_{i=0}^{n} c_{i} t^{i}\left(1-\frac{w^{3 / 2}}{r^{3 / 2}}\right)^{i}
\end{aligned}
$$

となるから，結局

$$
\begin{aligned}
z= & \frac{3}{4} \frac{1}{\Gamma(2 / 3)} \sum_{i=0}^{n} c_{i} t^{i} \sum_{r=0}^{i}\left(\frac{(-1)}{(i-r)!r!} \frac{i!}{n} w^{3 r / 2}\right. \\
& \int_{w}^{\infty} \frac{e^{-r 31 / 2}}{r^{3 r / 2}} d r
\end{aligned}
$$

が得られる．簡單のため

$$
(-1)^{r} w^{3 r / 2} \int_{w}^{\infty} e^{-r^{3}: 2} / \gamma^{3 r / 2} \cdot d \gamma=H_{r}(w)
$$

とおくと，

$$
\begin{equation*}
z=\frac{3}{4} \frac{1}{\Gamma(2 / 3)} \sum_{i=0}^{n} c_{t} t^{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} H_{r}(w) \tag{19}
\end{equation*}
$$

となる．$H_{r}(w)(r \geqq 1)$ と對する漸化式は次の通

[^1]りである．

$$
\begin{aligned}
& H_{r}(w)=(-1)^{r} \frac{2}{3 r-2} w e^{-w^{3 / 2}} \\
& \quad+\frac{3}{3 r-2} w^{3 / 2} H_{r-1}(w)
\end{aligned}
$$

$r=3$ までを書下すと，
$H_{0}=\int_{w}^{\infty} e^{-\gamma^{3 / 2}} d \gamma$,

$$
H_{1}=-2 w e^{-w^{3} / 2}+3 w^{3 / 2} H_{0},
$$

$$
H_{2}=\frac{1}{2} w e^{-w^{3} / 2}-\frac{3}{2} w^{5 / 2} e^{-w 3 / 2}+\frac{9}{4} w^{3} H_{0},
$$

$$
H_{3}=-\frac{2}{7} w e^{-w^{3 / 2}}+\frac{3}{14} z w^{5 l^{2}} e^{-w^{3} l^{2}}-\frac{9}{14} w^{4} e^{-w^{3 / 2}}
$$

$$
+\frac{27}{28} w^{9 / 2} H_{0}
$$

第1圖にとれらの函數を圖示する。
さて實際の場合には $u_{1}{ }^{2}$ を $t$ の唯： 1 個の多項式で表わそらとすると多くの項を必要とするの で，全體の領域をある $t_{1}$ において 2 分して，$u_{1}{ }^{2}$ を二つの多項式

$$
u_{1}^{2}= \begin{cases}f_{1}(t)=\sum_{i=0}^{n} c_{i} t^{i}, & t \leqq t_{1} \\ f_{2}(t)=\sum_{i=0}^{m} d_{i} t^{i}, & t \geqq t_{1}\end{cases}
$$

と表わした方がよい。
$t \leqq t_{1}$ そ對する解は（19）で與えられる。
$t \geqq t_{1}$ に對する解は次のように書かれる。

$$
\begin{align*}
z= & \frac{3}{4} \frac{1}{\Gamma(2 / 3)}\left[\sum_{i=0}^{n} c_{i} t^{i} \sum_{r=0}^{i} \frac{i!}{i-r)!r!} H_{r}(w)\right. \\
& -\sum_{i=0}^{n} c_{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} t^{i-r}\left(t-t_{1}\right) r H_{r}\left(w^{\prime}\right) \\
& \left.+\sum_{i=0}^{m} d_{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} t^{i-r}\left(t-t_{1}\right)^{r} H_{r}\left(w^{\prime}\right)\right] \tag{21}
\end{align*}
$$



第1圖 $H_{0}, H_{1}, H_{2}, H_{3}$ ．

たゞし $w=(4 / 9)^{2 / 3} \psi / t^{2 / 3} ; w^{\prime}=(4 / 9)^{2 / 3} \psi /\left(t-t_{1}\right)^{2 / 3}$.

## § 3． $\mathbf{C}(\phi)$ の表現

さて上に用いている $t$ は（14）によつて $\Phi$ か ら計算されるものであるが，との計算を行らため には與えられた尿外速度分布に對して $C(\varphi)$ の形 を知る必要がある。との節ではとれを outer solu－ tion から求めるとととする。
問題とする領域全體の $u_{1}{ }^{2}$ の分布を $\varphi_{1}$ を接續點として，

$$
u_{\mathrm{l}}^{2}(\boldsymbol{\varphi})= \begin{cases}\sum_{i=0}^{n} b_{i} \varphi^{i}, & \varphi \leqq \mathcal{P}_{1} \\ \sum_{i=0}^{m} \beta_{i} \varphi^{i} & \varphi \geqq \varphi_{1}\end{cases}
$$

と表わすとき，$\varphi=0$ で $z=0, \psi=0$ で $z=z_{0}=$ $u_{1}{ }^{2}(\varphi) / 2, \psi \rightarrow \infty$ で $z \rightarrow 0$ なる條件を滿足する解は Kármán－Millikan が示したよらに次の形で與え られる．$\varphi \leqq \varphi_{1}$ では

$$
z=\sum_{i=0}^{n} b_{i} \phi^{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} g_{r}(\psi / \sqrt{\varphi}),
$$

$\varphi \geqq \varphi_{1}$ では

$$
\begin{align*}
z= & \sum_{i=0}^{n} b_{i} \phi^{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} g_{r}(\psi / \sqrt{\varphi}) \\
& -\sum_{i=0}^{n} b_{i} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} \phi^{i-r}(\varphi \\
& \left.-\varphi_{1}\right) r g_{r}\left(\psi / \sqrt{\varphi-\varphi_{i}}\right) \\
& +\sum_{i=0}^{m} \beta_{l} \sum_{r=0}^{i} \frac{i!}{(i-r)!r!} \phi^{i-r}(\varphi \\
& \left.-\varphi_{1}\right)^{r} g_{r}\left(\psi / \sqrt{\varphi-\varphi_{1}}\right) . \tag{22}
\end{align*}
$$

と入に $g_{r}$ は，アーギュメントを $x$ で代表させると

$$
\begin{align*}
& g_{0}(x)=\frac{1}{2}(1-e r f x), g_{1}(x)=-\frac{1}{\sqrt{\pi}} x e^{-x^{2}} \\
& \quad+x^{2}(1-e r f x) \\
& g_{2}(x)=-\frac{1}{3 \sqrt{\pi}} x e^{-x^{2}}-\frac{2}{3 \sqrt{\pi}} x^{3} e^{-x^{2}} \\
& \quad+\frac{2}{3} x^{4}(1-e r f x) \\
& g_{3}(x)=-\frac{1}{5 \sqrt{\pi}} x e^{-x^{2}}+\frac{2}{15 \sqrt{\pi}} x^{3} e^{-x^{2}} \\
& \quad-\frac{4}{15 \sqrt{\pi}} x^{5} e^{-x^{2}}+\frac{4}{15} x^{6}(1-e r f x), \tag{23}
\end{align*}
$$

$$
\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\alpha^{2}} d \alpha
$$

と表わされる。
とれから明かなように，$x$ の十分小さいととろで

$$
\begin{aligned}
& g_{0}(x)=\frac{1}{2}-\frac{1}{\sqrt{\pi}} x, g_{1}(x)=-\frac{1}{\sqrt{\pi}} x \\
& g_{2}(x)=\frac{1}{3 \sqrt{\pi}} x, \quad g_{3}(x)=-\frac{1}{5 \sqrt{\pi}} x, \cdots
\end{aligned}
$$

であるととに注意すれば，（22）式より $C(\varphi)$ は次 のよらに書表わされる。たゞし $u_{1}{ }^{2}$ を $\varphi$ の三次式で表わすとする。
$\varphi \leqq \varphi_{1}$ に對しては
$C(\varphi)=\frac{\sqrt{2}}{\pi^{1 / 4}} \frac{1}{\varphi^{1 / 4}} \frac{\sqrt{b_{0}+2 b_{1} \varphi+\frac{8}{3} b_{2} \varphi^{2}+\frac{16}{5} b_{3} \varphi^{3}}}{\sqrt{b_{0}+b_{1} \varphi+b_{2} \varphi^{2}+b_{3} \varphi^{3}}}$,
$\varphi \geqq \varphi_{1}$ に對しては

$$
\begin{align*}
& C(\varphi)=\frac{\sqrt{2}}{\pi^{1 / 4}}-\frac{1}{\varphi^{1 / 4}} \frac{1}{\sqrt{\beta_{0}+\beta_{1} \varphi+\beta_{2} \varphi^{2}+\beta_{3} \varphi^{3}}} \\
& {\left[\left\{b_{0}+2 b_{1} \varphi+\frac{8}{3}-b_{2} \varphi^{2}+\frac{16}{5} b_{3} \varphi^{3}\right\}\right.} \\
& +\frac{1}{\sqrt{1-\varphi_{1} / \varphi}}\left\{\left(\beta_{0}-b_{0}\right)+\left(\beta_{1}-b_{1}\right) \varphi(1+(1\right. \\
& \left.\left.-\varphi_{1} / \varphi\right)\right)+\left(\beta_{2}-b_{2}\right) \varphi^{2}\left(1+2\left(1-\varphi_{1} / \varphi\right)\right. \\
& \left.-\frac{1}{3}\left(1-\varphi_{1} / \varphi\right)^{2}\right)+\left(\beta_{3}-b_{3}\right) \varphi^{3}(1+3(1 \\
& \left.\left.\left.\left.-\varphi_{1} / \varphi\right)-\left(1-\varphi_{1} / \varphi\right)^{2}+\frac{1}{5}\left(1-\varphi_{1} / \varphi\right)^{3}\right)\right\}\right]^{1 / 2} . \tag{24}
\end{align*}
$$

## §4．剥離點，表面摩擦抵抗係數の計算

剥離點にまふでは $(\partial u / \partial y)_{y=0}=0$ ，從つて
（ $\partial z / \partial \psi)_{\psi=0}=0$ である。從つてzを $\begin{gathered}\text { を }\end{gathered}$ につい て展開したとき $\psi$ の一次の項の係數が 0 とな るような $t$ が利離點を與える。（20）式から $v$ の十分小さいととろで

$$
\begin{aligned}
& H_{0}(w)=2 / 3 \cdot \Gamma(2 / 3)-w, H_{1}(w)=-2 w, \\
& H_{2}(w)=w / 2, H_{3}(w)=-2 / 7 \cdot w
\end{aligned}
$$

であるととに注意すれば，（21）から剥離點に對 する $t$ は $u_{1}{ }^{2}(t)$ として $t$ の三次式の組合わせ を用いるとき，次の式で與えられる。

$$
\begin{aligned}
& \left(c_{0}+3 c_{1} t+\frac{9}{2} c_{2} t^{2}+\frac{81}{14} c_{3} t^{3}\right)+\frac{1}{\left(1-t_{1} / t\right)^{2 / 3}} \\
& {\left[\left(d_{0}-c_{0}\right)+\left(d_{1}-c_{1}\right) t\left\{1+2\left(1-\frac{t_{1}}{t}\right)\right\}\right.} \\
& \quad+\left(d_{2}-c_{2}\right) t^{2}\left\{1+4\left(1-\frac{t_{1}}{t}\right)-\frac{1}{2}\left(1-\frac{t_{1}}{t}\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\left(d_{3}-c_{3}\right) t^{3}\left\{1+6\left(1-\frac{t_{1}}{t}\right)-\frac{3}{2}\left(1-\frac{t_{1}}{t}\right)^{2}\right. \\
& \left.\left.+\frac{2}{7}\left(1-\frac{t_{1}}{t}\right)^{3}\right\}\right]=0 \tag{25}
\end{align*}
$$

また，これまで用いて來た量が（9）によつて定義された次元のない量であるととに注意すると，

任意の $t$ におふる局部的摩擦抵抗係數 $\tau_{0} /\left(\frac{1}{2}\right.$ $\left.\rho u_{1}{ }^{2}\right)\left(\tau_{0}\right.$ ：表面摩擦應力）は，
$t \leqq t_{1}$ に對しては

$$
\begin{gathered}
\frac{2 \tau_{0}}{\rho_{t_{1}}^{2}}=\sqrt{\frac{\nu}{U L}} \frac{1}{c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}} \cdot \frac{3}{4} \frac{1}{\Gamma(2 / 3)} \\
\left(\frac{4}{9}\right)^{2 / 3} \frac{1}{t^{2 / 3}}\left(c_{0}+3 c_{1} t+\frac{9}{2} c_{2} t^{2}+\frac{81}{14} c_{3} t^{3}\right)^{*}
\end{gathered}
$$

$t \geqq t_{1}$ に對しては

$$
\begin{align*}
\frac{2 \tau_{0}}{\rho u_{1}{ }^{2}} & =\sqrt{\frac{\nu}{U L}} \frac{1}{d_{0}+d_{1} t+d_{2} t^{2}+d_{3} t^{3}} \cdot \frac{3}{4} \cdot \frac{1}{\Gamma(2 / 3)} \\
& \left(-\frac{4}{9}\right)^{2 / 3} \frac{1}{t^{2 / 3}}\left[\left\{c_{0}+3 c_{1} t+\frac{9}{2} c_{2} t^{2}+\frac{81}{14} c_{3} t^{3}\right\}\right. \\
+ & \frac{1}{\left(1-t_{1} / t\right)^{2 / 3}}\left\{\left(d_{0}-c_{0}\right)+\left(d_{1}-c_{1}\right) t(1+2(1\right. \\
& \left.\left.-\frac{t_{1}}{t}\right)\right)+\left(d_{2}-c_{2}\right) t^{2}\left(1+4\left(1-\frac{t_{1}}{t}\right)\right. \\
& \left.-\frac{1}{2}\left(1-\frac{t_{1}}{t}\right)^{2}\right)+\left(d_{3}-c_{3}\right) t^{3}(1+6(1 \\
& \left.\left.\left.\left.-\frac{t_{2}}{t}\right)-\frac{3}{2}\left(1-\frac{t_{1}}{t}\right)^{2}+\frac{2}{7}\left(1-\frac{t_{1}}{t}\right)^{3}\right)\right\}\right] \tag{26}
\end{align*}
$$

で與えられる。

## §5．層內の速度分布を $x, y$ の函數として表わすこと。

上に示した方法では $z$ が $\psi$ と $t$ の函數とし て與えられるが，實用上は速度 $u$ を $x, y$ の函數で表わすととが必要である。實際の長さ $x, y$ の代りに

$$
\left.x^{*}=x / L, \quad y^{*}=y / L \quad \text { ( } L \text { は代表長 }\right)
$$

を定義する。そして他の量に對すると同じく＊ を省略して單に $x, y$ と書くととにする。そうす れば

$$
\begin{equation*}
y=\frac{2}{\sqrt{R}} \int_{0}^{\psi} \frac{d \psi}{u}=\frac{2}{u_{1} \sqrt{R}} \int_{0}^{\psi} \frac{d \psi}{\sqrt{1-z / z_{0}}} \tag{27}
\end{equation*}
$$

また $x$ と $t$ との關係は（7）と（14）とから求 まる。

つぎに本文の近似解をいくつかの例について嚴

密解あるいは實驗結果と比較しよう。

## § 6．平板に沿う流れ

との場合には $u_{1}=$ const．である。そとで $u_{1}=U$ （代表速度）とする．解（19）において $c_{0}=1, c_{1}$ ， $c_{2}, \cdots c_{n}=0$ であるから，

$$
\begin{align*}
z & =\frac{3}{4 \Gamma(2 / 3)} H_{0}(x)=\frac{3}{4 \Gamma(2 / 3)}\left\{\frac{2}{3} \Gamma(2 / 3)\right. \\
& \left.-\int_{0}^{w} e^{-\gamma^{3 / 2}} d \gamma\right\}=\frac{1}{2}-\frac{3}{4 \Gamma(2 / 3)} \int_{0}^{w} e^{-\gamma^{3 / 2}} d \gamma \tag{28}
\end{align*}
$$

と入に $\quad ש=(4 / 9)^{2 / 3} \psi / t^{2 / 3}$ 。そして $t$ は（24）の第 1 式で $b_{0}=1, b_{1}, b_{2}, \cdots b_{n}=0$ であるから，

$$
t=\frac{\sqrt{2}}{3 \pi^{1 / 4}} \phi^{3 / 4}=\frac{\sqrt{2}}{3 \pi^{1 / 4}}\left(\frac{u_{1} x}{U L}\right)^{3 / 4}=\frac{\sqrt{2}}{3 \pi^{1 / 4}}\left(\frac{x}{L}\right)^{3 / 4}
$$

である．
これから（27）を用いて境界層の速度分布が計算 される．ふつらに行われてんるようにuルしを $y \sqrt{u_{1} / \nu x} / 2$ に對して描いたものを第 2 圖に示す。圖に示すように Blasius の解とかなりよく一致す る。比較のため同じ圖に outer solutionをも記入 した。

また局部的摩擦抵抗係數 $c_{f}$ ．は

$$
\begin{aligned}
& c_{f}=\mu(\partial u / \partial y)_{0} / \frac{1}{2} \rho u_{1}^{2}=\frac{3}{4 \Gamma(2 / 3)}\left(\frac{4}{9}\right)^{2 / 3} \\
& \left(\frac{3 \pi^{1 / 4}}{\sqrt{2}}\right)^{2 / 3} \sqrt{\nu / u_{1} x}
\end{aligned}
$$



第2圖 平板の境界層の速度分布
＊$u_{1}{ }^{2}$ を $t$ の $n$ 次式 $\sum_{i=0}^{n} c_{i} t^{i}$ で表わすとをは，

$$
\frac{2 \tau_{0}}{\rho_{1 L_{1}^{2}}{ }^{2}}=\sqrt{\frac{\nu}{U L}} \frac{1}{\sum c_{8} t^{i}} \cdot \frac{3}{4} \frac{1}{\Gamma(2 / 3)}\left(\frac{4}{9}\right)^{2 / 3} \frac{1}{t^{2 / 3}}
$$

$$
\left(c_{0}+3 c_{1} t+\frac{9}{2} c_{2} t^{2}+\frac{81}{14} c_{3} t^{3}+\cdots\right.
$$

$$
\left.+n!\frac{3}{1} \cdot \frac{3}{4} \cdots \frac{3}{3 n-2} c_{n} t^{n}\right)
$$

$\Gamma(2 / 3)=1.354$ を代入すれば

$$
\begin{equation*}
c_{f}=0.6445 \sqrt{\nu / u_{1} x} \tag{29}
\end{equation*}
$$

を得る．との式の數因子は嚴密な値 0.664 より 2.9 パーセント小さか。

## § 7．Howarth の解との比較

次に Howarth ${ }^{(4)}$ の解にた $u_{1}=u_{0}-\beta x$ の場合 を考えよう，速度れよび距離をそれぞれ代表速度 $u_{0}$ ，代表長 $L$ を用いて無次元化し，$x / L, \beta L / u_{0}$ を改めて $x, \beta$ とかくと，

$$
\begin{equation*}
u_{1}=1-\beta x . \tag{30}
\end{equation*}
$$

そとで $\quad \beta x=\xi$
とおけば

$$
\begin{gathered}
\varphi=x(1-\beta x / 2)=x(1-\xi / 2), \\
u_{1}{ }^{2}=1-2 \beta x+\beta^{2} x^{2}=1-2 \beta \varphi .
\end{gathered}
$$

$2 \beta \varphi=\zeta$ とかけば

$$
\begin{equation*}
u_{1}^{2}=1-\zeta, \quad \zeta=2 \xi(1-\xi / 2) . \tag{31}
\end{equation*}
$$

§ 3 の記法によれば，$b_{0}=1, b_{1}=-2 \beta$ である，

$$
t=\int_{0}^{\varphi} \frac{C(\varphi)}{4} d \varphi=\frac{\sqrt{2}}{\pi^{1 / 4}} \int_{0}^{\varphi} \frac{\sqrt{1+2 b_{1} \varphi}}{4 \varphi^{1 / 4} \sqrt{1+b_{1} \varphi}} d \varphi
$$

において，積分變數を $\zeta=-b_{1} \varphi$ K變じ， とが 1 に比べて小さんととを考慮して被積分函數を二項定理で展開して積分し，$\left(3 \pi^{1 / 4} / \sqrt{2}\right)\left(-b_{1}\right)^{3 / 4} t=s$ とまけば，

$$
\begin{equation*}
s=\zeta^{3 / 4}\left(1-\frac{3}{14} \zeta-\frac{15}{88} \zeta^{2}-\frac{39}{240} \zeta^{3}-\cdots\right) . \tag{32}
\end{equation*}
$$

また上の式かららを $s$ で表わすと，近似的に

$$
\begin{equation*}
\zeta=s^{4 / 3}\left(1+\frac{4}{14} s^{4 / 3}+\frac{205}{539} s^{8 / 3}\right) \tag{33}
\end{equation*}
$$

を得る．とれと（32）式（と入に示した項までとつ たもの）は $\zeta=0.3$ の夏まで十分によく一致す る（第3圖參照）さて，$u_{1}{ }^{2}$ は $\zeta$ については直線的に減少するが，tあるいは $s$ についてはそら ではない。そとで

$$
\begin{equation*}
u_{1}{ }^{2}=1+c_{1} t+c_{2} t^{2}=1+a_{1} s+a_{2} s^{2} \tag{34}
\end{equation*}
$$

とおく，そして $s$ のある値 $s_{1}$ と $s_{1} / 2$ の二點に おいて速度が（31）で與又られる値と一致するよ らにする．$s_{1}$ に對㶐する $\zeta$ を $\zeta_{1}$ と書き，（32） と（33）によつて $s_{1} / 2$ に對應する $\zeta$ を $\zeta_{1}$ で表 わすと，結局 $a_{1} s_{1}, a_{2} s_{1}^{2}$ が $\zeta_{1}$ を用いて，

$$
\begin{aligned}
& a_{1} s_{1}=-0.5874 \zeta_{1}+0.2736 \zeta_{1}{ }^{2}+0.3009 \zeta_{1}{ }^{3}, \\
& a_{2} s_{2}{ }^{2}=-0.4126 \zeta_{1}-0.2736 \zeta_{1}{ }^{2}-0.3009 \zeta_{1}{ }^{3}(35)
\end{aligned}
$$

と表わされる．とれを剥離の條件式

$$
1+3 a_{1} s_{1}+9 / 2 \cdot a_{2} s_{1}^{2}=0
$$

に代入すれば利離を與える $\zeta_{1}\left(=\zeta_{s}\right)$ およびとれ に對應する $\xi\left(=\xi_{s}\right)$ が次の値となる。

$$
\begin{equation*}
\zeta_{s}=0.268, \quad \xi_{s}=0.144 \tag{36}
\end{equation*}
$$

なょ（35）式の $\zeta_{1}$ の二乘以上の項を省略する ととは（32），（33）の代りに $s=\zeta^{3 / 4}$ とするととで， とれは，$\varphi$ から $t$ を求める際に $u_{1}{ }^{2}=$ const．に對する outer solution を用にるととに相當する。


第3圖 直 線 的 速 度 降下の場合の諸曲線


第4圖 直線的速度降下の場合の藦擦鷹力の分布

ての省略によれば

$$
\begin{equation*}
\zeta_{s}=0.276, \quad \xi_{s}=0.149 \tag{37}
\end{equation*}
$$

となり幾らか剥離が後れる。 しかしその差はあま り大きいものごはなく，とのととから（12）式の z－を の直線關係のとり方はあまり嚴密さを要し ないととが分る。また $u_{1}^{2}$ を $s$ の三次式で表わ し，$s=s_{1}, 2 / 3 \cdot s_{1}, 1 / 3 \cdot s_{1}$ において正しい値に合わすようにすると，$\xi_{s}=0.148$ を得る。またと の場合（37）の近似に相當するものは $\xi_{s}=0.155$ となる。

Howarthによれば $\xi_{s}=0.12$ ，Kármán－Millikan， Pohlhausen の方法によれば $\xi_{s}$ は それぞれ 0.102 ， 0.156 である．かくして本文の方法によ る $\xi_{s}$ は Howarth と Pohlhausen の中間に位す るととが分る。

いま $\zeta_{s}=0.268 ~(s=0.345)$ までを，$s=0.345$ ， 0.1725 におんて正しん $u_{1}{ }^{2}$ を一致する二次式で表した場合に，$\xi$ に對して $\tau_{0} / \frac{1}{2} \rho u_{1}{ }^{2} \cdot \sqrt{u_{0} x / \nu}$
（（26）式によつて計算される）を求めると第4圖 のようになる。上にも示したように剥離はいくら か後れるが，Howarth の解との一致はかなり良好であるといえよう。

## §8．$u_{1}=c x$（ $c$ ：常數）の場合

速度，距離を適當な代表量を用いて無次元化し てから改めて上の形におく，との場合には $u_{1}{ }^{2}=$ $2 c \varphi$ となるから，$t$ と $\varphi$ との關係は直ちに積分 できて，

$$
t=\left(2 / 3 \pi^{1 / 4}\right) \mathscr{\varphi}^{3 / 4}
$$

を得る。從つて $u_{1}{ }^{2}$ は $t^{4 / 3}$ に比例する。前節と同樣に $u_{1}{ }^{2}$ を $t$ の二次式で表わすとして，$\varphi$ のあ る値 $\varphi_{1}$ に對應する $t$ を・ $t_{1}$ とおき，$t=t_{1}, t_{1} / 2$ において速度が正しい値をとるようにする。 この ようにして最後にもとの $x$ ，$u_{1}$ に戻すと，$t=t_{1}$ に對應する $x=x_{1}$ におふる局部的摩擦抵抗係數 $c_{f}\left(x_{1}\right)$ として次の式を得る。

$$
c_{f}\left(x_{1}\right)=\tau_{0} / \frac{1}{2}-\rho u_{1}^{2}=2.618 \sqrt{\nu / u_{1} x_{1}}
$$

また $u_{1}{ }^{2}$ を $t=t_{1}, 2 / 3 \cdot t_{1}, 1 / 3 \cdot t_{1}$ において正 しい値をとる三次式で表わすととにすれば $c_{f}\left(x_{1}\right) \sqrt{u_{1} x_{1} / \nu}=2.532$ を得る。嚴密解によれ ばとの數値は 2.465 である。從つて二次式，三次式を用いたときの誤差はそれぞれ 6．2，2．7 パー セントである。

とゝで注意したんのはとの値は $x=x_{1}$ までの速度分布を $t$ の多項式で表わしたときの $x_{1}$ にお ける値であるといらととである。 そとでいま $u_{1}^{2}$ を $t$ の二次式で表わした場合について $0 \leqq x \leqq x_{1}$ における $c_{f}$ の分布を調べてみる。計算は省略し て結果だけを述べるととにする，嚴密解によれば $\left[c_{f}(x) \cdot x\right] /\left[c_{f}\left(x_{1}\right) \cdot x_{1}\right]$ は 1 K等しいが，上の場合にはとれが $x / x_{1}$（あるんは $t / t_{1}$ ）によつて多少變化する。 しかしその値は $x / x_{1}=0$ においてさ えも 0.8289 であつて 1 との差はあまり大きな女のではない。（第 5 圖參照）なおとのととに闕 しては §10 の終を參照されたい。


第5圖 $u_{1}=c x$ の場合． $0 \leqq x \leqq x_{1}$ そま6ける $c_{f}(x) x / c_{f}\left(x_{1}\right) x_{1}$

## § 9．Schubauer の實驗との比較

Schubauer ${ }^{(5)}$ は長，短軸の比が 2．96：1の楕圓杜の長軸の方向に流れが當る場合についていろい ろの位置で境界䍚の速度分布を測定し，さらに煙 の流れの觀察から剥離が $x=1.99 \pm 0.02$ で起ると とを見出している，とゝに $x$ は前緣岐點から表面 に沿らての距離を短軸の長さで表わしたものであ る．$u_{1}{ }^{2}$ を $t$ の多項式で表わすためには $\varphi$ と $t$ と の關係を求める必要がある。とのためにはまず $u_{1}{ }^{2}$ を 9 の多項式で表わさねばならぬ．Millikan ${ }^{(6)}$ はとれにつんて，
$0 \leqq \varphi \leqq 1$ では $u_{1}{ }^{2}=5.53 \varphi-6.44 \varphi^{2}+2.56 \varphi^{3}$
$1 \leqq \varphi \leqq 2.5$ では $u_{1}{ }^{2}=1 \cdot 159+0.8253 \varphi$

$$
-0.3871 \boldsymbol{q}^{2}+0.0455 \boldsymbol{q}^{3}
$$

とんう式を與えている。との式は $\varphi=1$ におい て前伞と後专の式の $u_{\mathrm{l}}{ }^{2}$ に僅かの差があつて（24） の計算に都合が惡いので前半の式の $\boldsymbol{P}^{3}$ の係數 2． 56 の代りに 2.5527 としたものを用いるとと とした。

第6圖には $u_{1}{ }^{2}$ と $t$ との關係を示す。 これ を $\varphi=1$ に對應する $t=0.449$ を繼ぎ目として，
$0 \leqq t \leqq 0.449$ では $u_{1}^{2}=10.250 t-21.789 t^{2}$ $+15.944 t^{3}$ ，
$0.449 \leqq t \leqq 0.8$ では $u_{1}^{2}=1.8444-2.149 t$ $+5.993 t^{2}-4.805 t^{3}$ ．
と表わす。（第 6 圖）すると（25）式から剥離は $t=0.794$ で起るとととなる。とれは $\varphi=2.45$ ， $x=2.07$ に相當する。 との數値は Schubauer の値より稍：大きい。 しかし $x=1.946$（ $t=0.766$ ） における速度分布を（21）および（27）によつて求めてとれを Schubauer の實測値と比べてみる と第7圖のように極めてよく一致する。


第6圖 Schubauer の實驗におはる $\pi_{1}{ }^{2}$ の分在


第7圖 Schubauer の實驗との比較． $x=1.946$ そょョける境界層の速度分布

## § 10．圓枉表面の摩擦の分布

$U d / \nu=0.943 \times 10^{5}(U:$ 主流速度，$d:$ 直徑）K おける壓力分布の實測値を用いて Green ${ }^{(7)}$ ， Falkner－Skan ${ }^{(8)}$ は圓杜表面の摩擦の分布を計算し ている．本法による計算をとれと比較すると第 8圖のようにかなりよく一致している。また $U d / \nu=$ $1.06 \times 10^{5}$ において Fage－Falkner ${ }^{(9)}$ は表面管に よつて摩擦の分布を測定している．とのときの壓力分布の實測値を用いて計算した $\tau_{0} / \frac{1}{2} \rho U^{2}$ の分布を第 9 圖に示す。計算によると摩擦の最大：値が實驗値より少し上流側に出る。なおとゝ，で注

[^2]

第8圖 圓杜表面の摩擦應力の分布．計算値の比較


第9圖 圆桂表面の摩擦應力の分布．實驗値との比較

意すべきととは本文の方法では速度分布を廣い範圍にわたつて $t$ の簡單な多項式で表わすので前

緣附近の分布を正しく表わすととができないとと である。§8に示したように $u_{1}$ が $x$ に比例す るときは $u_{1}{ }^{2}$ は $t^{4 / 3}$ に比例するが，多項式表示 では $t$ の小さいところでその一次の項だけが殘 るからである．しかしとのととは局部的摩擦抵抗係數に對してはあまり大きな誤差を引起さない。 （§8 參照）從つてとの部分の $\tau_{0} / \frac{1}{2} \rho U^{2}$ を求め

るにはまず（26）によつて $\tau_{9} / \frac{1}{2} \rho u_{1}{ }^{2}$ を求めとれ に多項式によるのでなしに正しい $u_{1}{ }^{2} / U^{2}$ を掛け てやれば大體正しい値が求まるのである。圖の中心角 $15^{\circ}$ 以下の點は乙のようにして求めた。

## §11． $\boldsymbol{\rho}$ と $t$ との關係の簡易化

以上述べたようにとの方法はいろんろな場合に かなりよい精度をもつているようである。たら゙そ の缺點は $u_{1}$ の積分から $\varphi$ を求め，$u_{1}^{2}$ を $\varphi$ の多項式で表わし，その係數を用いて積分により $t$ を求め，$u_{1}{ }^{2}$ を再び $t$ の多項式で表わすといらよ らに，$u_{1}^{2}$ の多項式表示を二重に行らといら手間が あるととである。しかし§7の例からも窺われる ように減速領域では $C(\varphi)$ として $u_{1}=$ const．の場合の値を用いてもさして大きな差異を生じない。從つて $\varphi$ から $t$ を計算する際には $u_{1}$ の最大値よ り少し上流の適當な位置までを $u_{1}=c x\left(u_{1}{ }^{2}=2 c \varphi\right)$ に，それより下流は $u_{1}=$ const．でおきかえると とにすれば $\boldsymbol{\rho}$ と $t$ との關係は一定に定まるから これを用いれば多項式表示を二度行ち必要はなく なり計算は著しく簡單になる。

いま $\boldsymbol{\rho}=\boldsymbol{\varphi}_{1}$ を繼ぎ目として
$0 \leqq \varphi \leqq \varphi_{1}$ では $u_{1}{ }^{2}=b_{1} \varphi ; \varphi \geqq \varphi_{1}$ では $u_{1}{ }^{2}=\beta_{0}$

| 第 1 |  |  |  |  |  |  | 表 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s$ | $F_{1}(s)$ | $s$ | $F_{2}(s)$ | $s$ | $F_{2}(s)$ | $s$ | $F_{2}(s)$ | $s$ | $F_{2}(s)$ |
| 0 | 0 | 1.0 | 0.501 | 3.0 | 1.004 | 5.0 | 1.394 | 7.0 | 1.742 |
| 0.1 | 0.089 | 1.2 | 0.566 | 3.2 | 1.046 | 5.2 | 1.430 | 7.2 | 1.775 |
| 0.2 | 0.150 | 1.4 | 0.624 | 3.4 | 1.087 | 5.4 | 1.466 | 7.4 | 1.808 |
| 0.3 | 0.203 | 1.6 | 0.678 | 3.6 | 1.127 | 5.6 | 1.502 | 7.6 | 1.841 |
| 0.4 | 0.252 | 1.8 | 0.729 | 3.8 | 1.167 | 5.8 | 1.537 | 7.8 | 1.873 |
| 0.5 | 0.298 | 2.0 | 0.779 | 4.0 | 1.206 | 6.0 | 1.572 | 8.0 | 1.905 |
| 0.6 | 0.341 | 2.2 | 0.826 | 4.2 | 1.245 | 6.2 | 1.607 | 8.2 | 1.937 |
| 0.7 | 0.383 | 2.4 | 0.872 | 4.4 | 1.283 | 6.4 | 1.641 | 8.4 | 1.969 |
| 0.8 | 0.424 | 2.6 | 0.917 | 4.6 | 1.320 | 6.6 | 1.675 | 8.6 | 2.001 |
| 0.9 | 0.463 | 2.8 | 0.961 | 4.8 | 1.357 | 6.8 | 1.709 | 8.8 | 2.032 |

（たぶし $\beta_{0}=b_{1} \varphi_{1}$ ）として（14）と（24）に從つて $t$ を計算すると，$\quad \varphi / \varphi_{1}=s$ とおくとき，

$$
\begin{aligned}
& 0 \leqq \varphi \leqq \mathcal{\varphi}_{1} \text { では } t=\frac{2}{3 \pi^{1 / 4}} \varphi_{1}^{3 / 4} s^{3 / 4}, \\
& \varphi \geqq \varphi_{1} \text { では } t=\frac{2}{3 \pi^{1 / 4}} \varphi_{1}^{3 / 4}\left[1+\frac{3}{4}\right. \\
& \left.\int_{1}^{s}(\sqrt{s}-\sqrt{s-1})^{1 / 2} d s\right]
\end{aligned}
$$

となる．それぞれの領域で $\varphi_{1}{ }^{3 / 4}$ に乘ずべき係數，

$$
\begin{aligned}
& F_{1}(s)=\frac{2}{3 \pi^{1 / 4}} s^{3 / 4}, \quad F_{2}(s)=\frac{2}{3 \pi^{1 / 4}}\left[1+\frac{3}{4}\right. \\
& \left.\int_{1}^{s}(\sqrt{s}-\sqrt{s-1})^{1 / 2} d s\right]
\end{aligned}
$$

を第1表に示す。とれを用いれば $\varphi_{i}$ を定めさ えすればすぐに $t$ が計算できる。實際，多くの場合との方法で充分なようである。

## 第2章 緒む流體

## §1．基檚方程式

との場合の境界層の運動方程式は

$$
\begin{align*}
& \rho_{u \partial u} / \partial x+\rho_{v} \partial u / \partial y=\rho_{1} u_{1} d u_{1} / d x \\
& \quad+\partial / \partial y \cdot(\mu \partial u / \partial y) \tag{1}
\end{align*}
$$

と書かれる．文字の意味は前と同じである。密度 $\rho$ ，粘性係數 $\mu$ は場所によつて異なる。添字 1 は層の外側を表わす。

いま添字 $s$ を以て層外流を斷熱的に静止させ た狀態を表わすととにする。

## 連續の式は

$$
\begin{equation*}
u=\left(\rho_{s} / \rho\right) \partial \psi / \partial v, v=-\left(\rho_{s} / \rho\right) \partial \psi / \partial x \tag{2}
\end{equation*}
$$

を滿足する流れ医數 $\downarrow$ を導入するととによつて滿たされる。

さて氣體の比熱は一定，かつ Prandtl 數が 1 であると假定し，物體表面で熱傳達がないとすれ ば，層内の速度 $u$ と絕對溫度 $T$ との間に

$$
u^{2}+2 c_{p} T=\text { const. }\left(c_{p}:\right. \text { 定壓比熱) }
$$

なる關係が咸立つ。層の外側の斷熱流に對しては

$$
u_{1}{ }^{2}+2 c_{p} T_{1}=2 c_{p} T_{s}=\text { const. }
$$

が成立つから，結局

$$
\begin{equation*}
u+2 c_{p} T=u_{1}^{2}+2 c_{p} T_{1}=2 c_{p} T_{s} \tag{3}
\end{equation*}
$$

が成立つ。そとで Dorodnizin ${ }^{(10)}$ そ做つて

$$
\begin{equation*}
u_{1}^{2} /\left(2 c_{p} T_{s}\right)=\sigma_{1}, \quad u^{2} /\left(2 c_{p} T_{s}\right)=\sigma \tag{4}
\end{equation*}
$$

なる量を導入する。 $\sigma_{1}$ と層外氣流の Mach 數 $M\left(=u_{1} / a_{1}\right.$ ，たでし $a_{1}{ }^{\prime}$ は局所音速）との關係は

$$
\begin{equation*}
\sigma_{1}=\frac{k-1}{2} M^{2} /\left(1+\frac{k-1}{2} M^{2}\right) \tag{5}
\end{equation*}
$$

で與えられる，とゝにkは比熱の比 $\left(c_{p} / c_{v}\right)$ で空氣の場合は 1.4 である。 $\sigma$ を用いると

$$
T_{1} / T_{s}=1-\sigma_{1}, T / T_{s}=1-\dot{\sigma}
$$

となる。
次に粘性係數 $\mu$ は絕對溫度 $T$ の $n$ 乘に比例 すると假定する．$n$ は空氣の場合 0.76 とするの が普通である。との假定より

$$
\begin{equation*}
\mu / \mu_{s}=\left(T / T_{s}\right)^{n}=(1-\sigma)^{n} \tag{6}
\end{equation*}
$$

密度 $\rho$ については層外流が斷熱的であるととと，層内では．$y$ 方向に壓力が變らないととから次の關係が成立つ。

$$
\begin{equation*}
\rho / \rho_{s}=\left(1-\sigma_{1}\right)^{k / k-1} /(1-\sigma) \tag{7}
\end{equation*}
$$

さて第 1 章と同樣に獨立變數を $x, y$ から $x, \psi$ そ變ずると，

$$
\begin{aligned}
(\partial / \partial x)_{y} & =(\partial / \partial x)_{\psi}+(\partial / \partial \psi)_{x}(\partial \psi / \partial x)_{y} \\
& =(\partial / \partial x)_{\psi}-\left(\rho / \rho_{s}\right) z(\partial / \partial \psi)_{x}
\end{aligned}
$$

$(\partial / \partial y)_{x}=(\partial / \partial \psi)_{x}(\partial \psi / \partial y)_{x}=\left(\rho / \rho_{s}\right) u(\partial / \partial \psi)_{x}$ を用にて，（1）は

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}=\frac{1-\sigma}{1-\sigma_{1}} u_{1} \frac{d u_{1}}{d x} \\
& +\nu_{s}\left(1-\sigma_{1}\right)^{k / k-1} u \frac{\partial}{\partial \psi}\left[(1-\sigma)^{n-1} u \frac{\partial u}{\partial \psi}\right]
\end{aligned}
$$

と變形さわる。と入に $\nu_{s}$ は $\mu_{s} / \rho_{s}$ を表わす。
さてとの式の右邊第二項の［．］内にある（1－ $\sigma)^{n-1}$ を考える．空氣の場合には $M=1$ におい て $\sigma_{1}=0.1667$ であるととを考慮すれば $\sigma$ は表面附近では非常に小さく，その上蹇指數 $n-1$ が小さいととから，との項は 1 に近い。
そとでとゝでは $(1-\sigma)^{n-1}=1$ とおく，そして $k / k-1$ を入 と書くととにすれば，

$$
\begin{aligned}
& \left(1-\sigma_{1}\right) u \frac{\partial u}{\partial x}-(1-\sigma) u_{1} \frac{d u_{1}}{d x} \\
& \quad=\nu_{s}\left(1-\sigma_{1}\right)^{\lambda+1} u \frac{\partial}{\partial \psi}\left(u \frac{\partial u}{\partial \psi}\right)
\end{aligned}
$$

となる。そとで

$$
\begin{equation*}
z=\frac{1}{1-\sigma_{1}} \frac{u_{1}^{2}-u^{2}}{2} \tag{8}
\end{equation*}
$$

を導入する．そして（4）に注意すれば上の方程式 は

$$
\frac{\partial z}{\partial x}=\nu_{s}\left(1-\sigma_{1}\right)^{\wedge} u \frac{\partial^{2} z}{\partial \psi^{2}}
$$

となり，さらに $x$ の代りに

$$
\begin{equation*}
\varphi=\int_{0}^{x} u_{1}\left(1-\sigma_{1}\right)^{\lambda} d x \tag{9}
\end{equation*}
$$

を導入すると，結局

$$
\frac{\partial z}{\partial \varphi}=\nu_{s} \frac{u}{u_{1}} \frac{\partial^{2} z}{\partial \psi^{2}}
$$

が得られる．$z_{0}$ を以て $\psi=0$ における $z$ を表わ すとすれば $u / u_{1}=\sqrt{1-z / z_{0}}$ であるから上の式は

$$
\frac{\partial z}{\partial \varphi}=\nu_{s} \sqrt{1-\frac{z}{z_{0}} \frac{\partial^{2} z}{\partial \psi^{2}}}
$$

と書かれる．境界條件は $\varphi=0$ で $z=0, \quad \psi=0$ で $z=z_{0}(\mathscr{P})=\left(1 / 1-\sigma_{1}\right) \cdot u_{1}{ }^{2} / 2, \psi \rightarrow \infty$ で $z \rightarrow 0$ である．

## §2．無次元化

前章と同じよらに代表長 $L$ ，代表速度 $U$ を用 いて無次元量

$$
\begin{align*}
& U^{*}=u / U, \quad u_{1}^{*}=u_{1} / U, \quad z^{*}=z / U^{2} \\
& \varphi^{*}=\varphi /(U L), \quad \psi^{*}=\psi \sqrt{R_{s}} /(2 U L) \\
& R_{s}=U L / \nu_{s} \tag{11}
\end{align*}
$$

を定義する．と」に $R_{s}$ の定義には $\nu_{s}$ を用いて いる．前と同樣に簡單のため＊，を省略して書くと （10）は

$$
\begin{equation*}
\frac{\partial z}{\partial \varphi}=\frac{1}{4} \sqrt{1-\frac{z}{z_{0}}} \dot{\partial}^{2} z \tag{12}
\end{equation*}
$$

境界條件： $\boldsymbol{\rho}=0$ で $z=0$ ，

$$
\begin{aligned}
& \psi=0 \quad \text { で } \quad z=z_{0}(\varphi)=\frac{1}{1-\sigma_{1}} \frac{u_{1}^{2}}{2}, \\
& \psi \rightarrow \infty \quad \text { で } z \rightarrow 0
\end{aligned}
$$

となる．とれを第 1 章の縮 まない流體の場合と比べると兩者の差は，$z$ の定義に $1 /\left(1-\sigma_{1}\right)$ が掛つ ているとと，從つて $\psi=0$ における境界條件が違らことと，vの代りに $\nu_{s}$ が入つているととだ けであつて，方程式の形は全然同じである。そし て $\psi=0$ における條件 $z_{0}=\left(1 / 1-\sigma_{1}\right) \cdot u_{1}^{2} / 2$ は層外の流れを與えれば簡單に計算されるから，上 の方程式の解法は前章に示したものと全く同じで ある。實際の計算では $u_{1}{ }^{2}\left(1-\sigma_{1}\right)$ を $甲$ あるい は $t$ の多項式で表わすととを考えればよい。

以上で縮む流體の境界層の計算が縮まない流體 の場合と䏩ど同じ位の手數で行われるととを示し たが，次にとの兩者の間の相似關係をいますとし詳しく述べておとう。

## §3．縮む流體と縮まない流體の境界層にむけ る相似關係

（12）の解 $z$ そ對應する $y$ の値は流れ函數の定義の式（2）から求まる。 すなわち

$$
y=\int_{0}^{\nabla}-\frac{\rho_{s}}{\rho} \frac{d \psi}{u}
$$

いまりの代りに

$$
\eta=\int_{0}^{y} \frac{\rho}{\rho_{s}} d y
$$

を導入すれば，

$$
\eta=\int_{0}^{\psi} \frac{d \psi}{u}
$$

となる，そとで $y^{*}=y / L, \quad \eta^{*}=\eta / L$ を他の量 と同樣に＊を省略して書くと，リは次の式で與え られるととになる。

$$
\begin{aligned}
& \eta= \frac{2}{\sqrt{R_{s}}} \int_{0}^{\psi} \frac{d \psi}{u}=\frac{2}{\sqrt{R_{s}}} \frac{1}{\sqrt{2\left(1-\sigma_{1}\right) z_{0}}} \\
& \int_{0}^{\psi} \frac{d \psi}{\sqrt{1-z / z_{0}}}
\end{aligned}
$$

一方縮まない流體の場合には $y$ が次の式で與え られる。

$$
y=\frac{2}{\sqrt{R}} \int_{0}^{\psi} \frac{d \psi}{u}=\frac{2}{\sqrt{R}} \frac{1}{\sqrt{2 z_{0}}} \int_{0}^{\psi} \frac{d \psi}{\sqrt{1-z / z_{0}}}
$$

そとでいま $z_{0}(\varphi)=1 /\left(1-\sigma_{1}\right) \cdot u_{1}{ }^{2} / 2$ が縮まな い流體における $z_{0}(\varphi)=u_{1}^{2} / 2$ と等しいような縮 む流體の流れを考える。とのときには兩者の解 か（ $\varphi, \psi)$ は數値的に等しい。以下に數値的に互 に等しくなる量を列記する。

> 縮む流體 縮まない流體

$$
\begin{aligned}
& z_{0}(\varphi)=\frac{1}{1-\sigma_{1}} \frac{u_{1}^{2}}{2}, \quad z_{0}(\varphi)=\frac{u_{1}^{2}}{2} . \\
& z(\varphi, \psi), \\
& z(\boldsymbol{\phi}, \psi) \\
& \frac{d}{d \varphi}\left(\frac{1}{1-\sigma_{1}} \frac{u_{1}^{2}}{2}\right)=\frac{1}{\left(1-\sigma_{i}\right)^{2}} \frac{d u_{1}}{d \xi}, \frac{d}{d \varphi}\left(\frac{u_{1}^{2}}{2}\right)=\frac{d u_{1}}{d x} . \\
& \left(1-\sigma_{1}\right) \frac{\Delta^{* 2}}{\nu_{s}},\left(1-\sigma_{1}\right) \frac{\Theta^{2}}{\nu_{s}}, \quad \frac{\delta^{* 2}}{\nu}, \quad \frac{\theta^{2}}{\nu} . \\
& \frac{\Theta^{2}}{\nu_{s}} \frac{1}{1-\sigma_{1}} \frac{d u_{1}}{d \xi}, \quad \quad \frac{\theta^{2}}{\nu} \frac{d u_{1}}{d x} . \\
& \frac{\mu_{s}(\partial u / \partial \eta)_{0}}{\rho_{s} u_{1}^{2}} \cdot \frac{u_{1} \Theta}{\nu_{s}}, \\
& \Delta^{*} / \Theta \text {, } \\
& \tau \wedge k, \xi=\int_{0}^{x}\left(1-\sigma_{1}\right)^{\lambda} d x \text {, } \\
& \int_{0}^{h \prime} \frac{u}{u_{1}}\left(1-\frac{u}{u_{1}}\right) d \eta=\Theta, \int_{0}^{h} \frac{u}{u_{1}}\left(1-\frac{u}{u_{1}}\right) d y=\theta, \\
& \int_{0}^{h^{\prime}}\left(1-\frac{u}{u}\right) d \eta=\Delta^{*}, \quad \int_{0}^{h}\left(1-\frac{u}{u_{1}}\right) d y=\delta^{*},(13)
\end{aligned}
$$

である．$h$ は $u / u_{1}$ が充分 1 K近くなる $y$ を， $h^{\prime}$ はとれに對應する $\eta$ を表わす。

と ゝで導入された $\xi$ および $\eta は$ Dorodnizin が はじめて用いた變數である。本文の方法によると相似關係が彼の方法より明確かつ一般的にに示さ れ，またとの變數變換が必然的に現れて來るのが特徴である。 $\xi$ にういていえば $\varphi$ の定義式より

$$
\varphi=\int_{0}^{x} u_{1}\left(1-\sigma_{1}\right)^{\lambda} d x=\int_{0}^{\xi} u_{1} d \xi
$$

となる。
さて上の對照から次のような近似法が生れる。
縮まない流體の場合に，ある點の境界層の速度分布の形がその點における層外速度勾配と層の厚 さ（便宜上，上に定義した運動量厚 $\boldsymbol{\theta}$ を用いる とととする）で作つたパラメーター $\theta^{2} / \nu \cdot d u_{1} / d x$ だけで定まると考えるのは普通に採られている方法であるが，縮む流體の場合とれに對應する\＆の は $\Theta^{2} / \nu_{s} \cdot 1 /\left(1-\sigma_{1}\right) \cdot d u_{1} / d \xi$ となる。

縮まない流體の場合にはよく知られているよう に $\mu(\partial u / \partial y)_{0} / \rho_{u_{1}}{ }^{2} \cdot u_{1} \theta / \nu$ および $\delta^{*} / \theta$ と上記の パラメーター $\theta^{2} / \nu \cdot d u_{1} / d x$ との關係を適當に近似化すると運動量積分の方程式を積分するととによ り $x$ と $\theta$ 從つて $x$ と $\theta^{2} / \nu \cdot d u_{1} / d x$ との關係を求めるととができ，とのパラメーターがある負値 に達する點として剥離點を求めるととができる。

とのパラメーターと $\mu(\partial u / \partial y)_{0} / \rho u_{1}{ }^{2} \cdot u_{1} \theta / \nu$ およ び $\delta^{*} / \theta$ との關係は運動方程式が解けるような特別な $u_{1}$ の分布に對する解を用いて定める。谷呚授 ${ }^{(11)}$ により，$u^{2}$ が $\boldsymbol{\varphi}$ について直線的に變化 する場合の解（Howarth の解）K もとづんての近似計算法が示されているが，その場合の上記の諸量の數値は縮む流體におんて $u_{1}{ }^{2} /\left(1-\sigma_{1}\right)$ が $\varphi$ について直線的に變化する場合，い」かえると $1 /\left(1-\sigma_{1}\right)^{2} \cdot d u_{1} / d \xi=$ const．の場合のそれぞれ對應 する量の數値に適用される。

## §3．運動量積分の積分

縮まない流體の場合境界層の運動方程式を $y$ 方向に積分するととにより次の運動量積分の方程式 が得られるととは周知の事柄である。

$$
\begin{equation*}
\frac{\tau_{0}}{\rho u_{1}^{2}}=\frac{d \theta}{d x}+\left(\frac{\delta^{*}}{\theta}+2\right) \frac{\theta}{u_{1}} \frac{d u_{1}}{d x} \tag{14}
\end{equation*}
$$

こゝに $\tau_{0}=\mu(\partial u / \partial y)_{0}, \delta^{*}$ および $\theta$ は（13）で定義された排除厚，運動量厚である。

パラメーター $\theta^{2} / \nu \cdot d u_{1} / d x$ を $H$ と書くとと にする。 $\tau_{0} / \rho u_{1}^{2} \cdot u_{1} \theta \nu$ および $\delta^{*} / \theta$ は $H$ の函數 で谷敉授によれば

$$
2 \tau_{0} / \rho u_{1}^{2} \cdot u_{1} \theta / \nu-\left(3+2 \delta^{*} / \theta\right) H=\Psi
$$

なる量は物體の前緣岐點から剥離點に至るまでの間，$H$ に對して殆ど直線的に變化する。そとで

$$
\Psi=c-\kappa H \quad(c, \kappa \text { は常數 })
$$

とおくと（14）は容易に積分できて

$$
\frac{\theta^{2}}{\nu}=c \frac{1}{u_{1}^{\kappa+1}} \int_{0}^{x} u_{1}^{\kappa} d x
$$

が得られ，從つて $H$ は次の如く書かれる。

$$
\begin{equation*}
H=\frac{\theta^{2}}{\nu} \frac{d u_{1}}{d x}=c \frac{d u_{1}}{d x} \frac{1}{u_{1}^{\kappa+1}} \int_{0}^{x} u_{2}^{\kappa} d x \tag{15}
\end{equation*}
$$

$c$ ，$\kappa$ の數値としては Howarth の取扱つた直線的速度勾配の場合の解に\＆とづけば $c=0.441$ ， $\kappa=4.7(\sim 5)$ とすればよいととが示されている。
そして剥離點は $H=-0.084$ で與えられる。
さて縮む流體の場合，$\xi, \eta$ を用い運動方程式 を $y$ 方向に積分するととにより（13）に定義され た $\Delta^{*}, ~ \Theta$ および $S_{0}=\mu_{s}(\partial u / \partial \eta)_{0}$ を用いて，＊＊＊

$$
\frac{S_{0}}{\rho_{s} u_{1}^{2}}=\frac{d \Theta}{d \xi}+\left(\frac{\Delta^{*}}{\Theta}+2-\sigma_{1}\right) \frac{\Theta}{u_{1}} \frac{1}{1-\sigma_{1}} \frac{d u_{1}}{d \xi}(16)
$$ が得られる！と $\downarrow$ で

$$
2 \frac{S_{0}}{\rho_{s} u_{1}^{2}} \frac{u_{1} \Theta}{\nu}-\left(3+2 \frac{\Delta^{*}}{\Theta}\right) \frac{\Theta^{2}}{\nu_{s}} \frac{1}{1-\sigma_{1}} \frac{d u_{1}}{d \xi}
$$

といら量は $u_{1}^{2} /\left(1-\sigma_{1}\right)$ が $\boldsymbol{\rho}$ ．Kつんて直線的 そ變る流れに對しては縮まない流體の場合の Howarth の解にもとづく前記の $\Psi$ と同一の値を とる。從つて上と同じ考にもとづき（16）から

$$
\frac{d}{d \xi}\left(\frac{\Theta^{2}}{\nu^{s}}\right)+\frac{\Theta^{2}}{\nu_{s}} \frac{1}{u_{1}} \frac{d u_{1}}{d \xi}\left(\frac{\kappa+1-2 \sigma_{1}}{1-\sigma_{1}}\right)=\frac{c}{u_{1}}
$$

を得る。

$$
\frac{d \sigma_{1}}{d \xi}=\frac{2 \sigma_{1}}{u_{1}} \frac{d u_{1}}{d \xi}
$$

なるととに注意すれば上の式から

[^3]$$
\frac{\Theta^{2}}{\nu_{s}}=c \frac{\left(1-\sigma_{1}\right)^{\frac{\kappa-1}{2}}}{u_{1}^{\kappa+1}} \int_{0}^{\xi} \frac{u_{1}^{\kappa}}{\left(1-\sigma_{1}\right)^{\frac{\kappa-1}{2}}} d \xi
$$

が得られる．$c=0.441, \kappa=5$ とすれば

$$
\begin{aligned}
& \frac{\Theta^{2}}{\nu_{s}}=0.441 \frac{\left(1-\sigma_{1}\right)^{2}}{u_{1}^{6}} \int_{0}^{\xi} \frac{u_{1}^{5}}{\left(1-\sigma_{1}\right)^{2}} d \xi, \\
& H=\frac{\Theta^{2}}{\nu_{s}} \frac{1}{1-\sigma_{1}} \frac{d u_{1}}{d \xi}=0.441 \frac{d u_{1} 1-\sigma_{1}}{d \xi} \frac{u_{1}^{6}}{} \\
& \int_{0}^{\xi} \frac{u_{1}^{5}}{\left(1-\sigma_{1}^{2}\right.} d \xi
\end{aligned}
$$

を得る．さらに $c_{p} / c_{v}=1.4$ とすれば $\lambda=3.5$ ， $d \xi=\left(1-\sigma_{1}\right)^{3.5} d x, \quad d u_{1} / d \xi=d u_{1} / d x \cdot\left(1-\sigma_{1}\right)^{-3.5}$ と なるから結局

$$
\begin{gather*}
H=0.441 \frac{d u_{1}}{d x} \frac{1}{u_{1}^{6}\left(1-\sigma_{1}\right)^{2.5}} \\
\int_{0}^{x} u_{1}^{5}\left(1-\sigma_{1}\right)^{1.5} d x \tag{17}
\end{gather*}
$$

が得られる。剝離點は $H=-0.084$ で與えられる。
との式は物體表面上の $u_{1}$ の分布が與えられた とき剝離點の位置を決定するのに役立つ．實際に は積分中の $\left(1-\sigma_{1}\right)^{1.5}$ は $\sigma_{1}$ が小さいためあま り變化しないから $\sigma_{1}$ として例えば無限上流の値 $\sigma_{\infty}$ を代用するとととして積分の外へ出し分母の $1-\sigma_{1}$ K\＆ $1-\sigma_{\infty}$ を用いる，とすれば

$$
H=0.441 \frac{d u_{1}}{d x} \frac{1}{u_{1}{ }^{6}\left(1-\sigma_{\infty}\right)} \int_{0}^{x} u_{1}^{5} d x
$$

を得る．これによつて壓縮性による剥離促進の程度を簡單に推定するととができる。
§4．$(1-\sigma)^{n-1}=1$ とおいたことの影響最後に本文の取扱いで運動方程式の粘性項にあ る（ $1-\sigma)^{n-1}$ を 1 とおいたととの影響について—言する。

一般的にとの影響を論ずるととは困難であるか ら，本板（ $u_{1}=$ const．）の場合についての考察か ら，一般の場合を推すととにする．§1 の考察か ら，方程式（12）の解から求められる 本板の 摩擦抵抗係數 $c_{j}=\tau_{0} / \frac{1}{2} \rho_{1} u_{1}{ }^{2}$ と，同じ層外狀態に對 する縮まない流體の場合の抵抗係數 $c_{f 0}$ との比は （ $\left.1-\sigma_{1}\right)^{\frac{1-n}{2}}$ に等しんととが容易に結論される。第 10 圖にとの關係（ $n=0.76$ とする。）をMach 數 そ對して描にたものを示す。同じ圖に Prandtl 數
$\operatorname{Pr}$ が 1 および 0.7 で表面熱傳達のない場合に筆者が數値解法によつて求めた嚴密な値（50頁脚法 の論文）を示してある。（ $\mathrm{Pr}=1$ の場合については既に Kármánと Tsien ${ }^{(12)}$ が同樣な計算を行つて いる．）とれから，本文の近似は壓縮性の影響を いくらか過大に評價しているととが分る。恐らく一般に壓力勾配のある場合にもとのととが言える であろう．然しながらとの圖からも分るように元來境界層に及ぼす壓縮性の影響は大きなものでは ない（圖の縱軸のスケールは非常に擴大してある）


第10圖 熱傳達のない4板の摩擦抵抗係數の Mach 數によろ變化

ととから，本文の近似で實用上充分である。
§2．および§3では§1 において導き出した方程式を直接解かないで運動量積分の利用によつ て剝離に及ぼす壓縮性の影響を簡單に求める方法 を示した。然し一般に言つて縮まない流體の場合 でもとの種の計算の精度についてはかなりの疑問 があるようである。 この點から言えば，むしろ方程式（12）を第1章と同じ方法で解く方が無難 である．第 1 章の方法ではある點の境界層の速度分布形がその點における $\theta^{2} / \nu \cdot d u_{1} / d x$ なるパラ メーターで一義的に定まるというような假定を用 いないので，いわゆる境界層の發達の履歴がほが正確に取入れられるからである。

以上第 1 章におふて縮まない流體に對する境界層方程式を解く新しい方法を示した。實例計算 の結果から見てとの方法はかなりよい精度をもつ ている。

第2章では縮む流體の場合への擴張を行つた。 また縮む流體と縮まない流體の境界層に關する相似關係を示し，とれにもとづいて剥離に及ぼす壓縮性の影響を簡單に求める方法をも示した。

交
（1）Mises：ZAMM， 7 （1927）， 425.
（2）Kármán－Millikan ：NACA T．R．No． 504 （1934）．
（3）Huber ：ZAMM， 7 （1927），469，
（4）Howarth ：Proc，Roy，Soc．，A， 164 （1938）， 547.
（5）Schubauer ：NACA T．R．No． 527 （1935）．
（6）Millikan ：J．Aero．Sci．， 3 （1936）， 91.
（7）Green ：$A R C$ R\＆$M$ ，No． 1313 （1930）
（8）Falkner－Skan ：$A R C$ R\＆M，No． 1314 （1930）．
（9）Fage－Falkner ：$A R C$ R\＆$M$ ，No． 1369 （1931）．
（10）Dorodnizin ：Appl．Math．\＆Mech．U．S．S．R．， 6 （1942）， 450.
（11）Tani ：J．Phys．Soc．Japan， 4 （1949）， 149.
（12）Kármán－Tsien：J．Aero．Sci．， 5 （1938）， 227.
（1951年5月2日受理）

## 正

## 誤

| 卷 | 號 | 頁 | 左 右 | 行＊ | 誤 | 正 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 9～10 | 243 | $\bigcirc$ | 12 | （本表 a 圖）第 1 圖左下部 | 本表 b 圖 |
| 4 | $9 \sim 10$ | 243 | $\bigcirc$ | $7{ }^{\prime}$ | （1）式右邊第 2 項 $\frac{\varepsilon_{0}+1}{\varepsilon_{0}+2} \cdot(v+\beta)$ | $\frac{\varepsilon_{0}-1}{\varepsilon_{0}+2} \cdot\left(v_{0}+\beta\right)$ |
| 5 | 1～2 | 58 | $\bigcirc$ | 12 | 緒き | 縮先 |
| 5 | 5 | 175 | $\bigcirc$ | 第9圖 | 0005 Mg | 0． 05 Mg |
| 5 | 5 | 175 | $\bigcirc$ | 第9 圖 | 10 Mg | 1.0 Mg |
| 5 | 5 | 177 | $\bigcirc$ | 28 | 勃果 | 効果 |
| 5 | 5 | 185 | $\bigcirc$ | 5＇ | $\cos \mu \mathrm{y}$ | $\cos 2 \mu \mathrm{y}$ |
| 5 | 5 | 187 | $\bigcirc$ | 7 | Q | $\mathrm{Q}^{\prime}$ |
| 5 | 6 | 218 | $\bigcirc$ | 31 | 分解液 | 分解 |
| 5 | 6 | 230 | $\bigcirc$ | 第1表 | Gu 20.22 | Cu 20.22 |

＊行數に＇を附したものは下より數えたもの。


正
（b 圖）


[^0]:    ＊生産技術研究所報告 1，No．8．（1951）．との論交で は同じよ5な近似法で境界尿の熱エネルギーの方程式を解くととを試みている。

[^1]:    ＊Huber は一般に $\partial^{2} u / \partial x^{2}-x^{\alpha} \partial u / \partial t=0,(\alpha>-1)$
    の解を求めている．上の場合は $\alpha=-1 / 2$ に相當 する．なぁ解（17）は $f(0)=0$ であつても $f(0) \neq 0$ であっても成立つ。

[^2]:    ＊第8圖の計算では $u_{1}{ }^{2}(\varphi), u_{1}{ }^{2}(t)$ 共に三次式の組合 せを，また第 9 圖の計算では $u_{1}{ }^{2}(\varphi)$ Kは二次式の。組合せ，$u_{1}{ }^{2}(t)$ Kは三次式の組合せを用いた。

[^3]:    ＊との論文では一般に $u_{1}=a+b x^{n}$ の場合の解が取扱 われている。
    ＊＂同論文では $\theta^{2} / \nu \cdot a u_{1} / d x$ を $\sigma, \delta^{*} / \theta$ を $H$ と書いて ある．本交では $\sigma$ を別の意味に用いているのでて れと異なる記號を用いる。
    ＊＊＊（6）式から，$\mu_{s}$ は物體表面にまする $\mu$ と等しい ことを注意しておく。

